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1. Introduction
In [7], we introduced the notion of a quantifier on an orthomodular lattice,

and subject to mild assumptions of completeness, explicitly determined all
quantifiers on an atomic orthomodular lattice [7, Theorem 7, p. 1245]. The
definition we gave of a quantifier can be extended to an arbitrary lattice L
with 0 by agreeing that a mapping L -- L shall be called a quantifier on
L in case it satisfies"

(Q1) 0=0.
(Q2) e

_
eq for all eeL.

(Q3) (e h fq)q eq h f for all e, fei.
Aside from the connection developed in [7, p. 1241], with P. Jordan’s skew
lattices, these mappings have a way of cropping up in a variety of situations.
We present, herewith a few examples to illustrate this point.

(i) In a lattice L with 0 and 1 there are always two quantifiers: the
discrete quantifier--the identity map; the indiscrete quantifier defined by
0= 0, eq= lfore0.

(ii) The column operator used by Halmos in his treatment of spectral
multiplicity [6, p. 89] is a quantifier.

(iii) In a Loomis dimension lattice the mapping a -- a (see [12, p. 13])
is a quantifier.

(iv) If L is a lattice with 0 and I having the property that for each a e L,
a, ^ {z e L z central, z >_ a} exists and is central, then , turns out to be a
quantifier on L. We shall call , the central cover quantifier and L a central
cover lattice.

(v) Let L be a pseudo-complemented distributive lattice [1, pp. 147-
148]. If a* denotes the pseudo-complement of a, then a --> a** [1, Theorem
16, p. 148] is a quantifier.

(vi) The closure operator of a topological space is a quantifier if and only
if every open set is also closed (see [5, p. 43]).

(vii) Let S be a commutative semigroup with 0, and let L denote the
lattice of ideals of S. For an ideal I of S, define the radical of I by

R(I) {x e S x e I for some positive integer n}.
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Then R(I) e L, I c R(I), and R(I n J) R(I) R(J). If S has no proper
nilpotent elements, so that R((0)) (0), then R is a quantifier on L.

(viii) There are also various quantifiers on Boolean algebras. See [5] and
[13].

Our purpose in this paper will be to develop the characterization in Theorem
3.12 of all quantifiers on a class of lattices which includes all complete ortho-
modular and complemented modular lattices. Following this, we shall make a
careful study of center valued quantifiers on an orthomodular lattice, finally
obtaining the result that every type I Loomis dimension lattice satisfying
Loomis’ axiom (B) can be coordinatized by a Baer *-semigroup S in such a
way that the abstract dimension relation (-) is induced in a natural manner
by *-eqmvalence in S.

This paper is to be regarded as a continuation of [7]; for this reason we shall
feel free on occasion to use the terminology and notation thereof without
specifically re-introducing it here.

2. Some preliminary results

There are a few things that one can say about quantifiers on an arbitrary
lattice with 0 and 1. The proofs are essentially those given in [7] for Theorem
2 and Lemma 4, p. 1243; they will therefore be omitted.

LEMMA 2.1. Let q be a quantifier on a lattice L with O. Then:
(i) If L has a largest element 1, lq 1.
(ii) .
(iii) e_<feo_<f.
(iv) eo fo_< (e V f)o.
(v) e h f

_
(e h f).

(vi) (L)q the set of fixed points of q is closed under the formation of
arbitrary infima whenever they exist in L.

(vii) For each e e L, eq A {x e L x >_ e, x xq}. Hence q is completely
determined by its set of fixed points.

LEMMA 2.2. Let L be a central cover lattice. A mapping q" L L is a
center valued quantifier on L if and only if there exists a (uniquely determined)
quantifier a on the center of L such that q , o a.

The following lemma will prove useful in the next section.
is completely routine, it will be left for the reader.

Since its proof

LEMMA 2.3. (i) Let A be a subset of a complemented lattice L. If e < 1
implies the existence of an element a eA such that e <_ a < 1, then
0 h {a a A}. If in addition every interval L(e, 1) is complemented, then
fore < 1, e A{aeA, a >_ e}.

(ii) The dual holds.
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We close this section by introducing some terminology that will be needed
in the sequel.

DEFINITION 2.4. Let q be a quantifier on a lattice L with 0 and 1. An
element e L will be called invariant if e e, faithful if e 1 and simple if
a

_
e a aq ^ e. We shall let F denote the set of faithful elements and

J {a e L ql(0.) I}, where I, denotes the identity map on L(0, a).

3. Quasi-orthomodular lattices

A pair (b, c) of elements of a lattice is called a modular pair, written M(b, c),
if

a_ c=, (a Y b) ^ c a (b ^ c);

it is called a dual modular pair, and denoted M*(b, c), if

a >_ c= (a ^ b) Y c a h (b Y c).

