SOME REPRESENTATION THEOREMS FOR INVARIANT
PROBABILITY MEASURES

BY
S. CATER

Throughout this paper X will be a set, & will be a o-algebra of subsets of X
(for a definition of o-algebra and o-ring of subsets of X see [3]), T will be a
mapping of X into X, and m will be a measure on ®. We say that ® is
T-invariant if A ¢ ® implies T4 ¢ ®, and a set 4 ¢ ® is T-inwariant if
A = T7'A. If ® is T-invariant, and if m(4) = m(T4) for all 4 ¢ ®, we
say that m is T-invariant. We say that m is a probability measure on ® if
m(X) = 1. If mis a T-invariant probability measure, and if m(4) = OQor1
for every T-invariant set A ¢ ®, we say that m is ergodic. If m is a measure
on ® and if F ¢ ®, the measure m; defined by mi:(4) = m(4A n E), all 4 ¢ ®,
is called the contraction of m to the set E.

In [1] Blum and Hanson studied the problem of expressing a T-invariant
probability measure as a ‘‘combination” of some sort of ergodic measures.
The following proposition can be inferred from their work.

Prorosition 1. Let T be a 1-1 mapping of X onto X, let ® be @ T-invariant
a-algebra of subsets of X, let m be a T-invariant probability measure on ®, and
let & be the set of all ergodic measures on ®&. Suppose that for any T-invariant
set A € ® for which there is a T-invariant probability measure mo with me(4) > 0
there is a p € & for which p(A) > 0. Then m has an integral representation on
&; 1.e., there 1s a probability measure u on a c-algebra of subsets of & such that
for any set A € ®, we have that p(A), regarded as a function of p, is measurable
on & and m(A) = [pe p(A) du.

Employing methods similar to those in [1], Farrell [2] studied situations
in which X is a topological space and ® consists of the Baire subsets of X.
The following proposition can be inferred from the work of Farrell.

ProrosiTioN 2. Let X be a compact Hausdorff space, let ® consist of the
Baire subsets of X, and let T be a continuous mapping of X into X. Then any
T-invariant probability measure m on ® has an integral representation as in
Proposition 1.

The purpose of the present paper is to construct analogues of Proposition
2 in which X is not required to be compact (or locally compact or s-compact
or metrizable) and to apply these analogues to several concrete examples to
which the results stated in [2] are not applicable.

Now let & be a real vector lattice of bounded real-valued functions on X.
We say that & is T-invariant if f(x) ¢ F implies f(Tz) ¢ F. If Fis T-invariant,
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REPRESENTATION OF INVARIANT PROBABILITY MEASURES 409

and if ® is the smallest o-algebra containing all sets of the form X (f = 1), f ¢ &,
it follows that ® is also T-invariant.

As in Loomis [5, p. 34] we say that the vector lattice ¥ is Stonian if fe&F
implies min (1, f) e F. We will establish

TueorEM I. Let X be a set, let F be a Stonian vector lattice of bounded func-
ttons on X, let ® be the smallest c-algebra containing all sets of the form
X(f = 1),feF, and let T be a mapping of X into X for which F s T-invariant.
Suppose F satisfies

(1) 4f {fa} is a nondecreasing sequence of functions in F converging potntwise
to 0, then {f.} converges uniformly.

Then any T-invariant probability measure m on ® has an integral representa-
tion as in Proposition 1.

The next result generalizes Proposition 2.

TaEOREM II. Let X be a topological space, let ® be the smallest o-algebra
containing all sets of the form X (f = 1) where f is real-valued, continuous, and
the closure of X (f 5 0) s countably compact, and let T be a continuous mapping
of X nto X for which T™"A is countably compact for any closed countably com-
pact set A. Then ® is T-invariant, and any T-invariant probability measure
m on ® has an integral representation as in Proposition 1.

Note that Theorem IT does not exclude the degenerate case in which there
is no nonzero continuous function f on X for which the closure of X(f £ 0)
is countably compact; in this event ® is composed of only the sets X, 6,
and the only probability measure m on ® is given by m(X) = 1, m(@8) = 0.
No restrictions on the topology of X are needed in Theorem II.

