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1.1. Let R be a Riemann surface and let H*(R) be the algebra of bounded
holomorphic functions on R. I will assume that the universal covering sur-
face of R is the open unit disc D, as it must be if H*(R) contains nonconstant
functions, and then, because of this assumption, there are analytic maps
from D onto R such that the pair (D, t) is a regular covering surface of R [1].
Let be one of these maps and use to represent H(R) as a subalgebra of
H(D) by composing the functions in H(R) with t. My aim is to show,
when R is conformally equivalent to the interior of a compact bordered Rie-
mann surface, that there is a projection P of H(D) onto H*(R) with the
property

P(fg) fPg

for all f in H*(R) and g in H*(D). By projection I mean linear and idem-
potent.

1.2. Let G be the group of cover transformations of (D, t). G is the
group of fractional linear transformations T that take D onto D with

toT t,

and G is isomorphic to the fundamental group of the surface R. The group
G acts on H (D) in the standard way by composing the functions in H (D)
with the transformations in G, and H(R) is the algebra of functions in
H(D) that are invariant under G. For let f be in H(R) and let g f o

be the function in H(D) that is obtained by lifting f to D. Then g is in-
variant under the group G,

Tg =goT=g

for all T in G, and every function in H’(D) that is invariant under G is ob-
tained in this way.
Each function in H(D) has a radial limit at almost every point of the

unit circle F. Let H be the algebra of functions defined almost everywhere
on F that are radial limits of functions in H(D), and let H/G be the sub-
algebra of functions in H that are invariant under G. The radial limit map
is an algebra isomorphism between H’(D) and H and between H(R)
and H/G, and it is within the framework of H and H/G that I will get the
projection P. The arguments I will give are intrinsic in the sense that every-
thing will take place on F with an occasional trip into D, and we will not need
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to know anything about Riemann surfaces. The assumption that R is con-
formally equivalent to the interior of a compact bordered Riemann surface
will appear as an assumption about the group G. The tools I will use to
get the projection P are measure and I-Iilbert space theory, and the harmonic
analysis that goes with the IIilbert space H.

1.3. Part 2 of this paper contains things about H/G and related spaces.
Here no assumptions are made about the group G. In part 3, with a con-
dition on G, I get the projection P. Part 4 contains an application.

2.1. I will begin by recalling the interplay between Lebesgue measure on
the unit circle F and fractional linear transformations that take the open
unit disc D onto itself. I will denote by o. the Lebesgue measure on F given
by

f do - f(eix) dx

and I will write L- for L(o.). Let T be a fractional linear transformation
that takes D onto D. Then T takes F onto F and

fr d f P, d(1) -for all Borel sets X contained in F where Pr is the Poisson kernel

(2) Pr(e) Rek.
Because of (1), when X is a Borel set contained in F,

(3) a(T-X) 0 if and only if a(X) 0.

Let be the sigma-field of a-measurable sets and let L be the algebra of
Z-measurable functions. When f is a function on F, Tf is the function on F
given by

Tf(eix) f( T(ei*) ).

Because of (3), T-X is in when X is, and therefore Tf is in L when f is for

Tf)-y T-(f-ly).

Moreover T preserves the equivalence classes in L obtained by identifying
functions that differ only on sets of measure zero,

Tf= Tga.e. when f= ga.e.,
for

[Tf Tg] T-[f g].

When f is in L, we get from (1),
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2.2. Let 2:/G be the sigma-field of sets in 2: that are invariant under the
group G and let L/G be the algebra of functions in L that are invariant under G.
X is in 2:/G if and only if X is in 2: and

(X A T-X) 0

for each T in G, and f is in L/G if and only if f is in L and

for each T in G. There is an obvious but for this paper very important rela-
tion between the algebra of functions L/G and the sigma-field /G:

L/G is the algebra of N/G-measurable functions.
For

(5) f-ly /X T-I(f-IY) c [Tf f]
when Y is any Borel subset of the plane, and

(6) [Tf f] c u(f--1Y/k T-I(f-IY))
where the union is taken over any countable collection of Borel subsets of the
plane with the property that given any two distinct points in the plane there
is a set in the collection that contains one of the points and not the other.
(5) says that functions in L/G are 2:/G-measurable and (6) that 2:/G-measur-
able functions belong to L/G.