In a lattice with 0 and 1, let us agree that the expression a @ b 1 shall mean
that a and b are complements with M(a, b) and M*(b, a) true. A quasi-
orthomodular lattice is a lattice L with 0 and 1 having the property that each
e e L admits (not necessarily unique) complementsf, g with e f g e 1;
if each e e L has at least one complement h (called a quasi-orthocomplement of
e) such that e @ h h @ e 1, then L is called a symmetric quasi-ortho-
modular lattice. Finally, by a locally orthomodular lattice we shall mean a
lattice L with 0 and 1 satisfying the following condition" For each e, f e L
there exist quasi-orthocomplements e of e, fa of f such that e ^ fa is a quasi-
ortho-complement of e Y f.
The theory of quasi-orthomodular lattices was developed in some detail in

[8] and [9], so that it will not be necessary to repeat it here. We merely point
out that every complemented modular lattice and every orthomodular lattice
is locally orthomodular, while the lattice of principal right ideals generated
by idempotents of a Baer ring is a symmetric quasi-orthomodular lattice. It
is also worth mentioning the obvious fact that L locally orthomodular implies
L is a symmetric quasi-orthomodular lattice, which in turn implies that L is
quasi-orthomodular.

For the remainder of this section L will denote a relatively complemented lattice
with 0 and 1, and q a quantifier on L.

LEMMA 3.1. If e e andf e 1, then f f.

Proof. By axiom (Q3), e ^ f 0 implies that 0 0q (f ^ e) f ^ e.
UsingM*(e,f),wehavef=f ^ (e Y f) (fq ^ e) Vf=f.
LEMMA 3.2. Any lower bound of F is invariant.

Proof. Let a be a lower bound for F, and let b be a complement of a in
the interval L(0, a). We then let c be a complement of b in the interval
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L(b, 1). Since b _< c implies that be _< ce, we see that ce >_ be c 1, so
that a _< c. Then ae a V b _< c, whence be _< ae <_ c, from.which it follows
thatc 1 andb be. But nowa ^ b 0impliesthatb b ^ ae
(b ^ a)e 0e 0, anda
We are now in a position to characterize the elements of J.

THEOREM 3.3. Let a e L. The following are equivalent:
(i) a eJ.
(ii) a is simple and invariant.
(iii) a is a lower bound for F.

Proof. (i) (ii). If a e J, then a is evidently invariant; moreover,

e_ ae ee ee ^ a,

so that a is also simple.
(ii) (iii). LetxeF. Thenx ^ a_< a, sothatx ^ a (x ^ a)e

xe ^ a 1 ^ a a. This shows thata_< x.
(iii) (i). This follows from Lemma 3.2.
The next theorem, although not needed for the present development, does

provide a characterization of simple elements that will prove useful in the
sequel.

THEOREM 3.4. Given e e L, let denote the restriction of e to L(O, e). The
following conditions are equivalent:

e is simple.
(ii) preserves finite infima.
(iii) is one-one.
(iv) maps disjoint elements into disjoint elements.
(v) a

_
eandae--- eea-- e.

(vi) is an isomorphism of L(O, e) onto {ge ge

_
Proof. (i) (vi). Let e be simple. Ifge _< ee, thenge ^ e _< eand

(ge ^ e)e ge ^ ee ge, so that maps L(0, e)onto
Given a, b L(0, e), we know that a _< b ae _< be. If conversely, ae _< be,
then a ae ^ e _< be ^ e b. It is immediate that is an isomorphism.

(vi) (ii). This is obvious.
(ii) (iii). Let a, b e L(0, e) with ae be. If d is a complement of a ^ b

ina, wehavea ^ b ^ d=0, andby(ii),0=0e= (a ^ b ^ d)e= ae ^ de.
This shows that d de 0 and a a ^ b. In an analogous way one pro-
ducesb a ^ b.

(iii) (iv). If a, b _< e with a ^ b 0, we are to show that ae ^ be 0.
Note thata ^ be_<e, ae ^ b_< e, and(a ^ be)e (ae ^ b)e ae ^ be.
Hencea ^ be ae ^ b, and0 a ^ b a ^ b ^ be= ae ^ b. But then
ae ^ be (ae ^ b)e 0e 0.

(iv) (v). Leta_< ewithae ee. If b is a complement of a in e, we
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hvea ^ b 0a ^ b 0. Butb <_eimpliesb_<e= a,whence
b bq 0nda e.

(v) (i). For fixed a _< e, let b be complement of a in axp ^ e, nd c
complement of b ^ e in the interwl L(b, e). Then b _< c, b _< c, so

e (b ^ e) c_< bq c_< cq_< eq.

Hencec e,ndby(v),c e. But thenbq ^ e b,nd0 a ^ b=
a ^ b ^ e= a ^ b= axp ^ bq= aq ^ b= b. It follows thata= aq ^ e
nd e is simple.

COOT,T,aV 1. If is center valued, then e simple implies that L(0, e) is a
Boolean algebra.