TaeorEM III. Let X be a normal topological space, let ® be the smallest
a-algebra containing every open F, set which has countably compact closure.
Let T be a continuous mapping of X into X for which T~ A is countably compact
for any closed countably compact set A. Then ® is T-invariant, and any
T-invariant probability measure m on ® has an integral representation as in
Proposition 1.

Until Theorem I is proved we will assume its hypotheses are satisfied.
Then by [2, pp. 451-452] we have the following two lemmas.

Lemma 1. If my, and me are T-invariant probability measures such that
mi(A) = me(A) for all T-invariant A € ®, then m; = ms on ®.

Lemma 2. If Ae®Rand 0 £ ¢ = 1, there is a T-invariant B ¢ ® such that
p(A) £ cif and only if p(B) = 1 for every ergodic measure p on ®.

Also the following lemma can be established as in [1, Theorem 2].

LemMA 3. Let m be a T-invariant probability measure on ®, and let A be a
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T-invariant set in & for which 0 < m(A) < 1. Then there exist T-invariant
probability measures my and mq on ®, absolutely continuous with respect to m,
Sor which mi(A) = 1, mey(A) = 0, and m = m(A)my + [L — m(A)Im..

Now we employ our hypothesis (1) to establish the decisive link in the
development of Theorem I.

LemMA 4. For any T-invariant set A ¢ ® for which there is a T-invariant
probability measure m on & with m(A) > 0, there exists an ergodic measure
p on & with p(4) > 0.

Proof. Let m be a T-invariant probability measure, and let 4 be a
T-invariant set in ® for which m(4) > 0.

Let ®o be the smallest o-ring containing all sets of the form X(f = 1), fe&
(we will find it necessary to consider ®, as well as ®). Note that

T7X(f(z) 2 1) = X(f(Te) 2 1),

and it follows that E e ® implies T'E ¢ ®. FElementary arguments show
that any set E in R is either in ® or is the complement of some set in R, ;
ifEé(PL, Eoe(Ro,thenEnEoe(Ro.

Select By € Ry so that m(B;) = sup {m(E); E ¢ Ro} < 1, and put

Bo=BiuT'BiuT(T'B)u ---

Then Bye ®Ro, T"'Bo C By, and m(E) = m(E n By) forall Ee®y. We claim
that there is no set B e ® for which m(B n By) = 0 and 0 < m(B) <
m(X — By). Assume such a set B exists. Set E = X — (Byu B); then
m(E) > 0. Since E n By = @, it is plain that there is a set G ¢ ®o for which
E=X—G Itfollowsthat E = E — By= X — (Gu By)) = X — By
and B C By modulo m-null sets; hence m(B — B,) = 0. Then m(B) =
m(B — Bo) + m(B n By) = 0, which is impossible.

Let Y be the union Uj_, 7™"(X — B,) where T"" denotes (T")™" and T°
denotes the identity mapping of X onto X, and let m; be the contraction of m
to Y. We claim that m; is T-invariant. Suppose E C Y; then

T'EcCcT'Y CV,
and mi(T'E) = m(T"'E) = m(E) = m(E). Suppose E ¢ X — Y;
then (TT'E)nY = (TT'E) n (X — Bo), and E ¢ ®o because E C By. Con-
sequently TE e ®R,0 = m[(TTE)n Y] = m(T'E) = m(EanY) = m(E),
and consequently m; is T-invariant.
Suppose C is a T-invariant set in ® Then

TMCn(X —B)]=(T""C)nT™(X — By) = CnT™(X — Bo)
for alln = 0, and
m(C) = m(CnY) = m[UnsoCn T7(X — By)]
= my[Unmo T7"[C n (X — By)].
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Now either m[C n (X — By)] = 0 or m[C n (X — By)] = m(X — By);in the
former case m;(C) = 0, and in the latter case m;(C) = my(Y). We can
assume without loss of generality in the proof of Lemma 4 that m(An Y) = 0;
forif m(A n Y) > 0, then my/mi(Y) would be an ergodic measure p on & for
which p(A) = p(A nY) > 0 as is required.

In all that follows suppose m(4 nY) = 0. Set

U=AnbB,, V=40 (X — By).

Now T7'U = (T7'A)n (T7'B)) c An By = U,and m(T™"V) = m(V) = 0
foralln = 0. Hence
m[U — Upeo T"V] > 0.