Let L/G be the linear space of functions in L that are invariant under G.
Then, because of what has just been said, L/G is also the linear space of
functions in Lp that are 2:/G-measurable. I will denote by E the conditional
expectation given 2:/G. E is the projection of L onto L1/G given by

(7) fx Ei[ do" fx f dr

wheref is in Ll andX is in 2/G. Fora givenfin L the right side of (7) defines
a bounded complex measure on 2/G that is absolutely continuous with respect
to o, and thus by the Radon-Nikodym theorem there is a unique function
Ef in L1/G that satisfies (7).
The conditional expectation E is a projection of L onto L/G for 1 _< p _<

and the norm of E as a linear transformation on Lp is one. In particular,
takes bounded functions into bounded functions. As a linear transformation
on the Hilbert space L, E is just the orthogonal projection of L onto L/G.
The conditional expectation E, in addition to being linear and idempotent,
has the property

(s) E(fg) lEg

when f is in L/G and g is in L. A thorough discussion of conditioning can
be found in [7, Ch. 7].
H was defined in the introduction as the algebra of functions on r that are

radial limits of functions bounded and holomorphic on D. H can also be
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defined, without referring to functions on the open unit disc, as the algebra of
functions in L whose Fourier coefficients vanish for negative indices. H/G
is the algebra of functions in H invariant under G. Now E carries H into
L/G, and if it were true that E carried H into H/G, then because
of (8) I could take E restricted to H for the projection P. However, wher
R is conformally equivalent to the interior of a compact bordered Riemann
surface that is not simply connected, E just does not take H into H/G
(for a proof see Lemma 4 in part 3). Nevertheless P will be got from E. I
will show in part 3 with an assumption about the group G that there is a
function in H with the property

(9) E() 1

and

(10) E(H) H/G.
Then the linear transformation P given by

Pf E(f)
is a projection of H onto H/G with the property

P(fg) fPg

when f is in H/G and g is in H.
The remainder of this part of the paper contains things that will be needed

in part 3, but that are true without any assumptions about the group G.

9..3. H is the space of functions in L whose Fourier coefficients vanish
for negative indices. Let f be in L. The conjugate of f is the L function
f* with Fourier series

n<0iCnein - n>0 iCn e
where

cn en

is the Fourier series of f. f + if* is in H2, and when f is a real function in L,
f* is the unique real function in L with mean value zero such that f + if*
belongs to H2.
When T is in G let

vr E(P*r)
where Pr is the Poisson kernel (2). P*r is a real function with an absolutely
convergent Fourier series sinceP is. In particular P*r is a real function in L*,
and hence vr is a real function in L*/G. I will denote, by N the complex
linear span of the functions v (T in G).

LEMMA 1.

(11) T(f*) f* f dz

for all f in L2/G and T in G.
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Proof. Let T be a fractional linear transformation that takes D onto D,
and let f be a real function in L2. Tf iT(f*) belongs to H for T takes H
into H, and thus T(f*) and (Tf)* differ by the meaa value of T(f*). This
is also true when f is complex since T and * are linear transformations, and
we have for all f in L

T(f*) Tf)* f T(f*) &r.

From (4) and the fact that conjugation is self-adjoint except for a sign change
we get

j j f*P j
and therefore

/,

(12) T(f*) Tf)* J fP*r da.

Now let f be in L?G and let T be in G. Since Ef f and E is self-adjoint
we have

(13) f fP* d(r f fE(P* ) d(r f fvr&.

We get (11) from (12) and (13) since Tf f.
LEMMA 2. The map that takes T into v is a homomorphism of the group G

into the additive group N:

(14) v 0

and

(15) v v + v
for all S and T in G.

Proof. (14) is clear. To get (15) let f be in L2/G. Then

(16) ST(f*) f* S(f*) f* + T(f*) f*
for

ST(f*) f* T(S(f*) f*) -t- T(f*) f*
and S(f*) f* is a constant. From (11) and (16) we get

f fvd= ffvd/ ffv&,
and since this is true for all f in L2/G we get (15).
The Hilbert space L has the orthogonal decomposition
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where C is the one-dimensional space of constant functions and H0 is the space
of functions in H with mean value zero. The next lemma gives an analogous
decomposition for L2/G. H’/G is the space of functions in H invariant under
G, i.e. H2/G is the intersection of H with L2/G, and H/G is the space of
functions in H/G with mean value zero.

LEMMA 3. The Hilbert space L/G has the orthogonal decomposition

(17) L2/G N @ H/G @ C @ H/G
where N is the L closure of N.

Proof. (11) shows that the orthogonal complement of N in L/G consists
of those functions in L2/G whose conjugates also belong to L/G. There is
another way to describe the space of functions in L2/G whose conjugates are
invariant under G. This space is the same as

For when f is in L, H]/G @ C (R) H/G.

