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1. Introduction
If G is a compact Lie group of homeomorphisms acting effectively on a con-

nected m-manifold M, then by a theorem of Montgomery and Zippin in [7]

dim G

_
r(r + 1)/2

_
m(m + 1)/2

where r is the maximal dimension of the orbits of G on M. It has been ob-
served [12, Chapter IV], [9] that certain dimensions of G less than m(m - 1)/2
are also excluded. In particular, these results show that the dimension of G
cannot be in the following two ranges"

(m 1)m/2 + 1 < dim G < m(m + 1)/2 (m 4)

(m- 2)(m- 1)/2-k3 < dimG < (m- 1)m/2 m large.

It is the purpose of this paper to demonstrate that the above is only a.special
case of a more general phenomenon. In fact, Theorem 2 indicates the general
pattern of gaps in the dimensions of G of which the above ranges are a part.
The corollary to Theorem 2 transcribes the result into a statement concerning
homogeneous spaces.
The main tool used is Theorem 1, a generalized version of the Montgomery-

Zippin result cited above. Roughly speaking, Theorem 1 states that the di-
mension of G is further restricted by the dimension of its center and the number
of simple factor groups in its semisimple part; the larger that either of these are,
the smaller is the dimension of G.

2. Preliminaries

Consider a compact transformation group K on a locally compact Hausdorff
space X. The isotropy subgroup at a point x in X, denoted by G, is defined
as the subgroup

The action of K on X is said to be effective if

[’lx K e,

the identity element of K; the action is said to be free if

K- e, all xeX.

The orbit of K at point x, denoted by K(x), is defined as

K(x) U: lx.
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K(x) is homeomorphic to the left coset space K/Kx. The action of K on X
is said to be transitive if

X K(x)
for some x in. X.

Following [1, IX], we define a principal isotropy subgroup as an isotropy sub-
group of the lowest possible dimension with the fewest possible components.
The isotropy subgroups of points on the same orbit are all conjugate and, ac-
cordingly, we define a principal orbit as an orbit with principal isotropy sub-
groups. Roughly speaking, a principM orbit is an orbit of maximM dimension
which is maximal in an extended sense. All manifolds considered will be as-
sumed to be without boundary although the main results apply equally well to
manifolds with boundary by using the standard doubling trick.

LEMMA 1. Suppose G is a compact connected Lie group acting on a compact
connected m-manifold M such that the orbit space M/G is a manifold. If

then
maximal dimension of the orbits of G on M,

dimM/G m- t.

Proof. By [1, IX] the union M* of the principal orbits is an open dense con-
netted subset of M. It follows, moreover, from the connectedness of M* that
the principal isotropy subgroups are all conjugate. By Gleason [5], M* is a
fibre bundle over M*/G with t-dimensional fibres. Since M*/G is an open sub-
set of M/G,

dimM/G dimM*/G m- t.

Consider again a transformation group K acting on a space X. The subset
/ of all elements of K which act as the identity on X form a normal subgroup
of K, and K/K, in a natural fashion, acts effectively on X. The action of K on
X is said to be almost effective if K is finite. An almost effective action is said
to be almost free if every isotropy subgroup Kx, x e X, is contained in K.
The proof of the following lemma is based on a technique of Montgomery

and Samelson in [6].

LEMMA 2. Let G G1 @ G2 be a direct sum of 2 compact connected Lie groups.
If G acts almost effectively on a compact manifold M and if GI acts transitively on

M, then G. acts almost freely on M.

Proof. Let H. (G2)x, x e M, be an isotropy subgroup of the almost
effective action of G2 on M. Let y be any point in M. Then there exists

geG1 such that g(x) y.
But

H: y g H g-l(y) Y.

Therefore H acts trivially on M.
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LEMMA 3. Let G be a compact connected Lie group acting almost effectively
and transitively on a compact connected m-manifold M. If

G= GI G
where G is isomorphic to the q-torus Tq, then G1 is almost effective on the m q)-
manifold M/G.

Proof. Since G1 acts transitively on M/G., M/G is a compact connected
manifold. Now G acts on M with only finitely many distinct isotropy sub-
groups [1, VII. Using this fact it is easy to verify that the principal isotropy
subgroup of the action of G on M is trivial. Hence the dimension of a princi-
pal orbit is q and applying, Lemma i we obtain

dim M/G m- q.