Because T'UcC Uand Uu V = (T'U) u (T7'V), it follows that Uj—e 7"V
and A — Upo TV = U — U5— T "V are T-invariant. Without loss of
generality we can assume that A € By. Then 4 ¢ R .

For each f € 5 let I; denote a copy of the real line under the usual topology,
and let X ;g I; denote the Cartesian product of all the I; . Indeed X4 Iy
is a real topological vector space under coordinatewise addition and scalar
multiplication. Note that no nonzero vector in Xyg I; is annihilated by
every continuous linear functional on X,g I, .

Let V be the set of all measures v on ® for which v(E) £ 1 and v(E) =
v(T'E) forall E ¢ ® . Then V is a convex set where [av; + (1 — a)ve](E)
is defined to be av;(E) + (1 — a)v2(E) for 0 £ o £ 1. Note that every
f € ¥ is Ro-measurable. We construct a mapping ¢ of V into Xy Iy as
follows: forveV, ¢(v); = ffdv. Clearly ¢ is affine; i.e.,

d(avy + (1 — a)v) = adp(vy) + (1 — a)p(vs) for0 < a = 1.

We claim that ¢(V) is closed in X5 I;. To see this let (a;, f e F) be a
point in the closure of ¢(V'); we must find a u e V for which ¢(u); = ay, all
f eF. Clearly the mapping @(f) = a; is a nonnegative linear functional on
the vector space ¥, and |@(f)| < sup |f| for each f ¢ F. Now suppose {f»} is
a nonincreasing sequence of functions in ¥ converging pointwise to 0 on X;
by Thypothesis (1), {f.} converges uniformly, and consequently
lim'n-wo a(fn) = 0'

We extend @ to the class of @-summable functions employing Daniell’s
Theory [5, Chapter III]. Then 0 < (g) < 1 for any 4-summable function
g for which 0 < g < 1. Because ¥ is Stonian, it follows that for any f e &
and any real number ¢ > 0 the characteristic function of X (f > ¢) is @-sum-
mable. By the Monotone Convergence Theorem and the fact that the class
of @-summable functions is closed under the lattice operations (see [5]) we
have that the characteristic function of any set in ®, is @#-summable. We
now define a set function u on ® as follows: u(E) = @(xz) for each E ¢ ® .
Then u is a measure on ®q , and 4(f) = f f du for all f ¢ § by [5, Corollary 3,
p. 35]. Hence [ fdu = a; for all f € F; to show that u ¢ V it suffices to prove
that w(E) £ 1and w(T7'E) = u(E) forany E ¢ ® . Butu(E) < 1because
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0 < xz <1 TForeachveV wehave [f(x)dv = [ f(Tx) dv for all f e &,
and consequently 4[f(x)] = 4[f(Txz)] forall feF. It follows from the Daniell
Theory that for any #-summable function g we have that g(7z) is also
u-summable and 4[g(x)] = u[g(Tz)]; by setting ¢ = xz it follows that
w(E) = u(T'E). Consequently u ¢ V, ¢(u) = (ay, f e &), and ¢(V) is
closed in X ez ;.

Now let » ¢ V, and put 5(f) = [ fdv for all f ¢ &. Then |3(f)| < sup |f]
for all f ¢ ¥, and, as in the argument above, 7 can be extended to the class of
all 7-summable functions by the Daniell Theory. The characteristic function
of any set in ®yis 7-summable. Let E ¢ ®,, and select a numbere,0 < ¢ < 1.
There are a 7-summable function g and a nondecreasing sequence {g,} of
nonnegative functions in § converging pointwise to g for which ¢ = xz and
9(g9) < #(xe) + & Then

