
ON THE PROPAGATOR EQUATION
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1. We are concerned here with weak and strong solutions of the evolution
equation

(1.1) y’ - A(t)y f(t); y(r) y0

and related abstract equations. A number of observations and theorems will
be given with no particular attempt at a "unified theory" (see [15] for a
more complete discussion). Thus Part 2 is on strong solutions and propaga-
tors G(t, s) solving (1.1) in the form

(1.2) y G(t, r)y0 + G(t, s)f(s) ds,

Part 3 contains some new results on weak solutions, and Part 4 is on some
abstract problems. Some of the results have been announced in [16].

2. We suppose A (t) is an unbounded linear operator in the separable
Hilbert space H with domain Dt D(A (t)) usually dense but this will be
specified in each case. To begin with we suppose the problem (1.1) can
be solved (uniquely) for

yeeI, CH and f(. e F, c L2(H) E

for some linear spaces L and F furthermore we will deal with the finite
interval case r

_ _
T in general since all of the main features of the

problem are exhibited there. We stipulate that all derivatives are in D’(H)
(see [33]) and the terms in (1.1) are in L2(H). First we note a somewhat
stronger form of a lemma proved in [10] which is surely well known but seems
not to have been written down in this form. Let A(t) be accretive i.e.,
Re (A (t)x, x) >_ O, and let y be a unique solution of (1.1) with y0 0 which
we write y K(f). Now

Re (f, K(f) ) Re (y’ -+- Ay, y), dt

(2.1)

2 Y dt + Re (Ay, y) dt >_ 0

(see [3] for integration theory in L(H)). If F is dense and K extends by
continuity to a continuous map /’E-- E then (2.1) extends to all E.
But from (2.1) we can deduce also that

Received July 15, 1966.
Research supported in part by a National Science Foundation grant.

506



ON THE PROPAGATOR EQUATION 507

from which follows the inequality

y Kf I - 2(T T) if < 2cl] f ]].
Consequently K is a bounded operator E-- E defined on a dense F and
hence is extendable.

PROPOSITION 1. Let A(t) be accretive in H and y K(f), f e F, be a
unique solution to (1.1) with yo O. If F is dense in E then K extends by
continuity to a continuous accretive operator E E.

Suppose now (t,s) G(t,s) eC(L(H)) for T S g g T (C means
K-times continuously differentiable functions and L(H) is the space of
bounded linear operators H H with the topology of simple convergence or
strong operator topology). Let

M(f) G(t, s)f(s) ds.

L LThis is well defined for any f e E (observe that e implies e on finite
Cintervals) Since T S t, fixed, is compact and s G(t, s) (L(H))

we know G(t, s) is simply bounded for T S nd hence strongly bounded
by Banach-Steinhaus (see [4]). In fact the same argument applies to G(t, s)
for r s g T by the continuity of (t, s) G(t, s) and thus on this set
[IG(t,s)l

_
C. Hence

< f
and consequently M(f) I[E

_
C21[f lIE and M E --* E is continuous.

This is of course well known (cf. [18]) and combined with Proposition 1
yields the result mentioned above.

PROPOSITION 2. Let

M(f) G(t, s)f(s) ds

Cwith (t, s) --.G(t, s) (Ls(H) for " <_ s <_ <_ T < . Then M is a
bounded linear operator E --> E and if M(f) is the unique solution of 1.1 with
yo 0 for f F dense in E then the kernel G(t, s) determines an accretive
operator M E --> E.

We shall say (cf. [37]) that a family of operators P(t, s) e L(H), T

_
S

__
T, is a propagating family (or simply that P(t, s) is a propagator) if

P(t, t) identity and for r_

_
sg t_ T,

(2.3) P(t, ) P(t, s)P(s, ).

We write the solution of (,1.1) with f 0 now as
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(2.4) y(t) P(t, r)yo.

