INTERVAL FUNCTIONS AND ABSOLUTE CONTINUITY

WILLIAM D. L. APPLING

1. Introduction

Suppose [a, b] is a number interval.

The author [1] has shown the following theorem:

THEOREM A. If each of h and m is a real-valued nondecreasing function on [a, b], and H is a real-valued bounded function of subintervals of [a, b] such that the integral (Section 2)

$$\int_{[a,b]} H(I) \ dm$$

exists, then the integral

$$\int_{[a,b]} H(I) \int_{I} (dh)^{p} (dm)^{1-p}$$

exists for each number p such that 0 .

We note that in the above theorem the function w on [a, b] such that

$$w(a) = 0$$
 and $w(x) = \int_{[a,x]} (dh)^p (dm)^{1-p}$ for $a < x \le b$,

is absolutely continuous with respect to m. This suggests an extension of Theorem A, and in this paper we prove (Theorem 3) that if each of h and m is a real-valued nondecreasing function on [a, b], then the following four statements are equivalent:

- If H is a real-valued bounded function of subintervals of [a, b] such that $\int_{[a,b]} H(I) dm$ exists, then $\int_{[a,b]} H(I) dh$ exists. (2) $\int_{[a,b]} (dh)^p (dm)^{1-p} \to h|_a^b$ as $p \to 1$ for 0 . $(3) <math>\int_{[a,b]} |dh - \int_I (dh)^p (dm)^{1-p}| \to 0$ as $p \to 1$ for 0 .

 - (4) h is absolutely continuous with respect to m.

2. Preliminary lemmas and definitions

Suppose [a, b] is a number interval.

Throughout this paper all integrals discussed are Hellinger [2] type limits of the appropriate sums, i.e., if K is a real-valued function of subintervals of [a, b], and [r, s] is a subinterval of [a, b], then $\int_{[r,s]} K(I)$ denotes the limit, for successive refinements of subdivisions, of sums $\sum_{E} K(I)$, where E is a subdivision of [r, s] and the sum is taken over all intervals I of E. We see that $\int_{[a,b]} K(I)$ exists if and only if for each subinterval [u, v] of [a, b], $\int_{[u,v]} K(I)$ exists, so that if $a \leq u < v < w \leq b$, then

$$\int_{[u,w]} K(I) = \int_{[u,v]} K(I) + \int_{[v,w]} K(I).$$

Received March 22, 1963.

The definitions and theorems of this paper can be extended to "many-valued" interval functions.

We state a lemma whose proof follows by conventional methods.

LEMMA 1. If H is a real-valued bounded function of subintervals of [a, b], and h is a real-valued function on [a, b], then the following two statements are equivalent:

- (1) $\int_{[a,b]} H(I) dh \ exists.$
- (2) For each positive number c, there is a real-valued function g on [a, b] such that $\int_{[a,b]} |dh dg| < c$ and $\int_{[a,b]} H(I) dg$ exists.

In order to maintain the interval-function context of this paper, we now use interval-function methods to prove a known [3, p. 50] lemma about a nondecreasing function absolutely continuous with respect to a nondecreasing function.

LEMMA 2. If each of h and m is a real-valued nondecreasing function on [a, b], and h is absolutely continuous with respect to m, and c is a positive number, then there are a number W > 0 and a real-valued function g on [a, b] such that if I is a subinterval of [a, b], then

$$0 \le \Delta g \le \min \{\Delta h, W \Delta m\}, \quad and \quad h|_a^b - g|_a^b < c.$$

Proof. There is a number k > 0 such that if E is a subset of a subdivision of [a, b] and $\sum_{E} \Delta m < k$, then $\sum_{E} \Delta h < c/2$.

For each subinterval I of $[a, \overline{b}]$ let H(I) denote min $\{\Delta h, W\Delta m\}$, where $W = [(h|_a^b)/k] + 1$.