:,_ ,.)+, ::, + (:- f:, +
nd the first component in this decomposition belongs to H, the third to
H0 Putting these things together gives (17).

2.4. Let G’ be the commutator subgroup of G and let r(G/G’) be the
smallest number of elements that will generate the homology group G/G’. A
corollary of Lemma 2 is that

d(N) <_ r(G/G’)

where d(N) is the dimension of N, for G’ is contained in the kernel of any
homomorphism of G into an Abelian group. The assumption about the group
G that I will make in part 3 in that r(G/G’) is finite and is equal to d(N).
I want to explain here why this is true when R is the interior of a compact
bordered Riemann surface that is not simply connected.

Let d(R) be the greatest number of bounded harmonic functions on R with
cohomologously independent conjugate differentials. Then

d(N) d(R).

There is a one-to-one linear correspondence between functions g in L/G
and bounded harmonic functions f on R that is given by f o where is
the harmonic extension of g to D nd is the analytic map that defines G.
Let df be the differential of f nd ,df the conjugate differential of f. ,dr is
cohomologous to zero if nd only if g* belongs to L/G. Thus if g belongs to N
and ,dr is cohomologous to zero, then g is orthogonl to N(Lemma 1) nd
g 0. This shows that

(N) _< (R).
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To get the reverse inequality we may assume that d(N) is finite. Then N
is closed in L2/G and g gl 4- g2 where gl is in N and g is orthogonal to N.
gl 0 implies that ,df is cohomologous to zero for ,df ,df ,df and
df is cohomologous to zero. This shows that

d(R) <_ d(N).

Now let R be the interior of a compact bordered Riemann surface and let
the n cycles C. be a homology basis for R.

n=2g+b-1

where g is the genus of R and b is the number of boundary components. Given
any n complex numbers z. there is an analytic differential e on the Schottky
double with

fc --’Zj

[9, p. 172]. This implies that d(R) n. For let k be such that

fc ek i.k.

Then Re dfk where fk is harmonic on/ since

fc Reek 0,

and the n differentials ,dfk are a cohomology basis for R since

fc ,df .
When R is not simply connected (n _> 1), the homology group G/G’ is a free
Abelian group with n independent generators, and therefore r(G/G’) n.
Thus when R is not simply connected

r(G/G’) d(R) d(N).
WhenR is simply connected (n 0), G/G’ is trivial and hence r(G/G’) 1.

On the other hand d(N) d(R) O.
The converse is also true. When r(G/G’) is finite and is equal to d(R),

then R is conformally equivalent to the interior of a compact bordered Riemann
surface.

From now on I will assume that r(G/G’) is finite and is equal to

r(V/’) g(N) n.

G’ is the commutator subgroup of G, r(G/G’) is the smallest number of
elements that will generate the homology group G/G’, and d(N) is the dimen-
sion of the vector space N defined at the beginning of 2.3. I will show, with
this assumption, that there is a function in H such that (9) and (10) hold.



34 FRANK FORELLI

Because N is finite-dimensional, the orthogonal decomposition of L2/G given
by Lemma 3 becomes

L/G N H/G @ C H)/G.
Moreover d(N) _> 1 for r(G/G’) is a positive integer.

LEMMA 4.
E(H") N +

Proof. Let f be in H. Ef is orthogonal to H)/G because f is, and thus Ef
belongs to N @ H2/G. As Ef is bounded and N contains only bounded func-
tions, Ef must in fact belong to N H/G, and therefore E(H") is contained
inn W H/G.
To get the reverse inclusion, let T be in G. EPT 1, for when f is in L2/G

we get from (4)

Hence
ivT E(PT q- iP*r 1)

and N is contained in E(H). Thus N q- H/G is contained in E(H) and
the proof is complete.

Let f be a nonzero vector in H and let x be a homomorphism of G into the
circle group (the multiplicative group of unimodular complex numbers), f is
an eigenvector of G with eigenvalue x if

Tf x(T)f

for all T in G. (I prefer this terminology to the one that calls an eigenvector
a multiplicative function.) The lemma that follows is a paraphrase of the
theorem that given a homology basis for a compact bordered Riemann surface,
there is an analytic differential on the Schottky double with prescribed periods
along the cycles in the basis [9, p. 172]. Because of this lemma, when f is an
eigenvector of G, there is a unit g in H such that fg is invariant under G.

LEMMA 5. Let X be a homomorphism of G into the circle group. Then there
is a unit in the algebra H that is an eigenvector of G with eigenvalue x.