We shall assume that solutions of (1.1) are unique in this section unless other-
wise stated. Then observe that y’ Le (H) implies y is continuous (cf. [18],
[23]) and uniqueness implies that (2.4) holds for a linear operator P(t,
satisfying (2.3) on its domain of definition (cf. [5]). We shall assume that
the operator K of Proposition 1 is an integral operator with kernel G(t, s),
r _< s _< _< T, but no assumptions about G(t, s) are made unless explicitly
stated below. Thus we consider only cases when the (unique) solution of
(1.1) is given by a recovery formula

(2.5) y(t) P(t, r)y(r) + a(t, s)f(s) ds.

Standard results give P(t, s) G(t, s) but the proofs usually involve con-
tinuity and differentiability properties of G(t, s) or P(t, s). We want to see
what relations persist under minimal hypotheses. A somewhat more abstract
treatment of this was given in [11] with less detail.
We make first a few preliminary observations. First from the continuity

of y follows the continuity of P(t, r)y0 for y0 e L. Next from the rela-
tion y(t) P(t, s)P(s, r)y(r) follows the solvability of (1.1) (with f 0)
for >_ s with initial value y P(s, r)y(r). Consequently

Another useful fact is that if P(t, s) L(H) is a propagator with P(t, s)
and s -- P(t, s) strongly continuous then in fact (t, s) P(t, s) is strongly
continuous. To see this simply write

P(t’, s’) P(t, s)
(2.6)

for some suitable fixed
Under certain natural conditions the P(t, r), defined on L, have an imme-

diate extension by continuity to operators/5(t, r) e L (H). For example if
y’ + A (t)y 0 then following (2.1),

1 (11Y()I1’ Y()ll’) + Re (Ay, y) d 0(2.7)

and if A (t) is accretive we have

y(t)ll P(t, r)y(r)l] <= y(r)ll.

Hence P(t, r)[I -< 1 on L and if I, is dense P(t, r) extends by continuity
as indicated (regarding the density of/ see [27]). If I is dense for all s _> r
then all P (t, s) extend to operators/(t, s) e L(H) and the propagator rela-
tion (2.3) extends by continuity as well. We can state
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PnOPOSITION 3. Suppose P(t, s)II <- C on L with L dense for all
r

_
s

_ _
T. Then P(t, s) extends by continuity to P(t, s) eL(H) and

t---- D( t, s) is strongly continuous.

Proof. We know P(t, s) is strongly continuous on I, dense. The set

Q {/5(t, s)} L(H),

_> s (s fixed), is strongly bounded and hence equicontinuous by Banach-
Steinhaus (see [4]). Moreover on Q the topology of simple convergence is
equivalent to the topology of simple convergence over a dense set I, H.
Hence -o/5(t, s) is strongly continuous since /(t, s) P(t, s) on I,,
Q.E.D.

Now take again the situation of Proposition 3 and look at

s P(t, s)P(s, t)yo

which is constant and hence continuous. We write then for .As > 0

0 D(t, s + As)[P(s + As, r) P(s, r)]y0
(2.8)

+ [/5(t, s + As) P(t, s)]P(s, r)y0.

The first term vanishes as As 0 since s-- P(s, r)yo is continuous and
I[/5(t, s)]l - C. Hence

[P(t, s + As) D(t, s)]y, 0

where y, P(s, r)yo is fixed. If As < 0 the same expression still makes
sense and the same conclusion holds. Using the above remarks we have

COROAa 1. In the situation of Proposition 3 s D(t, s) is strongly
continuous on i, P s, r)I,. If each i, is dense then

(t, s) --+ D(t, s) C(L,(H) ).