(1 — ewlEnX(g,>1—¢)] = 9(ga) for all n,
and since Up—1 E n X(g. > 1 — £) = E, we have that
(1 — ew(B) = (1 — &)limpwv[En X(g > 1 — &)]
S liMypae 5(gn) = 9(g9) < 9(xz) + &
and v(E) = 9(xz). Let fed, and let ¢ be a positive number. Put
h=f— min (¢, f) and h, = min(1, nh)

for each integer n. Then {h,} is a nondecreasing sequence of functions in
§ converging pointwise t0 xx(>q , VX (f > ¢) = ¥(h,) for all n, and by the
Monotone Convergence Theorem vX(f > ¢) = #(xxy>e). Let 8 be the
family of all sets E ¢ ®o for which v(E) = #(xz). If EeSand A e Ry, then
AnEe$;foro(xane) = v(AnE),5(xe-snzs) = v(E - AnE),5(xs) = v(B)
imply that 5(x4nz) = v(A n E). But X(f > ¢) eSforfeFand ¢ > 0.
Then 8 is closed under finite intersections, differences, finite unions, and (by
the Monotone Convergence Theorem) countable unions. Consequently 8 is
aoringand § = ®Ro. Forany Ee Ro, 1(xz) = v(E). Furthermore if g is
any bounded ®o-measurable function on X, g is the uniform limit of a mono-
tone sequence of F-summable functions, g is #-summable, and 5(g) = f gdv.

Consequently ¢ is 1-1on V. If vy, v e V, ¢(v;) = ¢(v), then [ gdv, =
| g dv, for any function g which is the pointwise limit on X of a monotone
sequence of functions in &; it follows from the Daniell Theory that
n(E) = fxE dvy = fx,,a dve = vs(E) for any E € ®, .

Now ¢(V) is closed in X5 Iy and is bounded in each component I;. By
the Tychonoff Product Theorem ¢(V') is a compact subset of X I;. The
restriction of m to ®y is a measure v; ¢ V for which »,(A) > 0 (remember
that 4 € ®o). By the Daniell Theory there are an ®o-measurable function
g with 0 < g < x4 and a nonincreaging sequence {f,} of functions in & con-
verging pointwise to g such that j gdvy > 0. Let V, denote the subset of V'
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composed of all v ¢ V for which [f.dv = [gdv. Let U be the set of all
veV forwhich [gdv = [gdn. Then N3y V, = U, and ¢(U) is a non-
vacuous convex compact subset of X I; because each ¢(V,) is convex,
compact, and v; € U.

Let k& be the supremum of the set of numbers { gdv; v e V} . For each
integer n > 0 let S, be the set of v ¢ V for which [ gdv = k — n™". By es-
sentially the same argument given in the preceding paragraph each ¢(S,) is
nonvacuous, convex, compact. Let S = N3-S, ; it follows that ¢(S) is
nonvacuous, convex, compact, and f g dv = k for any v ¢ S. By [4, Theorem
2.6.4, p. 28] ¢(S) has an extreme point, say ¢(p). Because ¢ is affine and
1-1, po must be extremal in 8. In fact po is extremal in V, for if va,v3 ¢ V,
aves + (1 — a)vs = P, 0 < @ < 1, then

k=fgdpo=afgd02+(1—a)fgdvs,

and plainly v, ,vs¢ S, 02 = v3 = 2o .

Let B; be a set in ® for which po(E) = po(E n By) forevery Ee ®y. Define
the measure p on ® as follows: p(E) = pyE n By) for E ¢ ® Now
po(By) = 1; for if po(B1) < 1, then po/po(Bi) is a measure v in V for which
Jgdv = [ gdp/pe(By) > [ gdpo = k, which is impossible. Consequently
p is a probability measure on ®.

We claim that p is T-invariant. If E e ®, then

p(E) = po(E n By) = po(E) = po(T'E) = p[(T"E) n By] = p(T'E),

and
p(X—E)=1—p(B)=1—-p(T"E) =p(X — TE) = plT (X — E)].

Since every set in ® is either in ® or is the complement of some set in ®y ,
we have that p is T-invariant.

We claim that p is ergodic. Assume that p is not ergodic, and let E be a
T-invariant set in ® for which 0 < p(E) < 1. Then by Lemma 3 there
exist T-invariant probability measures m; and m; on ®, absolutely continuous
with respect to p, for which

m(E) = 1, me(E) =0 and p = p(E)m + [1 — p(E)Im..

Because po is extremal in V, it follows that m; must coincide with m; on ®o .
In particular

mi(E n By) = me(E n By), and m(E — E n By) # my(E — E n By).