If [u, v] is a subinterval of [a, b], and L[u, v] is the least upper bound of all sums $\sum_{D} H(I)$, where D is a subdivision of [u, v], then

$$L[u, v] \leq \min \{h|_u^v, Wm|_u^v\}.$$

We see that if S is a refinement of the subdivision T of the subinterval [r, s] of [a, b], then $0 \leq \sum_{s} L(I) \leq \sum_{r} L(I)$, so that

$$\int_{[r,s]} L(I) \le \min \{ h|_r^s, Wm|_r^s \}.$$

Let g denote the function on [a, b] such that

$$g(a) \, = \, 0 \quad \text{and} \quad g(x) \, = \, \int_{[a,x]} L(I) \quad \text{for $a < x \leqq b$.}$$

There is a subdivision D of [a, b] such that if E is a refinement of D, then $0 \le \sum_{E} [L(I) - \Delta g] < c/8$. For each I in D, there is a subdivision S_I of I such that $0 \le L(I) - \sum_{S_I} H(J) < c/(8N)$, where N is the number of intervals in D, so that

$$0 \le \sum_{D} \sum_{S_{I}} [L(J) - H(J)] \le \sum_{D} [L(I) - \sum_{S_{I}} H(J)] < c/8.$$

Now

$$\begin{split} 0 & \leq h|_{a}^{b} - g|_{a}^{b} = \sum_{D} \sum_{S_{I}} [\Delta h - \Delta g] \\ & \leq \big| \sum_{D} \sum_{S_{I}} [\Delta h - H(J)] \big| + \big| \sum_{D} \sum_{S_{I}} [L(J) - H(J)] \big| \\ & + \big| \sum_{D} \sum_{S_{I}} [L(J) - \Delta g] \big| \\ & < \big| \sum_{Q} [\Delta h - H(J)] \big| + c/8 + c/8, \end{split}$$

where Q is the set (if any) of all J such that for some I in D, J is in S_I and $\Delta h \neq H(J)$, so that $H(J) = W\Delta m$. Therefore

$$W \sum_{Q} \Delta m = \sum_{Q} H(J) \leq \sum_{Q} \Delta h \leq h|_{a}^{b},$$

so that $\sum_{q} \Delta m \leq (h|_a^b)/W < k$, and therefore $\sum_{q} \Delta h < c/2$. Therefore

$$0 \le \sum_{Q} [\Delta h - H(J)] \le \sum_{Q} \Delta h < c/2,$$

so that $h|_a^b - g|_a^b < c/2 + c/8 + c/8 = 3c/4 < c$.

3. A convergence theorem

We now prove a theorem about the convergence of the integral $\int_{[a,b]} (dg)^p (dm)^{1-p}$ as $p \to 1$ for 0 .

THEOREM 2. If each of g and m is a real-valued nondecreasing function on the number interval [a, b], and g is such that for some positive number W, $\Delta g \leq W \Delta m$ for each subinterval I of [a, b], then

$$\int_{[a,b]} \left| dg - \int_{I} (dg)^{p} (dm)^{1-p} \right| \to 0 \quad as \quad p \to 1$$

for 0 .

*Proof.*¹ We first demonstrate the theorem for the case that $\Delta g \leq \Delta m$ for each subinterval I of [a, b].

Suppose 0 .

If I is a subinterval of [a, b], then

$$0 \le (\Delta g)^p (\Delta m)^{1-p} - \Delta g \le p\Delta g + (1-p)\Delta m - \Delta g = (1-p)(\Delta m - \Delta g).$$

Therefore if E is a subdivision of the subinterval [u, v] of [a, b], then $0 \le \sum_{E} [(\Delta g)^{p} (\Delta m)^{1-p} - \Delta g] \le (1-p) \sum_{E} [\Delta m - \Delta g] = (1-p) [m|_{u}^{v} - g|_{u}^{v}]$, so that

$$0 \le \int_{[u,v]} \left[(dg)^p (dm)^{1-p} - dg \right] \le (1-p) [m|_u^v - g|_u^v].$$

If D is a subdivision of [a, b], then

¹ The author wishes to thank the referee for valuable suggestions incorporated in the paper in general and this proof in particular.

$$\sum_{D} \left| \Delta g - \int_{I} (dg)^{p} (dm)^{1-p} \right| = \sum_{D} \int_{I} [(dg)^{p} (dm)^{1-p} - dg] \\ \leq \sum_{D} (1 - p) [\Delta m - \Delta g],$$

so that

$$\int_{[a,b]} \left| dg - \int_I \left(dg \right)^p \left(dm \right)^{1-p} \right| \leq (1-p)[m|_a^b - g|_a^b] \to 0 \quad \text{as} \quad p \to 1.$$

We now prove the theorem for the general case.