Note that i dense implies I, dense of course. Next suppose P(t, r)
is strongly C on L for > with then

OP(t, r)yo/Ot + A(t)P(t, r)y0 0

(i.e., we suppose y is continuous and that the derivative can be taken in the
usual (vector-valued) sense). Since P (t, s)P (s, r) is independent of s we
have for As> 00rAs <0

O= P(t,s + As) [P(s + s’r)- P(s’r) 1As
yo

(2.9) __
[’(t, s W AS)As P(t’ S)l p(s’ r)Y"

Then for s > r the first termSuppose s D(t, s) is strongly continuous.
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tends to D(t, s)Ps(s, r)yo as As - 0 and hence Ds(t, s) exists strongly on ele-
ments y P(s, r) y0 and

D,(t, s)y -D(t, s)p,(s, -)y D(t, s)A(s)P(s, ’)yo D(t, s)A(s)y,.

Consequently

(2.10) [P(t, s) _P(t, s)A(s)]y, O.

PROPOSITION 4. If -- P(t, r) is strongly C on L and P(t, s) is extendable
to P(t, s) L(H) then s --> D(t, s) strongly continuous implies s -+ D(t, s)
is strongly C on P(s, r)I and (2.10) holds.

Now we look again at (2.5) and will show how to relate P(t, 7) and G(t, r)
under very weak hypotheses. We know only that t--> P(t, r) is strongly
continuous on IT and will assume

s -- G(t, s) C(Ls(H)).
Suppose further that on any [s, T], CI(H) n C(D(A(t))) has a set L c I,

Lof initial values dense in H (i.e. assume the values g (s) of functions g e (H),
such that g’ e C(H) and -- A(t)g(t) e C(H) for s < < T, are dense in
H). For information in this direction see e.g., [23]. Put now Y 1 for
r-- 1

_
< , Y 0fort < r-- 1 andt >_ (fixed) withr < < T

Cand y ( , Y)-g with g (H) n C(D(A (t) ), where denotes
restriction to [t, T], and (x) n(nx) with >_ 0, supp c [-1, 1],
and f (x) dx 1. Thus (x) -- (0) (Dirac measure) in say E’(H)
(see [34]). Taking derivatives in say D’(H) on (T, T) we obtain (picking
nsothatsupp(t- ) (r, T))

(2.11)
f, y, + A(t)y,

--n(t #)g(t) -t- (, * Y)-A(t)g(t) + (,r * Y)-g’(t)

since (n * Y)- acts like ( Y) on test functions e D(r, T) (the dis-
continuity of Y at r- 1 is not seen). Writing

d(s) --,,(s ) ds, d(s) (,, * Y)-(s) ds,

f(t, s) G(t, s)g(s), h(t, s) G(t, s)A(s)g(s) -- G(t, s)’(s)

we now fix and write (2.5) with y y as

y,(t) P(t, r)y,(r) + (,,(. )f(t, .)> + (0,(.), h(t, .)>
(2.12)

P(t, r)y(r) --R(t, ),
Let C’[r, t] be the dual of C[r, t] with the topology of uniform convergence on
compact subsets of C[r, t] and think of and , as elements of C’[r, t] (T
and are fixed here). Let (s) -ti() if < <t and (s) 0 if
t < <: T. Then clearly

(,,,, p> ---> (,, p> for be C[r, t]
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and using Banach-Steinhaus (cf. [4]) it follows that in C’[r, t] with the
above topology. Similarly if d(s) ’(s)ds then -- in C’[T, t].
Using Proposition 14 of [6] we conclude that in H,

(u (.), f(t, )) --+ (9(.), f(t, ))
and

(,( ), h(t, )} (o( ), h(t,

(observe that f(t, and h(t, belong to C(H) on [r, t]). Consequently
if < we obtain R, (t, ) ---* R(t, ) in H where

(2.13) R(t, ) -G(t, )g() + G(t, s)(A(s)g(s) + g’(s)) ds

while if > t, R(t, }) has the form

(2.14) R(t, ) a(t, s)(A(s)g(s) + g’(s)) ds.