We must now verify that G is almost effective on M/G.. Suppose N is a
closed subgroup of G1 which acts trivially on M/G. If dim N > 0, there
exists a circle subgroup H of N. We consider the almost effective action of the
(q -t- 1 -torus

H@G

on M. Since H acts trivially on M/G,

M/(H @ G) M/G.

It follows, however, from our earlier discussion that

dim M/(H (R) G) m- (q - 1).

This is of course impossible.
Let G be a compact connected Lie group. Then G can be expressed in the

following form

(A) G (Tq ( S S ( Sa)/N /N

where Tq is a q-torus, q >_ 0 (T is assumed to be trivial), each S. is a compact
connected simply-connected simple Lie group and N is a finite normal sub-
group of (.
Now each S. of dimension 3 is isomorphic to Spin(3), the universal covering

group of SO(3). We employ the isomorphism

Spin(4) Spin(3) @ Spin(3)

to combine pairs of 3-dimensional S.’s. With this convention, we may rewrite
G in the form

(B) G (Tq @ S @ S @ @ S,)/N (/N

where each S is either simple or isomorphic to Spin(4) and where there is at
most one S of dimension 3.
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THEOREM 1. Let G be a compact connected Lie group acting almost effectively
on a connected manifold M and let denote the maximal dimension of the orbits.
Then if G has a structure of the form (B), there exist integers tl t tb such
that

dimS _< t(t. -t- 1)/2, j 1, 2, b
and

_.t<_t-q.
Proof. Since

dim G q + dimS <_ q -[- t(t -[- 1)/2_
q + ( t.)[(’ t.) + 1]/2

_
q -[- (t q)(t- q + 1)/2

_
t(t-[- 1)/2,

Theorem 1 generalizes the Montgomery-Zippin result. Proceeding with the
proof we consider the almost effective action of on M. Now acts transi-
tively on a principal orbit

_
of dimension t. Since and M are connected,

the action of ( on 2r may be shown to be almost effective. By Lemma 3,
Go G/T is transitive and almost effective on the compact connected (t q)-
manifold Mo I/Tq. We consider from now on this action of Go on M0.
The semisimple group Go corresponds, of course, to the semisimple part of .

We shall suppose, however, in the ensuing argument the following decompo-
sition of Go into strictly simple groups S.

Go S@S@ @S,.

Let V be a direct sum of S’s such that V acts almost freely on M0 and V is of
maximal dimension. If V Go,

dim G0_< dimM0 t- q.

Let W Go/V. Now W is the direct sum of all S’s which do not belong to V.
W acts invariantly (but, possibly, not almost effectively) on M1 Mo/V.

Since Go is transitive on M0, W is transitive on M1. Now V acts almost freely
on M0 and it follows from Gleason’s theorem [5] that M1 is a compact connected
manifold with

dimM dim M0 dim V.

IfM is a point, V is transitive on M0 and by Lemma 2, W acts almost freely on
M0. Hence

dim Go dim V - dim W <_ 2 dimM0.

IfM is not a point, since W acts transitively on M, some factor group S’1 of
W must act non-trivially on M1. Since S’1 is simple, S.1 must be almost
effective on M1. Let

Then
maximum dimension of the orbits of S1 on M.
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and by Lemma 1,
M M/Sa

is a compact manifold with

dim M2 dim M_- t. dim Mo- dim V-

If Ms is not a point, we continue the process. Suppose then that

Sjl S’2 ", S.
have been chosen such that

M+ M/(S (R) S. (R) (R) S)
is a point. Then

0 dimMk+l dimM0 dim V -_1 t
or

(1)

and

()

=1 t. dim M0- dim V

dimS. _< tz(t + 1)/2, l= 1, 2, ...,
Let Q Sjl (R) Sj. (R) (R) Sj. (The situation of equation () corresponds
to Q being trivial.) Since V (R) Q is transitive on M0,

R Go/(V(R) Q)

acts almost freely on M0 by Lemma 2. By our initial assumption

dim R < dim V.
Now

(3) Go R (R) V (R) Q

and for each S. in Q we have relation (2).
For each S in R (R) V, not of dimension 3, observe that

dim S < [1/2 dim S][1/2dim S + 1]/2.

This follows since a simple group, not of dimension 3, is of dimension at least
8. Now pair the S.’s of dimension 3 in R @ V and observe that

dim(S, @ S) dimS,+dimS

Idim S" + dimSl([dimS"+ dimS1 + 1)2 2
2

for
dimS, 3 direst.