Proof. If is center vlued, one cn esily show thut /g g -< e} is
Boolean lgebr. The corollary then follows from the fct that is n iso-
morphism of L(0, e) onto {g g _< e}.
CORO,T,V 2. If a quantifier on a relatively complemented lattice with 0 and

1 preserves finite infima, then it is the discrete quantifier.

Proof. By the bove theorem, 1 is simple. Since 1 is lso invrint, we
hve by Theorem 3.3 that 1 e J. Hence the quantifier is the identity mp.

In sharp contrast to Corollary 2, we point out that examples (v) nd (vii)
of 1 re non-discrete quntifiers that preserve finite infim.
I will now be assumed that L is a symmetric quasi-orhomodular laice. Our

plan of ttck will be to establish certain distributivity properties of fithful
elements, to decide lust which elements cn be expressed s the infimum of
fmily of fithful elements nd finally subiect to mild ssumptions of complete-
ness, to explicitly determine 11 quntifiers on locally orthomodulr lttice.

LEMMA 3.5. Let e be invariant and f e 1. If x is faithful, then

x (x ^ e) Y (x h f).

Proof. LeVy= (x ^ e) (x ^f). By [9, Lemmu2, p. 3] we can find a
complement g of y in the interval L(0, x) such that M(g, y)holds. Then

x A f-- (x h f) V (g h y) [(x h f) V g] A y,
so that

0= (x ^f) ^ (x ^e)-- {[(x ^f) Y g] ^y} ^ (x ^e) [(x ^f) Y g] ^e.

Applying to this equation, we see that

0-0q-- {[(x A f) V g] A e}

[(x h f) V g]q A e

>_ [(x A f) V gq] A e

(fvg) ^e>_0,
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whence(f V g) ^ e 0. But thenf ^ gq >_fimplies

f Y gq-- (f Y g) ^ (e Y f) [(f V g) ^ e] Y f--f, g _< g _< f,

and finallyg=g ^f=g ^f ^ x=O. Thereforex= (x ^ e) Y (x ^f).

LEMM. 3.6. Let e be invariant andf e 1. If (xa) is a family offaithful
elements and x ^ x, exists, then (x f) h e x ^ e.

Proof. By Lemma 3.5, x, (x, ^ f) x/ (x, ^ e), so that

x v f= (x. ^ e) v/,
and

(x. V f) ^ e= [(x. h e) V f] ^ e= x. ^ e.

It follows that (x f) ^ e_< (xa f) ^ e x, ^ eforalla, andconse-
quently,

( v f) h e (x. e)= e.

Therefore (x y f) h e x h e, as desired.

LEMMA 3.7. If e < 1 is an upper bound for J, then there is an element x e F
such that e < x < 1.

Proof. Case 1. If e < e, let f be a quasi-orthocomplement of e and take
x e yr. Thene e Y (f h e) (e V f) h e xh e, from which
it follows that e g x < 1;furthermore, 1 x (e Y f) e Y f 1, so
that x is indeed faithful.

Case 2. If e e, let f be quasi-orthocomplement of e and note that f is
invariant. Since e 1 and e is an upper bound for J, we know that f J.
By Theorem 3.3, there must exist an element g < f such that g f. Taking
x= e Y g, wehavex e V g= e V f= 1, andsinceg= g V (e h f)
(g Y e) A f= x hf, we must have x 1.

LEMMA 3.8. e h {x e F x e} ff and only ff e is an upper bound for J.

Proof. By Theorem 3.3, each x e F is an upper bound of J, so that if
e h {x e F x e}, the same must be true of e. The converse assertion
follows from Lemmas 3.7 and 2.3.

THEOREM 3.9. UJ (0), then is a center valued quantifier.

Proof. By Lemma 3.8, a h{xeF’x a} for each aeL. Let ebe
invariant and f a quusi-orthocomplement of e. If g is a complement of e,
then by Lemma 3.6, (g V f) h e g h e 0. But then

g Y f= (g V f) h (e Y f) [(g Y f) h e] Y f=f,g f,
and

=g v (e /)= (eve) f l /=f.

Thus e has u unique complement, and by [9, Theorem 16, p. 12] e is centrM.
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LEMMA 3.10. If either b Y {a a eJ} or d ^ {x x e F} exist, then they
both exist and are equal; furthermore, J L(O, b).

Proof. If b exists then by Theorem 3.3 it is a lower bound for F, and there-
fore in J. Hence J L(0, b). But b is also an upper bound for J, so that by
Lemma 3.8,

b ^{x:xeF, x >_ b} ^{x

If d exists, then it is both a lower bound for F and an upper bound for J.
conclusion is that d eJ and d {a a e J}.

It will now be assumed that L is a locally orthomodular lattice.

The

LEMMA 3.11. If b {a a e J} exists, then it is central.