The functions R, (t, ) and R(t, ) have not been defined for and there
is no need to do so (recall also # r or T).
Thus let be fixed and pick e (r, T), t; then

in H. Similarly
R,(t, ) ---+ R(t, )

y,(t) (,p, Y)"g(t) --> (t)g(t)

in H; this is seen from the expression

,,(t s) ds(2.15) , Y(t) - .,t-/
(t s) ds

which is either zero or one for n large enough (n depending on of course).
In particular

y(r) (,)
and

P(t, -)y,(-) (, Y)-(-)P(t, -)g(-) ---> P(t, -)y(-)

n H (all that is used here about P(t, -) is linearity).
wise limits in (2.12) we obtain for <

Hence taking point-

’(t)g(t) P(t,.r)g(r) G(t, )g()
(2.16)

-t- G(t, s)(Ag(s) + g’(s)) ds

and letting r this yields for > r

(2.17) [P(t, -) G(t, r)]g(r) 0.

Consequently P(t, r) G(t, r) on L and P(t, r) can be extended from L
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to P(t, ) G(t, ); note however that if L # L then G(t, -) may not be
an extension of P(t, r) under this argument. Hence we assume P(t, ) on
L is extendable by continuity to H, ia which case G(t, ) must extend P(t, )
when I, is dense. Then the propagator relation (2.3) will extend by conti-
nuity to G(t, ).

THEOREM 1. Let (2.5) give the unique solution of (1.1) with

Cs -- G(t, s) (L,(H) ).

Assume C H n C D(A has a dense set of initial alues 8 c Ia on any
interval [s, T] for s >_ and that P(t, ) is extendable by continuity. Then
P(t, s) G(t, s) on and G(t, ) is a propagator.

The results of [11] yield a similar conclusion under a hypothesis

ID(A (t)) Do c Ia
for all s (instead of the hypothesis on ?) and a substantially stronger con-
tinuity assumption on G(., (which could however be weakened to that of
the present paper). For other abstract results involving a recovery formula
(2.5) and general inversion formulas see [12], [13], [14], [29], [40].

3. In this section we will show that certain kinds of weak solutions of
evolution equations are really strong solutions of another "intrinsic" differen-
tial problem and this leads to a new kind of uniqueness theorem for weak
solutions. Some of these results were announced in [16] and we furnish de-
tails and some new material here. Let H be separable and V(t) c H be a
Lebesgue measurable family of Hilbert spaces (cf. [17]) with V(t) H
algebraically and topologically and V(t) dense in H. Let W f V(t) dr,
r _< <_ T < , with scalar product

(u, v)) ((u(t), v(t)))t dr.

For each e [v, T] let a(t, .,. be a continuous sesquilinear form on
V(t) X V(t) with ?i(t) e L V(t)) the associated continuous linear operator
defined by a(t, x, y) ((I(t)x, y)), for x, y V(t). Suppose the family
I(.) is measurable (cf. [17]) and that a(t, u, v) -< M u ]ltl] v I1 with M
independent of (u, v V(t)). Then if u(.), v(.) e W the function

--* a(t, u(t), v(t))
is summable (cf. [23], [24]).
the weak problem

We will consider functions u e W satisfying

(3.1)
(u, v’) dt + a( t, u, v) dt + X fr (u, v) dt

(f, v) dt + (uo, v(r))
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fora]lveWwithv(T) 0andv’eL2(H). Here )R and
our hypotheses later imply W c L2(H). Derivatives are taken ia )’(H) on
(, T);f L2(H) and u0 e H are supposed given. One can assume }, is an
arbitrarily large positive real number since a change of variables v we
can always be effected without changing the problem (cf. [23], [7], [8]).
Supposing

Re a(t, u, u) -t-- ), u 12 >_ c u ]lt for u e V(t).

