INTERVAL FUNCTIONS AND ABSOLUTE CONTINUITY

BY
WirLiam D. L. ApprrING

1. Introduction

Suppose [a, b] is a number interval.
The author [1] has shown the following theorem:

TaeorREM A. If each of h and m is a real-valued nondecreasing function on
[a, b], and H is a real-valued bounded function of subintervals of [a, b] such that
the integral (Section 2)

[ H@)dm
[a,b]
exists, then the integral

[ H@ [ (@ny? (@my=
{a,b] I
exists for each number p such that 0 < p < 1.

We note that in the above theorem the function w on [a, b] such that

w(a) = 0 and w(z) = f[a,z](dh)”(dm)l”” for ¢ < z = b,

is absolutely continuous with respect to m. This suggests an extension of
Theorem A, and in this paper we prove (Theorem 3) that if each of A and m
is a real-valued nondecreasing function on [a, b], then the following four
statements are equivalent:

(1) If H is a real-valued bounded function of subintervals of [a, b] such
that f[a,z,] H(I) dm exists, then f[a, o H(I) dh exists.

(2) [wn(dh)?(dm)™ —hliasp—1for0 < p < 1.

(3) JSwm |dh — [1(dh)?(dm)*™| >0asp — 1for0 < p < 1.

(4) h is absolutely continuous with respect to m.

2. Preliminary lemmas and definitions

Suppose [a, b] is a number interval.

Throughout this paper all integrals discussed are Hellinger [2] type limits
of the appropriate sums, i.e., if K is a real-valued function of subintervals of
[a, b], and [r, s] is a subinterval of [a, b], then [}, 4 K(I) denotes the limit,
for successive refinements of subdivisions, of sums Yz K(I), where E is a
subdivision of [r, s] and the sum is taken over all intervals I of E. We see
that [5 K(I) exists if and only if for each subinterval [u, v] of [a, b],
Jtuo K(I) exists, so that if a £ u < v < w = b, then

f[“'w] KD = f[u,vl KD + f[v,w] K(D).
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The definitions and theorems of this paper can be extended to ‘“many-
valued” interval functions.
We state a lemma whose proof follows by conventional methods.

Lemma 1. If H is a real-valued bounded function of subintervals of [a, b],
and h s a real-valued function on [a, bl, then the following two statements are
equivalent:

(1) [ o H(I) dh exists.

(2) For each positive number c, there is a real-valued function g on [a, b]
such that [1.5 |dh — dg| < c and [ H(I) dg exists.

In order to maintain the interval-function context of this paper, we now
use interval-function methods to prove a known [3, p. 50] lemma about a
nondecreasing function absolutely continuous with respect to a nondecreasing
function.

LEmMa 2. If each of h and m is a real-valued nondecreasing function on
[a, b], and h is absolutely continuous with respect to m, and ¢ is a positive number,
then there are a number W > 0 and a real-valued function g on [a, b] such that
if I is a subinterval of [a, b, then

0 < Ag < min {Ah, WAm}, and A2 — g|s < c.

Proof. There is a number & > 0 such that if E is a subset of a subdivision
of [a, b] and D>z Am < k, then Y gAh < ¢/2.

For each subinterval I of [a, b] let H(I) denote min {Ah, WAm}, where
W = [(hla)/k] + 1.

If [u, v] is a subinterval of [a, b], and L{u, v] is the least upper bound of all
sums Y_p H(I), where D is a subdivision of [«, v], then

Llu, v] < min {h[y, Wm|a}.
We see that if S is a refinement of the subdivision 7' of the subinterval
[r, s] of [a, b], then 0 £ D s L(I) £ X r L(I), so that
[, LD < min (alz, W,
Let g denote the function on [a, b] such that
gla) =0 and g¢g(z) = f[ ]L(I) fora <z =0

There is a subdivision D of [a, b] such that if E is a refinement of D, then
0 = D x[L(I) — Ag] < ¢/8. TFor each I in D, there is a subdivision S; of I
such that 0 < L(I) — X s, HJ) < ¢/(8N), where N is the number of
intervals in D, so that

0= 2o 2slL) — HU) £ Zp[L(I) — X5 HJ)] < ¢/8.
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Now
0 = hle — gle = 2op 25 [Oh — Ag]
S| 20 Xs b —HWU) |+ | 2 2 [LW) — HW) |
+ | o Xar [L) — Ag] |
< | Xalah — HI]| + /8 + ¢/8,

where @ is the set (if any) of all J such that for some I in D, J is in S; and
Ah #= H(J), so that H(J) = WAm. Therefore

W2edm = 2 oH(WJ) £ D2 qhh < A2,

so that > oAm = (R|2)/W < k, and therefore Y o Ah < ¢/2. Therefore
0= X olah — HJ)] £ X oAh < ¢/2,

so that hl> — g2 < ¢/2 + ¢/8 + ¢/8 = 3¢/4 < .