Since m; and ms are absolutely continuous with respect to p, we have
p(E—EnB;) >0. Butp(E—EnB,) = p[(E—En By) n B] =0,
which is impossible. ‘
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Hence p is ergodic and p(A4) = po(A n By) = [ xadpo = [gdpy =k > 0.
This concludes the proof of Lemma, 4.

Theorem I now can be developed by the same argument as in (I,
pp. 1127-1128]. For the sake of completeness we briefly sketch the proof.

Proof of Theorem I. For each T-invariant set 4 in ® let
T4 = {pe&;p(4d) = 1}.

Then the collection of all such sets is a o-algebra IT of subsets of &.

Let m be a T-invariant probability measure on ®. Define a set function
won II as follows: u(ws) = m(A) for all T-invariant sets A ¢ ®. Routine
arguments employing Lemma 4 show that p is a probability measure on II.

Now fix a set B ¢ ®, and regard p(B), p € &, as a function of p. For any
real number ¢, 0 < ¢ = 1, it follows from Lemma 2 that there is a T-invariant
set B, such that p(B.;) = 1 if and only if p(B) = ¢ for all ergodic measures
p; hence {p € &; p(B) = ¢} = =5, , and p(B) is a II-measurable function on &.
Since |p(B)| £ 1, p(B) is u-summable on &.

Define m'(4) = fm, p(A) du for each A ¢ ® Then m' is a T-invariant
probability measure on ®. But if A is a T-invariant set in ®, then
m'(A) = w(rs) = m(A). By Lemma l,m = m and m(4) = [pe p(4) du,
all A ¢ ®. This concludes the proof of Theorem I.

Theorems IT and III follow immediately from this result.

Proof of Theorem II. Let & be the family of all continuous real-valued
functions on X for which the closure of X(f # 0) is countably compact.
Then ¥ is obviously a Stonian vector lattice of bounded functions. Indeed
F is T-invariant, for if f(z) € F, then T7'X(f(z) = 0) = X(f(Tz) £ 0), and
the closure of X(f(Tx) 5 0) must be countably compact. We claim that &
satisfies hypothesis (1) in Theorem I. To see this, let {f.} be a nonincreasing
sequence of functions in § converging pointwise to 0 on X. Select ¢ > 0.
Let A be the closure of the set X(fi > 0). Then A is countably compact,
and A € Un—; X(f, < €);hence there is an index N for which 4 < X(fx < ¢)
and 0 = fv < &. Thus {f,} converges uniformly, and & satisfies (1).
Theorem II now follows from Theorem I.

Proof of Theorem I1I. Let & be the T-invariant Stonian vector lattice of
functions composed of all real-valued functions f for which the closure of
X (f # 0) is countably compact. Let ® be the smallest o-algebra of subsets
of X containing all sets of the form X(f = 1), f ¢ .

For every real number ¢ > 0 and f e F, X(f > ¢) is an open F, set;

X(f>ec)=Ussi X(fZc+n).

Hence X(f > ¢)isin ® and X(f = 1) = NGy X(f > 1 — n7") is in @®.
Hence &' C @®.
But on the other hand, suppose U is an open F, set with countably compact
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closure; say U = U,_, E, where each E, is closed. By Urysohn’s Lemma
there is a continuous real-valued function g, for which0 < g, = 1, g.(E,) = 1,
and go.(X — U) = 0. Putf = D> %32"g,. Then fis continuous on X,
and U = X(f > 0). For each integer n > 0, X(f = n™") is in ®’, and
consequently U = Us_ X(f = n™") is also in ®'. Hence ® C ® and
® = ®'. Theorem III now follows from Theorem II.

Having established Theorems I, II, III we turn now to some concrete
applications.

Example 1. Let X be a set, let ® be the smallest o-algebra containing all
the countable subsets of X, and let 7 be a mapping of X into X such that
T "z is at most a finite set for any z ¢ X. Then ® is T-invariant, and any
T-invariant probability measure m on ® has an integral representation. To
see this, give X the discrete topology and observe that Theorem II applies.
(Note also that X is not s-compact if X is uncountable.)

Ezxample 2. Let X be the set of all countable ordinal numbers endowed
with the order topology, let T be a continuous mapping of X into X, and
let ® be the smallest o-algebra of subsets of X containing all the countable
subsets. Then ® is T-invariant, and any T-invariant probability measure
m on ® has an integral representation.