Lions proves existence of solutions of (3.1) in [23] and uniqueness theorems
are proved under more hypotheses by Lions in [23], [24]; related theorems
are proved in :Kato-Tanabe [19] and Baiocchi [1], [2]. In case V(t) V
is constant with W L2(V) the hypotheses already indicated are enough
for both existence and uniqueness (see Lions [23]); other proofs can be ob-
tained by specializing Browder’s more general non-linear results [7], [8] to
the linear case and similar theorems under various hypotheses can be found
in [18], [20], [25], [39], [31], [38], [26] and in many other articles too numerous
to list here.
Now given a subhilbert space V(t) H as above one can describe it as

the domain of a closed densely defined positive definite self adjoint operator
Bin(t) (called standard operator) where BII2(t) maps V(t) onto H with a
continuous inverse. In fact B(t) OL(t) -1 where 0 H’ -- H is the canon-
ical antiisomorphisms and L(t) is the Schwartz antikernel of V(t) relative to
H (see [13], [35], [36]). The Hi]bert structure of V(t) can then be described
by

(u, v) ) (B(t)u, B(t)v)
and if for example V(t) D(E(t)) has the graph Hilbert structure of a
closed densely defined operator E(t) then B(t) 1 + E*(t)E(t) (see [13]).
Next we observe that if x H, y V(t) then y -- (x, y)H determines an anti-
linear form on V(t) which we write ((J(t)x, y))t where J(t) L(H, V(t))
(see [23]). Using the standard operator BI2(t) we obtain

(Bl(t)J(t)x, B12(t)y) (x, y)

and consequently J(t) B(t)- since V(t) is dense where we think now of
J(t) e L(H). Now (3.1) can be rewritten in the form

(3.2) (u, v’) dt (, v) )t dt + ((J(r)u0, v(r))

where (t) J(t)f(t) ),J(t)u(t) ?I(t)u(t) is a function. It is shown
in [23] that in case V(t) V is constant with W L2(V) then the problem
of solving (3.1) or (3.2) is reduced to the "strong" problem of finding a
function u e L2(--, T; V), u 0 (almost everywhere) for < r, with

(3.3) (Ju) - i(r) (R) Juodt
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where d/dt is taken in D’(V) on (- , T) and J refers to V (see also [7],
[8] for related constructions). Thus even though u’(’ in D’(H) on (r, T))
is not a function in general it is true that (Ju)’ (B-lu) (’ in D’(V) on
(- o, T)) is a function for > r determined by (3.3). A related result
with "measurable" variation of domain permitted but limited by V c V(t) c
K H with V and K fixed Hilbert spaces, dense in H, V and V(t) being
closed subspaces of K, has been obtained by Baiocchi [1]. Again for V con-
stant, Lions in [26] shows differentiability in a sense akin to the development
which follows, by showing u’ L2(r, T;V’) with in D’(V’) (note that
(B-I/2x, B/y) (x, y) x, y) where ( denotes V’ V conjugate
linear duality).

We will give a new formulation for variable domains of this kind of relation
between weak and strong problems by using the intrinsic characterization of
V(t) in termsof B2(t). Differentiability of the map -- B-2(t) can beinter-
preted as smoothness in the variation of V(t) and the strong equation will
contain an additional term measuring the way in which the scalar product
changes. We shall assume that B(t)v(t) is H measurable for the
measurable vectors v of our family and this amounts to assuming

LW {B-I( )x( x e (r, T;H)};

the conditions on I become simply 9J(. )u(. e W for u e W with (t)II -< M
(see [15]). Thus let u be a solution of (3.1) or (3.2) and extend u for < r

to afunction 0fort < r, ufor r_< t_< T. Similarly let] f
for r <_ _< Tand] 0fort < r. LetV(t) V(r) fort_< randthus

r) for _< r. Then (3.2) implies ( J] J
where J(t) J(r) for <_ r and (t) 0 for < r).

(3.4) (, v’) dt (, v) )t dt + (J(r)Uo, v(r)))

for all v e lz with v’ e L( , T; H) and v(T) 0 where

nW {B-/( )x( x e (-, T;H)}
B-L2(- o, T; H).