If there are an even number of S.’s of dimension 3 in R @ V, we obtain

(4) dim (R @ V) < ’=1 t,(t, + 1)/2
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where

(5)
and

dim(R (R) V) <_ dimV

u (number of simple factor groups in R (R) V of dimension greater than 3)
+ 1/2 (number of simple factor groups in R @ V of dimension 3).

Combining 1 and (5) we have

(6) =1 t. + ’=1 th _< dim M0 q

and in light of (3) and (4) and the connection between the decomposition of
Go in (C) and that of G in (B), the desired conclusion follows.

Consider finally the case that there are an odd number of S.’s of dimension 3
in R (R) V. If dim R < dim V, observe that

1/2dim(R (R) V) + 1/2 g dimV

and, hence, we may let the th corresponding to the extra St of dimension 3 be

t (+ 1/2).
If dim R dim V, then some S., say S, in R (R) V must be of odd dimension
larger than 3 (ctuMly at least 15). But nowif Sois the extra S. of dimension
3 we may let

t, (dimS,- 1)/2, t (dimS+ 1)/2.

Remarlc. The statement and proof of Theorem 1 is of course somewhat
awkward due to the special consideration paid to the simple groups of di-
mension 3. This is, to some extent, unavoidable as demonstrated by the
following example: There is an almost effective action of

on S where

and, of course, if we let

we would hve

Spin(4) S @

S,----- Spin(3), i 1, 2

t 2 t.

t + t. > dim S3.

It is worthwhile noting that in the above example each S acts both transitively
and almost freely on S3.
As mentioned in the introduction, Theorem 1 purports to demonstrate that

a transformation group of high dimension does not consist of many simple or
circle factor groups. This fact, perhaps, becomes more evident if we reformu-
late the conclusion of Theorem i in the following manner.

THEOREM 1’. Let G and M be as in Theorem 1. Then,

dimG <_ q+ t- q)(t- q+ 1)/2

1/4 ,<(%/i +8dimS- 1)(%/1+8dimS- 1).
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Now

Therefore,

(i)

dim G q -t- E=t dim

dim S g t.(t. + 1)/2, j 1,2,.-.,b.

t. >_ (%/1 -[- 8 dim S; 1)/2

= (VZl q- 8 dim S 1) _< 2 -’= ti N 2(t- q).

Squaring both sides of (1) and using (1) a second time to simplify, we obtain
our result.

In some sense, Theorem 1 is "best possible". For exumple, consider the
effective action of

G SO(m nt- 1) @ SO(m. -I-- 1) @ @ SO(m. -Jr- 1)
on

M S XS X X S’
where m- >_ 3, j 1, 2, s.

3. Main results

TI-IEOIE 2. Let G be a compact connected Lie group acting almost effectively
on a connected m-manifold M. Then if the dimension of G falls into one of the
following ranges:

(m- /c)(m- k + 1)/2 -t-- l(/c q- 1)/2 < dim G

< (m-- k-C- 1)(m-- /c + 2)/2, k 1,2,3,...

we have only three possibilities:
(i) m 4, G is locally isomorphic to the special unitary group SU(3), M

is homeomorphic to the complex projective plane P(C) and G acts transitively
traM.

(ii) m 6, G is isomorphic to the exceptional group G M is homeomorphic
to either the sphere S or real projective space P(R) and G acts transitively
on M.

(iii) ra 10, G is locally isomorphic to SU(6), M is homeomorphic to P(C)
and G acts transitively on M.

Before proceeding directly with the proof of Theorem 2 we shall establish u
lemma which in turn depends upon knowing the maximal dimensions of proper
closed subgroups of the compact simple real Lie groups. We use the standard
notation: A(r>_ 2, r# 3),B(r_> 1), C (r >_ 3),D (r >_ 3), G. F, ,E
E and E8 for the classification of the compact connected simple Lie groups.
In the following table Hu denotes a closed connected proper subgroup of maxi-
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mal dimension of a given compact connected simple Lie group G;S denotes the
circle group.

type G dim G dim HM type HM

Ar r(r -+- 2) r Ar_l S
Br r(2r 1) r(2r- 1)
Cr r(2r 1) (r 1)(2r 1) 3 Cr_ B
Dr r(2r- 1) (r- 1)(2r- 1)
E6 78 52 F4
E 133 79 E6 S
E8 248 136 E B1
F4 52 36 Bt
G2 14 8 A2