3. A convergence theorem

We now prove a theorem about the convergence of the integral
Jtan(dg)”(dm) ™ asp — 1for0 < p < 1.

TrEorREM 2. If each of g and m is a real-valued nondecreasing function on
the number interval [a, b], and g ¢s such that for some positive number W,
Ag £ WAm for each subinterval I of [a, b), then

f[ - 'dg - fI (dg)® (dm)*™

for0 <p <1

—0 as p—1

Proof.) We first demonstrate the theorem for the case that Ag £ Am for
each subinterval I of [a, b].

Suppose 0 < p < 1.

If I is a subinterval of [a, b], then
0 < (Ag)?(Am)'"™ — Ag < pAg + (1 — p)Am — Ag = (1 — p)(Am — Ag).

Therefore if E is a subdivision of the subinterval [u, v] of [a, b], then

0= 2 5 [(A9)"(Am)"™" — Agl = (1 — p) 2_x[Am — Ag] = (1 — p)[m[s — g[2],
so that

0= f[ | [(dg)” (dm)*™ — dg] = (1 = p)imli — L
If D is a subdivision of [a, b], then

1 The author wishes to thank the referee for valuable suggestions incorporated in
the paper in general and this proof in particular.
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o |ag — [ (dg)? (@m)*| = S [ 1(dg)” ()™ — dgi

< > (1 = p)lam — Agl,

so that

/[a,b] ldg - /; (dg)* (dm)*™?

We now prove the theorem for the general case.
If 0 < p < 1, then

[, |~ [ @ amy=

<1 —p)mls —glll—0 as p—1L

w [ |atem) = [ tatomwyr amy=

+ [ — W f [d(g/W)P? (dm)*™?

IIA

FWL— W f[ [/ WP (dm)

—SWO+W|1—1|(gl)/W as p— 1

~/;a,b]

In this section we prove the second theorem mentioned in the introduction.

Therefore

dg — [ (dg)* (am)"™

—0 as p—o 1

4. The characterization theorem

TrroreM 3. If each of h and m s a real-valued nondecreasing function on
the number interval [a, b, then the following four statements are equivalent:

(1) If H is a real-valued bounded function of subintervals of [a, b] such that
f[,,,b] H(I) dm exists, then f tap) H(I) dh exists.

(2) [n(dh)?(dm) ™ —hliasp—1fr0 < p < 1.

(3) Jwm | dh — [1(dh)?(dm) ™| - 0asp — 1for 0 < p < 1.

(4) h is absolutely continuous with respect to m.

Proof. We first show that (4) implies (3). Suppose ¢ is a positive number.
By Lemma 2, there are a real-valued function g on [a, b] and a number W > 0
such that if I is a subinterval of [a, b], then 0 = Ag < min {Ah, WAm} and
Rl — gle < ¢/8.

By Theorem 2, there is a positive number &k < 1 such thatif £ < p < 1,

then
[ g = [ @ @my=
[a,b] I

<c/8
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and such that furthermore (¢/8)” < c¢/4 and (m|2)"™ < 2, so that if D is a
subdivision of [a, b], then

o | Ak — [ (@) (am)

S 2o |Ah—Ag|+ 20

+20

a9 — [ (dg)” amy=>

[ any? @my= = [ dgy® amy=>

<c/8+c/8+20p f (dh — dg)? (dm)*™™.
I
By Hélder’s inequality

¢/8 + ¢/8 + b f; (dh — dg)? (dm)*™ < /4 + o (Ag — AR)?(Am)*™

< o/4 4 (hls = gl)"(m[a)™" < ¢/4 + (¢/8)7(2) < c/4 4 (¢/4)(2),

so that
e

Therefore (4) implies (3).

It is obvious that (3) implies (2).

We now show that (2) implies (4). Suppose that (2) is true, but that & is
not absolutely continuous with respect to m. We see that m|) = 0.

There are a number W > 0 and a sequence {D;}s- of proper subsets of
subdivisions of [a, b] such that Y5, Am — 0 as n — oo, but for each positive
integer n, Y p, Ah = W. We see that for each positive integer n, there is a
subset C, of a subdivision of [a, b] such that D, and C, are mutually exclusive
and D, + C, is a subdivision of [a, b].

If n is a positive integer, then D ¢, Ah = Ao — D5, Ak < h|2 — W, s0
that if 0 < p < 1, then

= (3c¢)/4 < c.

dh — f, (dh)? (dm)*™

f[a y (dh)? (dm)"™® £ D p, (AR)?(Am)' ™™ + Do, (AR)?(Am)*™?