Proof. Let the n transformations T. in G be such that the cosets TjG’
generate GIG’. Let T be in G. Then

where S belongs to G’, and

(18)
and by Lemma 2

(19)

T (I T)S

x( T) II x( T)j

v,=
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where I have written v for vr. The n real functions v not only span N, but
because of my assumption about the group G are a basis for N, and hence there
is a real function v in N with

(20) x(T’)--exp(--
exp (v + iv*) is a unit in H and is moreover an eigenvector of G with eigen-
value x, for we get from 11

T(exp(v-I-iv*)) exp (v - iv* i f dr)
and from (18), (19), and (20)

(T)= exp(-ifvv,
The next lemma is both a consequence and a generalization of the well

known fact that the index of a nilpotent linear transformation cannot exceed
the dimension of the vector space on which it acts [4, p. 162].

LEMMA 6. Let A1 through A,, be m commuting linear transformations of a
vector space V, and suppose there are m positive integers el through em such that

o

if and only if e <_ k for 1 <_ j m. Then e does not exceed the dimension
of V.

Proof. The proof is by induction on m. When m 1 the assertion of the
lemma is the just mentioned fact about nilpotent linear transformations. As-
sume that the lemma is true when the number of transformations is m 1.
Let X be the range of A1 and let Y be the range of lIA’. X is invariant
under A2 through Am, and the conditions of the lemm are satisfied with these
m 1 transformations acting on X. By the induction hypothesis

<_ d(X).

Moreover Y is invariant under A1, and A1 acting on Y is nilpotent of index
el. Therefore

el _< d(Y).

Finally Y is contained in the null space of A and so by the rank-nullity
theorem

d(X) + d(Y) <_ d(V).

Combining these inequalities gives the assertion of the lemma.

LEMMA 7. There is a function tc in H’C/G with the property

(21) k(N - H*/G) H*/G.
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Proof. I will use Beurling’s invariant subspace theorem to get the function
It, and then use Lemma 6 to show that/c does what is claimed. Let M be the
collection of all f in H such thatfN is contained in H. M is a closed subspce
of H invriant under multiplication by H, and we will see later that M is not
trivial. By Beurling’s theorem describing such subspces there is an inner
function w, determined by M up to a constant factor, such that

M wH

[5, Lec. 2], [6, Ch. 7]. w moreover is .an eigenvector of G. For N and H are
inwriant under G, and therefore M is also. Thus when T is in G

Tw)H wH

and the inner function Tw is a constant multiple of w,

Tw x(T)w.

This in turn implies that x is a homomorphism of G into the circle group, and
w is an eigenvector of G with eigenvalue x. Now by Lemma 5 there is a unit
u in H such that

]c wu
belongs to H/G, and we have

]cH/G c ]c(N + H/G) c H/G.
The codimension of the first space in the second is n, and I will show that the
codimension of the first in the third does not exceed n. This will give (21).

Let F be the orthogonM projection of L/G onto N, and when f is in H/G
let As be the linear transformation of N given by

As v F(fv).

When v is in N and f is in H/G, fv is in N + H/G for fv is orthogonal to
H2/G, and hence the linear space N + H/G is invariant under multiplication by
H/G. Because of this

As AsA
and therefore the linear transformation that takes f to As is an algebra homo-
morphism of H/G onto a commutative subalgebra of the algebra of linear
transformations of N. Let M/G be the kernel of this homomorphism. M/G
is the collection of all f in H/G such that fN is contained in H/G. M/G is
not trivial for H/G is infinite-dimensional and M/G has finite codimension in
H/G. We have

(22) M/G M n L/G
and in particular M is not trivial. From (22) we get

(23) M/G kH/G
for

M kH.
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(H/G)/(M/G) is isomorphic to a commutative subalgebra of the algebra
of linear transformations on the n-dimensional space N, and it is tempting to
believe that such an algebra has dimension not greater than n. This how-
ever is not true, and all that can be said is that the dimension of a commuta-
tive algebra of linear transformations on an n-dimensional space does not
exceed 1 - [n/4]. To see that the eodimension of M/G in H/G does not
exceed n I must look at the inner function w.
Suppose w contains a singular part, and let w bs be the faetorization of w

into a Blasehke product b and a singular inner function s [5, p. 10], [6, p. 63].
Because w is an eigenveetor of G, so are b and s. Let m be a positive integer
and let r be an inner function with r 8. Then r is also an eigenveetor of G,
and by Lemma 5 there are units f and g in H such that bf and rg are invariant
under G. But we now have an ascending chain of m 1 distinct ideals

bf(rg)ig/G (j m 1, 1)

between M/G and H/G, and this of course is not possible when m is large for
the codimension of M/G in H/G is finite. Hence the inner function w is a
Blaschke product. For the same reason w is a finite Blaschke product in the
sense that

w Hb
where b is the irreducible Blschke product determined by the orbit under G
of point in the open unit disc. Renumbering, if necessary, let b through b
be the distinct elements mong the b.