Proof. Let d be a complement of b and e a quasi-orthocomplement of d.
Since b is invariant, d is also a complement of b. By Lemma 3.10,
b ^{x:xeFI, and consequently, by Lemma 3.6, (b Y e) ^ db ^ d 0. It follows as in the proof of Theorem 3.9 that b e; hence d is
invariant. Thus (i) every complement of b is a quasi-orthocomplement of b;
(ii) if d is a quasi-orthocomplement of b, then b is the unique quasi-ortho-
complement of d. Suppose now that c, d are quasi-orthocomplements of b.
Since L is locally orthomodular, there must exist quasi-orthocomplements c of
c, d of d such that c ^ d is a quasi-orthocomplement of c d. By (ii), we
must havec d b, whence(c Y d) ^ b 0. But then

c d (c d) ^ (c Y b) [(c Y d) ^ b] Y c c,

and similarly, c d d. It follows that b has a unique complement, and
therefore that b is central.

If b Y {a a e J/ and b’ is the unique complement of b, there are no non-
zero elements a

_
b’ such that [L(0,a) Ia. ThusJ as computed in L(0, b)

is (0). Since b is central, it is immediate that L(0, b’) is a symmetric quasi-
orthomodular lattice. An application of Theorem 3.9 now produces the fact
that lL(0,b’) is a center valued quantifier on that lattice. For any map-
ping " L(0, b’)-- L(O, b), it will prove convenient to define the map-
ping Ib X ’L--Lbytheformule(I X )= (e ^ b) V (e ^ b’)b. The
situation is summarized in the next theorem.

THEOREM 3.12. Let L be a locally orthomodular lattice.

If either b Y a a e J} or ^ x x e FI exist, they both exist and are
equal;furthermore, b is central and I X with a center valued quantifier
on L(O, b’). If L(O, b’) is a central cover lattice, then there is a (uniquely
determined) quantifier a on the center of L(O, b) such that I X (’ o a).

(ii) If L is complete, then is a quantifier on L if and only if there exists a
central element b such that I X (’ o a), where a is a (uniquely determined)
quantifier on the center of L(O, b).
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Proof. (i). This follows readily from Lemma 2.2 and the remarks pre-
ceding the theorem.

(ii) If L is complete, then by [9, Theorem 15, p. 12] it is a central cover
lattice. The remaining assertions are now obvious.

COROLLARY. Let L be a complete, irreducible, locally orthomodular lattice.
Then L admits only the discrete and the indiscrete quantifiers.

In retrospect, we have achieved a deep insight into the structure of quan-
tifier on a locally orthomodular lattice, provided only that the supremum
of the invariant simple elements exists.

4. The induced homomorphism
Here we shall deal with a quantifier e on a locally orthomodular lattice where

it is not assumed that the supremum of the invariant simple elements exists.
One still has that J is an ideal closed under the formation of arbitrary suprema
whenever they exist, and that the restriction of e to J is the identity map.
We would like to produce a center valued quantifier on a homomorphic image
of L by "dividing out" the ideal J. A sufficient property to guarantee the
existence of a congruence relation 0 whose kernel is J turns out to be the fol-
lowing"

(a) If e and f are complements in L, there exist quasi-orthocomplements
e of e, f of f such that (i) e f 1; (ii) g

_
ea implies the existence of a

quasi-orthocomplement g of g with g >_ e; (iii) each h

_
f has a quasi-

orthocomplement h >_ f.
The above property, although complicated in its statement, is enjoyed by

every complemented modular lattice and every orthomodular lattice.

LEMMA 4.1. Let e be a quantifier on a locally orthomodular lattice L. Then:
L)e is a sublattice of L.

(ii) e preserves finite suprema.

Proof. (i). In view of Lemma 2.1 (vi), we need only show that the
supremum of a pair of invariant elements is itself invariant. Accordingly,
let e and f be invariant. Since L is locally orthomodular, there exist quasi-
orthocomplements e of e, f of f such that e ^ f is a quasi-orthocomplement
of e Y f. By Lemma 2.1 (vi), e ^ f is invariant. The invariance of
e Y f now comes from Lemma 3.1.

(ii) Let a, beL. Then a b

_
ae be

_
(a Y b)e. Applying e,

we have
(a V b)e_ (a V be)e ae Y be_ (a

LEMMA 4.2. Let e be a quantifier on a locally orthomodular lattice L having
property (a). Then e J, e perspective to f implies f e J.