As indicated in the tble,H is unique up to type. As the information in this
table does not appear to be written down explicitly in the literature (although,
presumably well known), the author employed the following procedure in
generating the table. Consider all maximal closed connected proper subgroups
H of a compact simple Lie group G. By a maximal connected subgroup we
mean a subgroup which is not properly contained in any closed connected
proper subgroup of G. These maximal subgroups have been widely studied in
the literature. The subgroups H re simply those maximal connected sub-
groups of maximal dimension.
The table on p. 219 of [2] immediately provides the type of all mximal closed

subgroups H of maximal rank. If

rank H .< rank G,

then by a result of J. de Siebenthal [8, p. 233] it follows that H has finite center
nd must, therefore, be semisimple. However, the maximal complex semi-
simple subalgebrs of the complex simple Lie algebras have been completely
determined by Dynkin [3], [4]. Briefly, we may apply Dynkin’s result to our
problem as follows. Suppose H is semisimple and maximal connected sub-
group of G. Corresponding to G is a simple complex Lie lgebra @. Cor-
responding to H is a real Lie lgebra @ whose complexification c is a semi-
simple subalgebr of @. Moreover

dime @c= dimR @ dim H.

A maximal semisimple complex subalgebra of @ is proper semisimple sub-
algebra of @ which is not properly contained in any proper semisimple
complex subalgebr of @. Now we may as well suppose thatc is a maximal
semisimple complex subalgebra of @. For if I is a complex semisimple sub-
algebra with
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then ?I would have a compact real form of real dimension larger than that of @.
Using the terminology of [3], @c is either an R-subalgebra or an S-subalgebra.

If 59c is an R-subalgebra, it must be a regular subalgebra by [3, Theorem 7.7].
We may now refer to Tables 12 and 12a of [3] for a complete listing of all maxi-
mal semisimple regular subalgebras. If 59c is an S-subalgebra and G is an ex-
ceptional simple group, we may refer to Table 39 of [3]. Suppose finally that
c is an S-subalgebra and G is a classical group. By [3, Theorem 7.3], c is
maximal in the class of all subalgebras (not just the semisimple ones) of @.
If @c is not simple, we refer to the table on p. 238 of [3]. If c is simple, we
are led to the case where c is a maximal irreducible subalgebra of gO. (See the
discussion on p. 238 of [3].) We may now refer to the results of [4]. If @ is
an Ar then by [4, Theorem 4.2 it is sufficient to consider the case wherec is
irreducible with respect to the standard linear representation of Ar that is,
SL(r - 1). Therefore the minimum dimension of a faithful linear representa-
tion of c cannot exceed r + 1. One may now completely investigate the
possibilities for 9c by referring, say, to Table 30 of [4]. If @ is a C then by
[4, Theorem 5.2] we need consider only the case where @c is irreducible with
respect to the Sp(2r) symplectic representation of C. However, Table 12
of [4] provides the minimum dimensions of the faithful linear symplectic
representations of the simple Lie algebras. Similar techniques may be em-
ployed if @ is of type B or D.

It is possible, by the way, to determine the type ofH when G is of type B
or D directly by a transformation group argument (e.g. Lemmas 3 and 4 of
[6]).
Let/0 /c0(m) denote the maximum integer ] for which the inequality of

Theorem 2 is still meaningful. One easily computes that

/c0 {%/9 + 8m- 5)/2}

where {x} denote the smallest iateger >_ x.

LEMMA 4. For m >_ 17, if G acts almost effectively on a connected m-manifold
M and G is isomorphic to an A or an exceptional group, then

dim G < (m ]0) (m k0 - 1)/2.

Proof. Form_> 17

(m- o)(m- ]Co + 1)/2 >_ 91

and, checking the dim G column of our table, we see immediately that we need
concern ourselves only with E7, Es or A for r >_ 9.

If G acts almost effectively on M

dim G/H

_
m

for some proper subgroup H of G. Hence

1 dim G

_
m - dim H.
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If G is isomorphic to an Ar we may use the table and (1) to conclude that

dim G

_
m(m + 4)/4.

It is easily checked, however, that

form > 17.

However,

m(m + 4)/4 < (m /0)(m /0 + 1)/2

If G is isomorphic to an E7, we find using (1) and the table that

m> 54.

dim G 133 < (m- /o)(m- /0 + 1)/2

dim G

_
lo(lo -t- 1)/2 -t- =1 t.(t -t- 1)/2

0 < u < m / 2.