If 0 , then

$$\int_{[a,b]} \left| dg - \int_{I} (dg)^{p} (dm)^{1-p} \right|$$

$$= W \int_{[a,b]} \left| d(g/W) - \int_{I} [d(g/W)]^{p} (dm)^{1-p} + [1 - W^{p-1}] \int_{I} [d(g/W)]^{p} (dm)^{1-p} \right|$$

$$\leq W \int_{[a,b]} \left| d(g/W) - \int_{I} [d(g/W)]^{p} (dm)^{1-p} \right|$$

$$+ W |1 - W^{p-1}| \int_{[a,b]} [d(g/W)]^{p} (dm)^{1-p}$$

$$\to W0 + W |1 - 1| (g|_{a}^{b})/W \text{ as } p \to 1.$$

Therefore

$$\int_{[a,b]} \left| dg - \int_{I} (dg)^{p} (dm)^{1-p} \right| \to 0 \quad \text{as} \quad p \to 1.$$

4. The characterization theorem

In this section we prove the second theorem mentioned in the introduction.

Theorem 3. If each of h and m is a real-valued nondecreasing function on the number interval [a, b], then the following four statements are equivalent:

- (1) If H is a real-valued bounded function of subintervals of [a, b] such that $\int_{[a,b]} H(I) dm$ exists, then $\int_{[a,b]} H(I) dh$ exists.

 - $\begin{array}{ll} (2) & \int_{[a,b]} (dh)^p (dm)^{1-p} \to h|_a^b \ as \ p \to 1 \ for \ 0$
 - h is absolutely continuous with respect to m.

Proof. We first show that (4) implies (3). Suppose c is a positive number. By Lemma 2, there are a real-valued function g on [a, b] and a number W > 0such that if I is a subinterval of [a, b], then $0 \le \Delta g \le \min \{\Delta h, W\Delta m\}$ and $h|_a^b - g|_a^b < c/8.$

By Theorem 2, there is a positive number k < 1 such that if k ,then

$$\int_{[a,b]} \left| dg - \int_{I} (dg)^{p} (dm)^{1-p} \right| < c/8$$

and such that furthermore $(c/8)^p < c/4$ and $(m|_a^b)^{1-p} < 2$, so that if D is a subdivision of [a, b], then

$$\sum_{D} \left| \Delta h - \int_{I} (dh)^{p} (dm)^{1-p} \right|$$

$$\leq \sum_{D} \left| \Delta h - \Delta g \right| + \sum_{D} \left| \Delta g - \int_{I} (dg)^{p} (dm)^{1-p} \right|$$

$$+ \sum_{D} \left| \int_{I} (dh)^{p} (dm)^{1-p} - \int_{I} (dg)^{p} (dm)^{1-p} \right|$$

$$\leq c/8 + c/8 + \sum_{D} \int_{I} (dh - dg)^{p} (dm)^{1-p}.$$

By Hölder's inequality

$$c/8 + c/8 + \sum_{D} \int_{I} (dh - dg)^{p} (dm)^{1-p} \leq c/4 + \sum_{D} (\Delta g - \Delta h)^{p} (\Delta m)^{1-p}$$

$$\leq c/4 + (h|_{a}^{b} - g|_{a}^{b})^{p} (m|_{a}^{b})^{1-p} < c/4 + (c/8)^{p} (2) < c/4 + (c/4) (2),$$

so that

$$\int_{[a,b]} \left| dh - \int_{I} (dh)^{p} (dm)^{1-p} \right| \leq (3c)/4 < c.$$

Therefore (4) implies (3).