Proof. Let x be a common complement of e and f. If x

_
y < Ye and w

were a quasi-orthocomplement of ye, we would have that w y 1, w y
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is faithful, and by Theorem 3.3, w V y >_ e. But thenw V y >_e Y y 1,
a contradiction. We conclude that the restriction of to L(x, 1) is the
identity map. By virtue of property (a), we next produce elements f,
xa such that (i) f is a quasi-orthocomplement of f; (ii) x is a quasi-ortho-
complement of x; (iii) xa Y f 1; (iv) g _< x implies the existence of
quasi-orthocomplement g of g with g >_ x; (v) h _< f implies the existence
of a quasi-orthocomplement ha of h such that ha >_ f. It follows from Lemma
3.1 that xa e J, and consequently that the restriction of to L(f, 1) is the
identity map. A second application of Lemma 3.1 now produces the fact
that f J.

THEOREM 4.3. Let L be a locally orthomodular lattice with property (a),
and let be a quantifier on L. There exists a unique congruence relation 0 of L
whose kernel is J; furthermore, q induces a center valued quantifier on L/O by
means of the formula (e/O) eq/O. The original quantifier q can be recap-
tured from since e/O (e/O) if and only if e eq.

Proof. (i) By Lemma 4.2 and [10, Corollary 2, p. 16] there exists a
uniquely determined congruence relation 0 whose kernel is J. If a b(O),
then by [10, Theorem 3.2, p. 10] a V b Y tforsuitableteJ. Since

is invariant, it follows that a (a t)q (b V t) b V t,
and consequently that aq bq(0). This shows thut the mapping

e/0 --+ (e/0) e/0

is well defined. Since e -- e/0 is a homomorphism, is automatically a
quantifier on the locally orthomodular lattice L/O.

(iii) If a/O (a/O), then a aq(0), whence a a Y for some e J.
Since J is an ideal and L is relatively complemented, we can even take
disjoint from a. But then

^ a 00 0q (t ^ a) ^ aq t;

hence a aq. We conclude that a/O (a/O) if and only if a aq, so
that q can indeed be recaptured from .

(ii) The only remaining item is the proof that is center valued on L/O.
If the restriction of to the interval L/O(O/O, a/O) is the identity map, then
b

_
a implies b/O

_
a/O, b/O (b/O), and therefore that b bq. Thus

ql(0.) I, so that aeJ and a/O 0/0. By Theorem 3.9, is center
valued on L/O.

5. Baer *-semigroups
In order to mke this paper more self-contained and readable, we introduce

here the notation and terminology that will be used in the last two sections.
The results we shall now sketch are due basically to D. J. Foulis. For a
more complete treatment, see Foulis [2], [3] and [4].
An involution semigroup is u multiplicative semigroup S equipped with

a mapping *" S -- S such that for all x, y S, (xy)* y’x* and x**



QUANTIFIER THEORY ON QUASI-ORTHOMODULAR LATTICES 669

(x*) * x. An element e e S such that e e e* is called a projection, and
we agree to let P P(S) denote the partially ordered set of all projections
of S, the partial ordering being given by e _< f if e ef (or equivalently,
ife fe).
A Baer *-semigroup is an involution semigroup S with 0 having the property

that for each x S, {y S xy 0} xPS, where x is a (necessarily unique)
projection of S. For a Baer *-semigroup S, P P(S) is defined by
P’ {x’’x e S}. A subset $1 of S is called a Baer *-subsemzgroup" of S
provided (i) $1 is a subsemigroup of S; (ii) $1 S; (iii) x SI x’ S.
Evidently, every Baer *-subsemigroup S is a Baer *-semlgroup in its own
right with P(SI) P(S) n S
A lattice L with 0 and I is said to be orthocomplemented if there is a mapping
L -- L such that (i) e is a complement of e for all e e L; (ii) e ep for all

e; (iii) e <_ f f’ <_ e’ for all e, f e L. If in addition, (iv)

e <_ff= e V (f A e’),

then L is called an orthomodular lattice. Condition (iv) is frequently referred
to as the orthomodular identity.

THEOREM 5.1. Let S be a Baer *-semigroup. Then"
(i) For e, f eP(S), e <_ f f’ <_ d.
(ii) ForeeP(S),e <_ epp (e) .
(iii) If e e P’(S) and if a S, then ae a if and only if a’ <_ e.
(iv) For a e S, a a.
(v) e P’(S) if and only if e e.
(vi) O’ (which we henceforth write as 1) is a unit for S.
(vii) P’(S) is an orthomodular lattice under the partial order inherited

from P(S), with e -- e as its orthocomplementation.
(viii) For a, b e S, (ab) ’ (a"b)".
(ix) For a e S, (a’a)
(x) For a, b e S, (ab)

_
b.

(xi) For a, beS, if b b*, and if ab ba, then ab’ b’a.

Proof. See [4, Theorem 1, pp. 66-67].