Therefore, in any case,

(3) 10_< m-- /.

Letting
q (1.2)/2 -t- (1.2)/2 + -t- (1.2)/2

we obtain from Theorem 1 that

(4)

where

(i) 1 _< t _< 10, all j
(ii) =lt_<m-10.

Suppose

(5) l0 m- /-u,

for m _> 54. If G is isomorphic to Es, we reach a similar conclusion.

Proof of Theorem 2. Suppose now

(1) (m-/)(m-/ -t- 1)/2 < dim G < (m-/ -k- 1)(m-/ -t- 2)/2

where/c _< /c0. Also assume m >_ 17 so that the last lemma applies. We
choose to investigate separately the cases m < 17 at the end of the proof.
Let G be in the form (B) of the last section. Now acts almost effectively on
M. Let SD be a simple factor group of ( of maximal dimension and let l0
denote the least integer such that

(2) dim S _< lo(lo + 1)/2.

If Sg is an A or an exceptional group, then we know from Lemma 4 that

10_< m-- /c0_< m-- /.

On the other hand if Sg is a Br, Cr or Dr we know from the form of dim S (see
the table) and (1) that
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From (4),

(6) dim G

_
(m lc u)(m ]c u + 1)/2 +

__
t(t + 1)/2.

If ;= t u,

dim G (m u)(m u + 1)/2 + u(u + 1)/2

E (m-)(m-+l)/2
which contradicts our ssumption (1). Hence,
(7) ;= t > .
But now from (5), (6), (7) and (i)we obtain,

(8) dim G (m- k)(m- k + 1)/2 +

_
t(t + 1)/2

where

(9) t 0, llj nd =xt (=xt) u.

From (ii), (5) nd (9),

(10) = , m- l0- u

nd finMly from (8) nd (10),

(11) dim G (m k)(m k + 1)/2 + k(k + 1)/2.

Hence for m 17, the dimension of G cnnot be in ny of the rnges indicated
in the statement of Theorem 2.
We now investigate the situation for m 16. From the nture of the proof

it is clear that we need be concerned only with the cses where the mximM
simple fctor group S is nAorn exceptional group. (Note we used Lemm
4 only to obtMn (3) which holds for M1 m if S is B, C or D.) Moreover
since S is Mmost effective on M nd now m 16, we my use the tble nd
the techniques of Lemm 4 to conclude that S must be isomorphic to G,
F or SU(r), 3 r 9 (r # 4). We my now proceed in strMghtforwrd
fshion to investigate the cses from m 1 to m 16. The results turn up
just three possibilities"

(i) m 4, G is locMly isomorphic to SU(3) nd G cts transitively on M.
(ii) m 6, G is isomorphic to G nd G cts transitively on M.
(iii) m 10, G is locMly isomorphic to SU(6) nd G cts transitively

on M.

As completely representative example, we indicate the detMls for m 10.
To conclude the proof we must of course lter determine the topologicM struc-
ture of M. If m 10, the only possibilities re:

z;sv(3) , zu(5), su()
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Now acts almost effectively and transitively on a principal orbit 2r. Sup-
pose

Now Sg acts transitively and invariantly on the compact connected manifold
I/S. If S acts trivially on I/S, then S is transitive on 2r and by Lemma 2,

Sg acts almost freely On 2r. In this case,

dim SD _< dim 2r _< dim M _< 10

and S must be isomorphic to SU(3). If Sg acts non-trivially on /S,
then it must act almost effectively on I/S since S is simple. Now suppose

maximal dimension of the orbits of S on M.
By Lemma 1,

(13) dim /S- dim r- _< 10- t.

Moreover, by applying the Montgomery-Zippin Theorem to the almost effec-
rive action of S on M we find that

(14) _> (’i q- 8 dim S 1)/2.

For m 10, we compute

(15) N(m) (m ko)(m ko + 1)/2 -t-/c0(/0 + 1)/2 34.

We now investigate the four cases forS.
Case (a) S is isomorphic to SU(6). If dim S > 0, we find from (14) and

(13) that
dim I/S < 10.

But this is impossible since S is almost effective on I/S. Hence dim S 0,
( S and G is locally isomorphic to SU(6). Since dim 2it 10 dim M,
G is transitive on M and we have possibility (iii).