It is obvious that (3) implies (2).

We now show that (2) implies (4). Suppose that (2) is true, but that h is not absolutely continuous with respect to m. We see that $m|_a^b \neq 0$.

There are a number W>0 and a sequence $\{D_k\}_{k=1}^{\infty}$ of proper subsets of subdivisions of [a, b] such that $\sum_{D_n} \Delta m \to 0$ as $n \to \infty$, but for each positive integer n, $\sum_{D_n} \Delta h \geq W$. We see that for each positive integer n, there is a subset C_n of a subdivision of [a, b] such that D_n and C_n are mutually exclusive and $D_n + C_n$ is a subdivision of [a, b].

If n is a positive integer, then $\sum_{c_n} \Delta h = h|_a^b - \sum_{D_n} \Delta h \leq h|_a^b - W$, so that if 0 , then

$$\int_{[a,b]} (dh)^{p} (dm)^{1-p} \leq \sum_{D_{n}} (\Delta h)^{p} (\Delta m)^{1-p} + \sum_{C_{n}} (\Delta h)^{p} (\Delta m)^{1-p}
\leq (\sum_{D_{n}} \Delta h)^{p} (\sum_{D_{n}} \Delta m)^{1-p} + (\sum_{C_{n}} \Delta h)^{p} (\sum_{C_{n}} \Delta m)^{1-p}
\leq (h|_{a}^{b})^{p} (\sum_{D_{n}} \Delta m)^{1-p} + (h|_{a}^{b} - W)^{p} (m|_{a}^{b} - \sum_{D_{n}} \Delta m)^{1-p}
\rightarrow (h|_{a}^{b})^{p} (0) + (h|_{a}^{b} - W)^{p} (m|_{a}^{b} - 0)^{1-p} \text{ as } n \to \infty;$$

so that

$$\int_{[a,b]} (dh)^p (dm)^{1-p} \le (h|_a^b - W)^p (m|_a^b)^{1-p} \to h|_a^b - W \text{ as } p \to 1.$$

Therefore, since $\int_{a}^{a} [a,b] (dh)^p (dm)^{1-p} \to h|_a^b$ as $p \to 1$ for $0 , it follows that <math>h|_a^b \le h|_a^b - W$, a contradiction. Therefore (2) implies (4).

We now show that (3) implies (1). Suppose H is a real-valued bounded function of subintervals of [a, b] such that $\int_{[a,b]} H(I) dm$ exists.

If c is a positive number, then there is a positive number p < 1 such that

$$\int_{[a,b]} \left| dh - \int_{I} (dh)^{p} (dm)^{1-p} \right| < c.$$

By Theorem A, $\int_{[a,b]} H(I) \int_{I} (dh)^{p} (dm)^{1-p}$ exists.

Therefore, by Lemma 1, $\int_{[a,b]} H(I) dh$ exists. Therefore (3) implies (1).

Finally, we show that (1) implies (4). Suppose (1) is true but that h is not absolutely continuous with respect to m.

We first show that if $a \leq y < b$, and m is continuous from the right at y, then so is h. Suppose this is not true. Then there is a sequence of numbers $\{y_k\}_{k=1}^{\infty}$ of (y, b] such that $y_n - y + m(y_n) - m(y) \to 0$ as $n \to \infty$, but for some number V > 0, and each positive integer $n, h(y_n) - h(y) \geq V$. There is a real-valued function H of subintervals of [a, b] such that

$$H(I) = 1$$
 if I is $[y, y_n]$ for some n ,
= 0 otherwise.

We see that $\int_{[a,b]} H(I) dm = 0$. However, if D is a subdivision of [a, b], then there are refinements E and E' of D such that for some N, $[y, y_N]$ is in E and for no n is $[y, y_n]$ in E', so that

$$\left| \sum_{E} H(I) \Delta h - \sum_{E'} H(I) \Delta h \right| = h(y_N) - h(y) \ge V,$$

so that $\int_{[a,b]} H(I) dh$ does not exist, a contradiction.