LEMMA 5.2 [4, Lemma 4, p 68]. Let S be a Baer *-semzgroup. If M is a
non-empty subset of S, define Z(M) to be {s e S" sm ms for all m
Then:

(i) M N Z(N) Z(M).
(ii) M Z(Z(M) ).
(iii) Z(M) Z(Z(Z(M) ).
(iv) If M M* then Z(M) is a Baer *-subsemigroup of S and

P’(Z(M) P’(S) Z(M)

is closed under the formation of arbitrary suprema and infima in P(S) pro-
vided only that they exist in P’(S).
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Starting with an orthomodular lattice L, let M(L) denote the set of mono-
tone mapping L - L. Two elements , k e M(L) are said to be mutually
adjoint if (eq)’b

_
e’ and (eb)’q

_
e’ for ll e e L.

It is easily seen that for each e M(L) there cn be at most one k e M(L)
such that and re mutually udjoint. If q* denotes this uniquely deter-
mined (when it exists), then S(L) the subset of mappings in M(L)
possessing djoints is clearly an involution semigroup. For each e e L, the
mapping L -- L is defined by the formulf (f V e) ^ e for all f e L.
The situation is summarized in the next theorem.

THEOnEM 5.3. Let L be an orthomodular lattice. Then:
S L is a Baer *-semigroup.

(ii) For each e L, is a projection in S L).
(iii) f f if and only if f

_
e.

(iv) fq 0 if and only if f

_
e’.

(v) The correspondence e q between L and P(S(L) is an orthocom-
plementation-preserving lattice isomorphism.

Proof. See [2, Theorem 6, p. 652].
A Baer *-semigroup S is said to coordinatize an orthomodular lattice L if

there exists n orthocomplementation-preserving lattice isomorphism between
Lund P’(S). Although the coordinatiztion is highly non-unique, we do see
that every orthomodulur lttice L cn be coordinatized by the Baer *-semi-
group S(L). In the next section we shull concern ourselves with certain co-
ordintizing Baer *-subsemgroups of S(L).

6. Center valued quantifiers on an orthomodular lattice

In 4, the study of quntifiers on n orthomodular lattice was reduced to
the study of center valued quuntifiers. For this reason, and in order to de-
velop certain results that will be needed in our treatment of dimension lttices,
we devote this section to an examination of center valued quantifiers on un
orthomodular lttice. In the next two lemms, which, incidentally, are due
to D. J. Foulis, it will be assumed that S is a Baer *-semigroup and L P(S).
Borrowing some notation from Kplansky [11, Definition 3, p. 5] for each
xeS, letxF A{heLnZ(S) "xh x}, provided of course that such an
infimum exists.

LEMMA 6.1. If XF exists for every x e L, then the restriction of F to L is a
center valued quantifier.

Proof. By Theorem 5.1 (xi), Z(S) L is closed under the formation of
orthocomplements. It follows easily that FI is a center valued symmetric
closure operator (see [7, p. 1244]), and therefore center valued quantifier.

LEMMA 6.2. Let x e S. Iff V as(xa)" exists, then xF exists and equals f.
Proof. By [4, Theorem 1 (xvii)] and our Theorem 5.1 (viii),

(fb)" V as[(xa)"b]" V s[x(ab)]" _< f,
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where b eS is arbitrary. By Theorem 5.1 (iii), fb fbf. Similarly,
fb* fb*f, so fb fbf (fb*f)* (fb*)* bf. This shows that
feZ(S) n L. If h e Z(S) L and xh x, then for any a e S, (xa)h

[xappxha xa, so by Theorem 5.1 (iii), (xa) < h. Thusf Ya,s is a
lower bound for {heZ(S) nL’xh x}. Sincex" (xl)’ _f, we have
xf= xandfe{heZ(S) nL’xh=x}. It follows thatf= xF.

LEMMA 6.3. Let q be a center valued quantifier on an orthomodular lattice L.
An element e e L is invariant if and only if

Proof. If e is to be invariant, it must also be central. For arbitrary a L,
we then haveaq,- (a ^ e)q a ^ e a. Hence= . Con-
versely, if , e , then e 1, lq e.

THEOREM 6.4. Let q be a center valued quantifier on an orthomodular lattice
L. There exists a Baer *-semigroup S such that L P’(S) and q FIL.

Proof. It clearly suffices to show that there is a coordinatizing Baer *-sub-
semigroup S* of S(L) having the property that a aq =, a e Z(S*).
Identification of L with P’(S(L)) will then produce the desired result. Ac-
cordingly, let

M {a : S(L) a aq e L} and S Z(M).

Since M M*, we know that S is a Baer *-subsemigroup of S(L), and using
the fact that is center valued, we have from [4, Theorem 2 (ii), p. 67] that

e S* for each e e L. Hence S* coordinatizes L. By the definition of M,

a aq q e M c Z(Z(M)) Z(S).

We see from Lemma 6.3 that e S*, and consequently, a Z(t.q) a aq.
Thus a a = qa Z(S).

COnOLLAnY. If L is a complete orthomodular lattice, then q is a center valued
uantifier on L if and only if there exists a Baer *-semigroup S such that
L P’(S) and q FIL.
The above results together with Lemma 2.2 give considerable insight into

the nature of center valued quantifiers on an orthomodular lattice. We turn
now to some auxiliary results that will prove useful in connection with the
next section.