Case (b) S is isomorphic to SU(5). If dim S > 3,

dim I/S < 8

which is impossible for reasons similar to those above. Hence

dimG dimO dimS + dimS__ 24-t- 3 < N(10).

Case (e) So is isomorphic to G. We find that

dims < 10
and, hence,

dimG_< 14+ 10 < N(10).



Case d S is isomorphic to SU(3).
If Sg is almost effective on I/S, then

We now have 2 subcases to consider.

dimS_ 21 and dimG_<: 8-t-21 <N(10).

On the other hand, suppose S acts almost freely on . Then S acts transi-
tively on the 2-manifold l/S’o. Break S up into a direct sum of simple groups
and circle groups and let T be a partial direct sum of these groups (that is, T
is a subgroup of S) which acts transitively and almost effectively on I/S.
:Now

dim T

_
(2.3)/2 3.

Since S @ T acts transitively on r, SIT acts almost freely onr by Lemma 2.
Hence

dim G dim S + dim T + di’m SIT

_
8 -t- 3 + 10 < N(10).

The procedures for handling m

_
16, m 10, are completely analogous.

We may now employ methods of H. C. Wang [11, p. 184-185] to determine
the topological structure of M for each of the 3 possibilities. Let G be the
universal covering group of G. Then ( acts almost effectively and transitively
on M. If/ is an isotropy subgroup of this action,

M (//.
If m 4 and G is locally isomorphic to SU(3), then

SU(3)

nd *, the identity component of , must be of type A S, s indicated
in the tble. ByWng [10, Theorem III], * is, up to n inner utomorphism
of G, the standard unitary subgroup U(2) in SU(3). By verifying that U(2)
is its own normlizer in SU(3) we obtain

Hence
M / /* SU(3)/U(2) P(C).

Similarly for m 10 we conclude that M is homeomorphic to P(C).
Suppose now m 6 nd G is isomorphic to G. Then

/* a/ZV(3)
is covering spce of

M /.
Since he Euler ehreerisie o M is wo, he order o he covering is one or
wo. H he order is one,

MS.
If the order is two, since the deck transformation is an isometry of S6,

M , P6(R).
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If G is effective on M, it follows from [10, (2.1)] that G has trivial center and,
therefore, in cases (i) and (iii) G is isomorphic to SU(3)/Z and SU(6)/Z
respectively where Z denotes the full centers of the groups.

Remarks. For each m and k there is, of course, an effective action of

G SO(m- ]c - 1) @ SO( - 1)
on

M Sm-k Sk.
Let G be a compact connected Lie group and H a proper closed subgroup of

G. We say G/H is an almost effective homogeneous space if every normal sub-
group of G contained in H is finite.

COROLLARY. Suppose G/H is an almost effective homogeneous space with

dim G/H

_
m

and

(m- k)(m- k -t- 1)/2 + k(k + 1)/2

< dimG < (m- ] + 1)(m- -t- 2)/2, k 1, 2,...,k0(m).

Then there exist just three possibilities:
(i) m dim G/H 4, G is locally isomorphic to SU(3 and G/H is

homeomorphic to P(C).
(ii) m dim G/H 6, G is isomorphic to G and G/H is homeomorphic to

S or P(R).
(iii) m dim G/H 10, G is locally isomorphic to SU(6) and G/H is

homeomorphic to P( C).

Proof. If
dim G/H m

the corollary is an immediate consequence of Theorem 2 by considering the
almost effective action of G on G/H. If

dim G/H < m
let

q m- dimG/H nd M G/H Sq.

Now G acts almost effectively on M by

g(x, y) (gx, y).
Again apply Theorem 2.
Theorem 1 could be strengthened by taking into account the types of the

simple factor groups S. For example, if S is of type A,

dim S
_

t(t. -[- 4)/4

as is easily verified by referring to the proof of Lemmu 4 and checking through
the proof of Theorem 1.



As for Theorem 2, it seems quite likely that there exists an even more
general pattern of gaps. For example, consider the dimension of G in the
following range

(m- /)(m- / -- 1)/2 -- (/- 1)//2 -- 1

< dimG < (m- k)(m- /c + 1)/2--/c(/- 1)/2, (k_ ko(m)).

For m _> 15 letting

G SO(m- 3) @ SU(3) nd M S- X P(C),
we obtain examples of almost effective actions in the above range. Are there
any other examples?
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