To see this, let ®’ be the smallest o-algebra containing all sets of the form
X(f = 1) where f is real-valued and continuous on X. Any continuous
function f on X is constant on a final interval, and X (f = 1) is either a count-
able set or else the union of a countable set with a final interval. It follows
that ® < ®. On the other hand any set composed of one point is in ®’
and ® = ®. But X is countable compact. Theorem II then gives us the
conclusion immediately. Note that X is not compact or o-compact or
metrizable.

Example 3. Let N be a transfinite cardinal number, let Y consist of the
smallest ordinal number whose power exceeds N and all smaller ordinal
numbers, and endow Y with the order topology. Let X be the Cartesian
product Y X Y with the diagonal removed, and let T’ be a homeomorphism
of X onto X (for example, T(a,b) = (b,a)). Let ®be the smallest s-algebra
containing all the compact G5 subsets of X. Then ® is T-invariant, and any
T-invariant probability measure m on ® has an integral representation.

To see this, let & be the Stonian vector lattice composed of all continuous
functions on X with compact support, and show that Theorem I applies.
(The reader can also prove that X is not countably compact or s-compact or
metrizable.)

Example 4. Let Y be defined as in Example 3, and let Z be the set of all
ordinal numbers in ¥ but the greatest one. Let X be the Cartesian product
of countably infinitely many copies of Z, and let 7 be any continuous mapping
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of X into X. Let ® be the smallest o-algebra containing all sets of the form
X(f = 1), f continuous on X. Then ® is T-invariant, and any T-invariant
probability measure m on ® has an integral representation.

This conclusion follows immediately from Theorem II provided we are able
to show that X is countably compact. Observe that any monotonic sequence
of points in Z must converge to some limit in Z. And any sequence {z,} in Z
has a monotonic subsequence (to see this show that if {x,} has no nonin-
creasing subsequence, then an argument by induction proves that {z,} has a
nondecreasing subsequence). Thus every subsequence {z,} in Z has a con-
vergent subsequence. With the Cantor diagonal method one can show that
any sequence of points in X has a convergent subsequence. It follows that
every infinite set in X has at least one accumulation point, and X is countably
compact. Note that X is not locally compact or s-compact or metrizable.
Indeed every compact subset of X has void interior and no nonzero continuous
function on X has compact support.

We conclude with three corollaries.

CoroLLARY 1. Let X be a locally compact Hausdorff space, and let T be a
continuous mapping of X into X such that TA is compact for any compact
set A. Let ® be the smallest a-algebra containing all the compact G; sets. Then
® s T-invariant, and any T-invariant probability measure m on ® has an
integral representation.

Proof. Let § be the Stonian vector lattice composed of all continuous
functions on X with compact support, and it follows at once that Theorem I
applies. (Compare Corollary 1 with [2, Theorem 4] in which X is required to
be o-compact.)

CoROLLARY 2. Let X be a compact Hausdorff space, and let ] consist of the
Baire sets in X. Let T be a 1-1 mapping of X onto X for which T and T~
map Baire sets into Baire sets, and suppose the graph of T is a Baire subset of
X X X. Then any T-invariant probability measure on ® has an integral
representalion.

Proof. For each integer n, positive, negative or zero, let X, be a copy of
X. Let Y be the Cartesian product X s-_«o X, ; then Y is also compact Haus-
dorff. We define a mapping ¢ of X into Y as follows: ¢(z), = Tz for
allz ¢ X. Obviously ¢is 1-1. Put X* = ¢(X). Let T™ be the mapping of
Y onto Y givenby (T™y) = yapiforallye Y. Then 7™ is a homeomorphism
of Y onto Y, ¢ 'T*% = T on X, and ¢T¢ ™" = T* on X*. Furthermore
T*"[¢(z)] = ¢(T"z) and T*"X* = X* for all n.

For each index n let V,, be the set of all points y € ¥ for which ypy1 = Ty .
Then V, is a Baire set in Y because the graph of T is a Baire set in X X X.
Consequently X* = N5—_, V, is a Baire set in V.