LEMMA 6.5. Let be a center valued quantifier on the orthomodular lattice L.
For arbitrary e e L, q q " and q qq.

Proof. It follows from [2, Theorem 8, p. 654] that ()" ,, ,.
Since is center valued, we have ae (a ^ e) a ^ e a.
Hence e.
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tier in L.

(ii)
(iii)
(iv)
(v)
(vi)
(vii)

LEMM 6.6. Let be a center valued quantifier on the orthomodular lattice L.
For an element e L, the following conditions are equivalent:

(i) e is simple.

(iii) q, restricted to L(O, e) is the identity map.

Proof. (i) (ii). Given g e L, g,

_
e, so that g, (g) h e g.

(ii) (iii). If a

_
e, then a a,, and a, a,, a a.

(iii)(i). Fora_e,a a a h e.

ToR 6.7. Let L be an orthomodular lattice and a center valued quantifi-
There exists a Baer *-semigroup S and an element q S such that

L P’(S);
(L)q Z(S) n L;
q q= q*;
for each e e L, (eq)" e and qeq q(eq)";
e is simple =, e eqe;
e is invariant = eq qe;
e is faithful =, q qeq.

Proof. Conditions (i), (ii) and (iii) follow from Theorem 6.4; (iv) follows
from Lemm 6.5; (v) from Lemmu 6.6; and (vi) from Lemma 6.3.

(vii) If e is faithful, then qeq q(eq)" q(e) q. Conversely, if
q qeq, then

1 1 (lq)" (lqeq)’= [(lq)"eq]"= (eq)" e.

7. Loomis dimension lattices

A Loomis dimension laiee [1, p. 4] is a oomplee orhomodular lattiee
equipped wih an equivlenoe relation (,) that satisfies"

(A) Ifa-.0thena 0.
(B) If a a. and b a a: then there exists an orthogonal decompo-

sition of b, b b Y b., such that a b and a b..
(C) If (a,) and (b,) are two families of pairwise orthogonal elements over

the same indexing set such that a, b, for every a, then a, , b,.
(D) If a and b ure not orthogonal, then there exist non-zero elements

a

_
a, b

_
b such that a b.

It will at times prove convenient to replace (B) by the following stronger
condition"

(B) If (a,) is a family of pairwise orthogonal elements and b Y, a,,
then there is a family (b,) of pairwise orthogonal elements such that b , b,
and a, b, for every a.

Our goal in this section will be to show that every type I Loomis dimension
lattice satisfying (B’) can be coordinutized by a Baer *-semigroup in such a
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way that the abstract dimension relation (--) is induced in a natural way by
*-equivalence. The first step in such a program is a discussion of *-equiva-
lence. Until further notice it is assumed that S is a Baer *-semigroup and
L P’(S).

DEFINITION 7.1. Given e, f e L, we shall say that e is *-equivalent to f, and
write e * f, if there exists an element x e S such that xx* e and x*x f.
The element x is said to implement the *-equivalence of e and f; this will be
indicated symbolically by writing x e * f.
LEMMA 7.2. Let x e ,-.* f. Then xtp f, (x*) e and x exf.
Proof. By hypothesis, xx* e and x*x f. It follows from Theorem 5.1

(iii) that x xx, so that x* xx’ * x’x*. Thus e xx* xx* ’
(xx*) ’ (x*). Similarly, f x, and x (x*)xx’ exf.
LEMMA 7.3. The relation (.*) is an equivalence relation.

Proof. The relation in question is clearly reflexive and symmetric. It is
easily shown that if x e --* f and y "f--* g, then xy e ,-.* g.

LEMMA 7.4. Let x e ,-.* f. If a <_ e and a e L, then b x*ax e L; further-
more, b <_ f and a ,-.* b.

Proof. Clearly b b*, and b (x*ax) (x*ax) x*aeax x*aax
x axf ax b shows thatx ax b; hence b e P(S). The fact that bf x

b <_ f. To prove that b e L, note first that since b _< f, we have b’ <_ f"
f x’. Thus b xb bx and bt xb bx’. Repeated applica-
tion of Theorem 5.1 (viii) now produces

a eae xx*axx* xbx* (xbx*) (xbx*)
(bx*)"= (b"x*)"= (x"b"x*)"= (xb"x*)".

This shows that (xbpx*)" xbx*, so that

xbx* (xbx*)(xbPx*) (xbx*)(xbx*) xb’fbx*= xb%x*= xbx*.
We now have b’ fbtf c*xbx*x x*xbx*x fbf b, so that
beL P’(S). To prove that a * b, sety ax, and note thatyy*
axx a aea a, while y y x*aax x ax b.