(X0, 80)* (X0, am) ™ + (2o, AR)* (D¢, Am)*™?
< (WD) (o, am) " + (B2 — W)?(mfs — X p, Am)'?
— (W2?0) + (A2 — W)?(mf — 0)*” as n— w;

lIA

so that
[ (@) (@)™ < (b = WYl > W — W as p— 1.
[a,b]

Therefore, since [ (o5(dh)?(dm)"™ — hlo as p — 1 for 0 < p < 1, it
follows that hIZ = hl.l; — W, a contradiction. Therefore (2) implies (4).
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We now show that (3) implies (1). Suppose H is a real-valued bounded
function of subintervals of [a, b] such that [ (.5 H(I) dm exists.
If ¢ is a positive number, then there is a positive number p < 1 such that

j;a,b]

By Theorem A, [ H(I)[; (dh)?(dm)"™? exists.

Therefore, by Lemma 1, f[a,b] H(I) dh exists. Therefore (3) implies (1).

Finally, we show that (1) implies (4). Suppose (1) is true but that & is
not absolutely continuous with respect to m.

We first show that if ¢ < y < b, and m is continuous from the right at y,
then so is h. Suppose this is not true. Then there is a sequence of numbers
{ys} =1 of (y, b] such that y, — y + m(y,) — m(y) — 0 as n — o, but for
some number V > 0, and each positive integer », h(y.) — h(y) = V. There
is a real-valued function H of subintervals of [a, b] such that

dh — f, (dh)? (dm)*™

<e

H(I) =1 if Iis [y, y.] for some n,
= 0 otherwise.

We see that f[.,,bl H(I)dm = 0. However, if D is a subdivision of [a, b],
then there are refinements E and E’ of D such that for some N, [y, yy] is in E
and for no n is [y, y,] in E’, so that

| 2o H(I)AR — 2 p H(IAR| = h(yx) — k(y) 2 V,

so that f w01 H(I) dh does not exist, a contradiction.

In a similar manner it follows that if ¢ < y < b, and m is continuous from
the left at y, then so is A.

Now from the supposition that h is not absolutely continuous with respect
to m it follows that there are a number W > 0 and a sequence { D}y of sub-
divisions of [a, b] such that for each positive integer n, the following conditions
are satisfied:

(a) Each interval of D, is a proper subset of some interval of D, .

(b) There is a subset B, of D, such that )z, Ak = Wand >z, Am < 27"

(¢) max {v — wufor [y, v] in D,} < 1/n.

There is a real-valued function H of subintervals of [a, b] such that

H(I) =1 ifIisin E, for some n,
= 0 otherwise.

Suppose ¢ is a positive number. There is a positive integer N such that
2" < ¢. If E is a refinement of Dy, and I is in E and E, for some n, then
n = N. If we let E' denote the set (if any) of all I in E and E, for some n,
it follows that

0= Y sHIDAM = 25 Am £ D v 2 =2V < c.
Therefore [ o5 H(I) dm = 0.
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Now suppose D is a subdivision of [a, b].

Let M denote the set of all z such that for some [u, v] in D, z is w or v.

For each positive integer n, let By denote the set (if any) of all [u, v] in E,
such that for some x in M, u < z < ».

Let M™* denote the set (if any) of all z in M such that for each positive
integer n, there is a positive integer w > n such that for some [u, v] in
Es,u<z<o.

For each positive integer =, let Ex* denote the set (if any) of all [u, v] in
E, such that for some z in M*, u < z < .

Now, since for each positive integer n, D gse Am < D 5, Am < 27 — 0
as n — oo, it follows that m is continuous at each number of M/ *, so that h is
continuous at each number of M*, and therefore Y zs« Ah — 0 as n — .

There is a positive integer N such that if z is in M and not in M*, and n is a
positive integer = N, then there is no [u, v] in E, such that v < z < v; so that
if I is in E7, then I is in E%*, and therefore Ej is Ex.

There is a positive integer n > N such that Y zs Ah = D g Ah < W/2,
so that Ey is a proper subset of E,, and E, — Ey is therefore a subset of
some refinement S of D, so that Y s H(I)Ah = D g, sz AR > W/2.

Now the set of all x such that for some » and some [u, v] in E, , 2 is % or v,
is countable. Therefore, since each interval I of D is uncountable, there is a
refinement 7T of D such that for no n is I in 7 and E,. This implies that
S r H(I)Ah = 0, so that | 2_s H(I)Ah — > p H(I)AR | > W/2.

Therefore f[a,b] H(I) dh does not exist, a contradiction. Therefore (1)
implies (4).

Therefore (1), (2), (3), and (4) are equivalent.
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