Let f be a continuous real-valued function on X, and (for some fixed index
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n) put f*(y) = f(ya) for all y ¢ Y. Then f* is continuous on ¥, and
¢ [Y(f* = 1)] = TT"X(f = 1) is a Baire set in X because 7" maps Baire
sets into Baire sets. Likewise ¢ [V (f* = ¢)] is a Baire set in X for any real
number ¢, and f*¢ is a Baire function on X.

By the Stone-Weierstrass Theorem the algebra of all continuous real-valued
functions on Y is the smallest uniformly closed algebra containing all the
functions on ¥ constructed from continuous functions on X as was /™ in the
preceding paragraph; consequently for any continuous function ¢* on ¥ we
have that ¢*¢ is a Baire function on X, and ¢ 'Y (¢* = 1) is a Baire set in
X. Thus if E* is any Baire set in ¥, ¢ "E* is a Baire set in X. And if E*
is a Baire subset of X*, ¢ 'E* is a Baire set in X.

On the other hand if f is a continuous function on X, then f* is continuous
on Y where f*(y) = f(yo) forally e Y. Hence p[X(f= 1)] = X*nY(f*=1)
is a Baire subset of X*, because X* is a Baire set in ¥. For any Baire set
Ein X, ¢(E) is a Baire subset of X*.

By Proposition 1 it suffices to show that given a T-invariant probability
measure m on the Baire sets in X and a T-invariant Baire set 4 for which
m(A4) > 0, there exists an ergodic measure p on the Baire sets of X for which
p(4) > 0. Clearly it suffices then to show that given a T*-invariant prob-
ability measure m™ on the Baire subsets of X* and a T™*-invariant Baire
subset A* of X™ for which m*(A4*) > 0, there exists an ergodic (with respect
to T™) measure p* for which p*(4™) > 0.

We extend m™ to a measure 77 on the Baire sets in Y as follows: for each
Baire set E* in Y put m(E*) = m*(E*n X™). Obviously 7 is a T*-invariant
probability measure. Since T™ is a homeomorphism of ¥ onto Y, it follows
from Proposition 2 that there exists an ergodic measure § on the Baire sets in
Y for which p(4*) > 0; hence 5(4*) = 1. Then the contraction of § to
X*is an ergodic measure p* on the Baire subsets of X™* for which p*(4*) = 1.
This completes the proof.

CoroLLARY 3. Let X be a set, let T be a Stonian vector lattice of bounded
real-valued functions on X, and let ®o be the smallest o-ring containing all the
sets of the form X(f = 1), feF. Then the following are equivalent:

(1) If {f.} is any nmonincreasing sequence of functions in F converging
pointwise to 0, then {f,} converges uniformly.

(2) If @ is any nonnegative linear functional on F, bounded in the sense
that |a(f)| < M sup |f] for some M > 0 and all f € F, there is a measure u on
®o for which w(f) = [ f du for all f € &.

(3) If {f.} 1s a nonincreasing sequence of functions in F converging pointwise
to 0, and if @ is any bounded monnegative linear functional on F, then
lim,,_,w ﬂ(fn) = 0.

Proof. That (1) = (2) was established essentially in the proof of Lemma,
4, so we will not repeat it here.
To show that (2) = (3), assume (2), let {f,} be a nonincreasing sequence
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of functions in § converging pointwise to 0, and let @ be a bounded non-
negative linear functional on . Then 0 = lim,., f fodu = lim,. @(fa) by
the Monotone Convergence Theorem.

To show that (3) = (1), let @ be an algebra of bounded real-valued func-
tions on X such that § C @ and @ is complete in the sup norm. Then under
the sup norm, @ is a commutative Banach algebra. There exists an isometric
isomorphism p of @ onto C(Y), the Banach algebra (under the sup norm)
of all continuous functions vanishing at infinity on a certain locally compact
Hausdorff space Y.

Now assume (3), and let {f,} be a nonincreasing sequence of functions in
¥ converging pointwise to 0, and let y ¢ Y. Then f — p(f)(y) is a bounded
nonnegative linear functional on ¥, and by (3), limu., p(f.)(y) = 0. Thus
{p(fa)} converges pointwise to 0 on Y, and it follows that p(f.) converges
uniformly. Because p is isometric, {f,} must also converge uniformly to 0
on X. Thus (3) = (1), and Corollary 3 is proved.

Hence in Theorem I, hypothesis (1) can be replaced by (2) or by (3).
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