THEOREM 7.5. Let x e .* f. Define mappings
E" L(O, e) -- n(o, f), F" L(O, f) ---> L(O, e)

by the formulas aE x*ax, bF xbx* for a L(O, e), b e L(O, f). Then E is
an orthocomplementation-preserving lattice isomorphismfrom L(0, e) onto L(0, f)
whose inverse is F.

Proof. Lemma 7.4 shows that E and F are well defined. The proof that
they are mutually inverse lattice isomorphisms is routine, and will therefore be
omitted. We shall, however, prove that E preserves orthocomplements.
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Let a e L(0, e), b aE, a+ the orthocomplement of a in L(0, e), and
b+ the orthocomplement of b in L(0, f). It is easily shown that
a+ a’ ^ e a’e ea’,andb+ b’ ^ f= brf =fb’. Sincebb+= 0, we
have a(b+F) (bF)(b+F) xbx*xb+x* xbb+x* O, and b+F a’. Then

b+F < a ^ e a+ and b+= b+FE < a+E.
Similarly, one shows that aa+ 0 implies b(a+E) O, whence a+E <_ b+.
Therefore a+E b+.

This concludes the material on *-equivalence in an arbitrary Baer *-semi-
group. Suppose now that is a center valued quantifier on an orthomodular
lattice L. Let S and q be as described in Theorem 6.7, and note that by
Lemma 6.2, eq Y ,s(ex) for every e L. In what follows we shall be
referring to *-equivalence implemented by elements of S.

LEMMX 7.6. Let a, b be simple elements of L with aq bq. Then a ,* b.

Proof. Set x aqb. Clearly x e S, and xx* (aqb)(bqa) a(qbq)a
aq(bq)tPa aq(bq)a aq(a)a aqa a. Similarly, x*x b.

LEMMA 7.7. Let x e ,* f. Then e

Proof. By Lemma 7.2, x" f and (x*)"
(xx*q)"= (x’x*q)’= (fx*q)"

_
f. Similarly, fq

_
e.

LEMMA 7.8. Let x e ,* f. If a <_ e is simple and b x*ax, then b is
simple.

Proof. Lemma 7.4 assures us that a -* b, so that aq b. Let d

_
b

and suppose d b. Thenxdx*

_
a, and (x dx*) d b a.

Since a is simple, we have from Theorem 3.4 that x dx* a. It follows that
d b, and consequently that b is simple.
We are finally ready to apply all of this to dimension lattices, so we now

assume that L is a type I Loomis dimension lattice. This means that every
element of L can be expressed as the supremum of a family of simple elements.
Given e e L, let e denote the hull of e (see [12, p. 13]). Then q is a center
valued quantifier and L can be coordinatized in the manner described in
Theorem 6.7.

DEFINITION 7.9. Giveu e, f e L, write e +f in case there exist two families
(e,), (f,) of pairwise orthogonal elements over the same indexing set such that
e V, e,, f ,f, and e, *f for every a. Clearly e -* f == e --+ f. It
will be our goal to show that e f : e +f, at least in the presence of axiom
(B’).

LEMM/k 7.10. Every non-zero element e of L is the supremum of a family of
non-zero mutually orthogonal simple elements.

Proof. This is [12, Lemma 29, p. 17].
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LEMMA 7.11. Let a, b L be simple elements. Then a b =, a ,-.* b.

Proof. By [12, Lemma 30, p. 17] a b is equivalent to aq b. Our
Lemma 7.6 shows that aq bq a * b, while Lemma 7.7 gives the reverse
implication.

LEMMA 7.12. For e, f e L, e .* f e f.

Proof. If e 0, the result is clear, so we may assume e 0. Let x e*f,
and by virtue of Lemma 7.10 we write e Y, e. where (e,) is a family of non-
zero mutually orthogonal simple elements. We then use Theorem 7.5 and
Lemma 7.8 to write f ,f, where (f,) is a family of non-zero mutually
orthogonal simple elements with e, -*f, for every a. By Lemma 7.11,
for every a; hence e f.

THEOREM 7.13. If L satisfies (B’), then e f =, e +f.

Proof. The preceding lemma shows that e *f e f. It is immediate
that e --+ f e f. Suppose conversely that e f. Writing e V, e.
where (e.) is a family of mutually orthogonal simple elements, we can apply
axiom (B’) to write f .f, with (f,) a family of mutually orthogonal ele-
ments and e, f, for every a. By [12, Lemma 10, p. 7] eachf. is simple. We
then have each e. *f., and consequently e +f.
The net result of all this is the result mentioned at the beginning of this

section: Every type I Loomis dimension lattice satisfying (B’) can be co-
ordinatized by a Baer *-semigroup in such a way that the abstract dimension
relation (-) is induced naturally by *-equivalence.

In conclusion, the author wishes to acknowledge that none of this would be
possible without the inspiration and patient guidance provided by Professor
D. J. Foulis.
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