Let u be a unit in H such that

f b u
belongs to H/G (bi is an eigenvector of G). Then by (23)

M/G f2)H/a.

The codimension of M/G in H/G is

for the eodimension off/H/G in H/G is 1. On the other hand the conditions
of Lemma 6 are satisfied with V N and A A], and we find that the
eodimension of M/G in H/G does not exceed n. This completes the proof.
When R is the interior of a compact bordered Riemann surface, k can be

any Nnetion continuous on and holomorphie on R whose zeros are the critical
points of the Green’s Nnetion with pole at t(0). Moreover by working on R
and taking k to be such a Nnetion, one can give a shorter proof of Lemma 7.

THOn 1. There is a projection P 4H onto H/G with the property

P(fg) fPg

for all f in H/G and g in H’.
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Proof. Let/ be the function given by Lemma 7. By Lemma 4

25 IE(H) H/G.
Let h in H be such that tEh 1 and let =/h. Then by (8) and (25)

E() 1 and E(H) H/G.
The linear transformation P given by

Pf E(f)

is a projection of H onto H/G with the property (24).

3.2. I have proved more than I have claimed. Pf in fact is defined for f
in L and P is a bounded projection of L onto LI/G with the property

for all f in L/G and g in L.
projection must be given by

P(fg) fPg

On the other hand it is easy to see that such a

(26) Pf E(f)

where belongs to L and E 1 [8].
H onto H/G and in addition if

Moreover if P (given by (26)) takes

f pf f f

for allf in H (a property the projection given by the proof of Theorem i has),
then it is easy to see that belongs to H and is divisible by the inner function
w, i.e. belongs to the subspace M defined at the beginning of the proof of
Lemma 7. If I drop the mean value assumption and assume only that P
(given by (26)) takes H onto H/G, then be must belong to M where b is the
Blaschke product determined by the orbit under G of the center of the open
unit disc. Conversely if be belongs to M, then again it is easy to see that
the projection P given by (26) takes H onto H/G. The last two sentences
are relevant for there are functions in L with E 1 and b in M that are
not in H.

I do not know if it is possible to represent the bounded holomorphic function
Pf directly in terms of the group G and the bounded holomorphic function f.

4. The projection given by Theorem 1 can be used to relate ideals in
H/G to ideals in H. Here is what I have in mind. The extension of an
ideal J in H/G is the ideal je in H generated by J, and the contraction of an
ideal K in H is the ideal K in H/G obtained by intersecting K with H/G.
Thus J is contained in J, and jc is the smallest contracted ideal that con-
tains J.

THEOREM 2. Every ideal in H/G is the contraction of its extension.
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Proof. Let f be in jec. Then
f= fg

where f. is in J and g. is in H, and

f= Pf P(f g f Pg
Thus f belongs to J.
Theorem 2 is equivalent to the statement that every homomorphism of the

algebr H/G can be extended to homomorphism of’ the Mgebm H in the
sense thatthe image of H/G is a subalgebra of the image of H.
COROLLnY. The corona conjecture is true for R.

Proof. Let ]c functions ft. in H(R) be such that

on R. Regard f through f as functions in H(D) by composing them with
(t is the analytic map that defines G). Then

on D. Carleson [3] has shown that the coron conjecture is true for the open
unit disc, and therefore the ideal in H (i.e. in H (D)) generated byf through
f is H. By Theorem 2 or by its proof the ideal in H/G (i.e. in H(R))
generated by the ]c functions ft. is H/G.
The corollary is not new but I believe the proof is. Alling [2] and Stout

[10] hve shown that the corona conjecture is true for the interior of a compact
bordered Riemann surface, and the referee tells me that Steven Sheinberg in a
1963 Princeton thesis and others huve done this.

COROLLAnY. Every maximal ideal in H/G is the contraction of a maximal
ideal in H, and every prime ideal in H/G is the contraction of a prime ideal
inH.

Proof. Let J be an ideal in H/G. There is an ideal K in H that is maxi-
mal among all ideals in H that contract to J. If J is maximal or prime in
H/G, then K has the same property in H [11, p. 259].
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