In a similar manner it follows that if $a < y \le b$, and m is continuous from the left at y, then so is h.

Now from the supposition that h is not absolutely continuous with respect to m it follows that there are a number W > 0 and a sequence $\{D_k\}_{k=1}^{\infty}$ of subdivisions of [a, b] such that for each positive integer n, the following conditions are satisfied:

- (a) Each interval of D_{n+1} is a proper subset of some interval of D_n .
- (b) There is a subset E_n of D_n such that $\sum_{E_n} \Delta h \ge W$ and $\sum_{E_n} \Delta m < 2^{-n}$.
- (c) $\max \{v u \text{ for } [u, v] \text{ in } D_n\} < 1/n$.

There is a real-valued function H of subintervals of [a, b] such that

$$H(I) = 1$$
 if I is in E_n for some n ,
= 0 otherwise.

Suppose c is a positive number. There is a positive integer N such that $2^{1-N} < c$. If E is a refinement of D_N , and I is in E and E_n for some n, then $n \ge N$. If we let E' denote the set (if any) of all I in E and E_n for some n, it follows that

$$0 \le \sum_{E} H(I) \Delta m = \sum_{E'} \Delta m \le \sum_{k=N}^{\infty} 2^{-k} = 2^{1-N} < c.$$

Therefore $\int_{[a,b]} H(I) dm = 0$.

Now suppose D is a subdivision of [a, b].

Let M denote the set of all x such that for some [u, v] in D, x is u or v.

For each positive integer n, let E_n^* denote the set (if any) of all [u, v] in E_n such that for some x in M, u < x < v.

Let M^* denote the set (if any) of all x in M such that for each positive integer n, there is a positive integer w > n such that for some [u, v] in E_w^* , u < x < v.

For each positive integer n, let E_n^{**} denote the set (if any) of all [u, v] in E_n such that for some x in M^* , u < x < v.

Now, since for each positive integer n, $\sum_{E_n^*} \Delta m \leq \sum_{E_n} \Delta m < 2^{-n} \to 0$ as $n \to \infty$, it follows that m is continuous at each number of M^* , so that h is continuous at each number of M^* , and therefore $\sum_{E_n^*} \Delta h \to 0$ as $n \to \infty$.

There is a positive integer N such that if x is in M and not in M^* , and n is a positive integer $\geq N$, then there is no [u, v] in E_n such that u < x < v; so that if I is in E_n^* , then I is in E_n^{**} , and therefore E_n^* is E_n^{**} .

There is a positive integer n > N such that $\sum_{E_n^*} \Delta h = \sum_{E_n^{**}} \Delta h < W/2$, so that E_n^* is a proper subset of E_n , and $E_n - E_n^*$ is therefore a subset of some refinement S of D, so that $\sum_{S} H(I)\Delta h \ge \sum_{E_n - E_n^*} \Delta h > W/2$.

Now the set of all x such that for some n and some [u, v] in E_n , x is u or v, is countable. Therefore, since each interval I of D is uncountable, there is a refinement T of D such that for no n is I in T and E_n . This implies that $\sum_T H(I)\Delta h = 0$, so that $|\sum_S H(I)\Delta h - \sum_T H(I)\Delta h| > W/2$. Therefore $\int_{[a,b]} H(I) dh$ does not exist, a contradiction. Therefore (1)

Therefore $\int_{[a,b]} H(I) dh$ does not exist, a contradiction. Therefore (1) implies (4).

Therefore (1), (2), (3), and (4) are equivalent.

References

- W. D. L. APPLING, Interval functions and non-decreasing functions, Canadian J. Math., vol. 15 (1963), pp. 752-754.
- 2. E. Hellinger, Die Orthogonalinvarianten quadratischer Formen von unendlichvielen Variabelen, Inaugural-Dissertation, Göttingen, 1907.
- F. RIESZ ET B. Sz.-NAGY, Leçons d'analyse fonctionnelle, Budapest, Akadémiai Kiadó, 1952.

DUKE UNIVERSITY
DURHAM, NORTH CAROLINA