Let now

Dw- {(t) B-(t)p(t) with D(H) on (-, T)}
and assume B-I( is piecewise strongly C in the sense that for x e H and

>_ r, (B-(t)x) is continuous and equals -(t)x for some strongly con-
tinuous operator /-/(t) e L(H). Then defining /-l(t) 0 for < r
(recall B-(t) is constant for _< r) we have left and right limits strongly
at r for -(t). Moreover by Banach-Steinhaus B-/(t) - Mfor - t_ T (cf. [4], [23]) andCeDw-will be admissible as a vin

+(3.4) (’ /-1/2
__
B-/, for-t r with appropriate limits as -- r

or r-). Moreover W c L2(r, T; H) since (B-/(.)x(.), h)
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(x(.), B-l/"( )h) is measurable with B-I/2(t)x(t)l <_ M lx(t)l (cf. [3], [15]);
similarly 1 c L2( c, T; H).

f_ B-/t, ’ dt f(3.5)

Thus putting o in (3.4) one has

J-/t, dt

(B1/, ), dt -4- (B-/(r)uo, ()),

(recall J B- and note that /-1/2 is self adjoint since (nB-/x, y)
x,AB-/y where AB-1/ B-/2 t’ B-1/2 ). But (3.5) means that

where ( denotes D(H) D’(H) conjugate linear duality on , T).
Consequently we have, writing out the B/ term, an equation in D(H) on
(--, T),

(3.6)
B-/] + 6(T) @ B-/:(7)Uo.

In particular for > r we see that (B-1/z) (B-/u) is a function in
L(r, T; H). This implies, by an elementary distribution argument, that
B-/u is in fact continuous for T (cf. [15], [28]) and from (3.6) we must
have also (B-/Zu)( r) B-/( T)Uo

THEOREM 2. Let (t) e L(V(t) be a measurable family (as above) asso-
ciated with the sesquilinear forms a(t, ,. on V(t) X V(t) where

for u, v e V with M constant T T < ). Let B1/2 be the stand-
ard operator for V(t) H, H separable, and assume that (B-/( )x) is C for
x e H with derivative -/(t)x where -/(t) e L(H) is strongly continuous.
Then any solution u e W B-/L:(r, T; H) of the wea problem (3.1) satisfies
the strong problem (in D’(H) on (r, T) with terms in L(r, T; H)

(B-i/2u), -/2u + B-/2u + B/2u B-i/2f
(3.7)

with (B-/u)(r) B-/(r)Uo.
This includes the result of [16] as a special case. We remark that u(.

is not asserted to be continuous. It is interesting to note the relation of the
smoothness possessed by B-I/:( with a trace theorem of Lions [23]. Indeed
one can think of W as L:(r, T; D(B/(t))) and recall (B1/(t)x, x) >_ Ix
for x e V(t) with

*)1 < c [,x

for x e H (by Banach-Steinhaus since /-/(.) is strongly continuous).
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Even though c may not be less than 2, which is part of hypothesis (1.3) of
[23, Theorem 4.1, p. 35], the first part of this theorem still remains valid and
hence if w e W with w’e L2(r, T; H) it follows that w(r) makes sense and
belongs to D(BI4( r) Of course one knows that w(r) makes sense simply
from w’ L(r, T; H) (cf. [15], [28]). Thus in particular

(B-lu)(r) D(BI/4(r))
can be concluded automatically; this however is weaker than our result
which uses the additional information contained in (3.6) and yields

(B-lu)(r) B-l(r)u0 D(BI(r))
(see also [1], [2]).

Remark 1. Suppose a(t, u, v) (E(t)u, E*(t)v) where E(t) A(t)1/

with A (t) for example a family of closed densely defined maximal accretive
operators (see [21] for fractional powers). This arises in the weak problem
associated with u’ A(t)u f. If, for example,

V(t) D(A(t) c D(A/(t)*)

with the graph Hilbert structure of A1/2(t) on V(t) and if say

E*(t)x

_
C(IE(t)x + Ix )

for x e V(t) then
a<t, u, v)

_
c u I1’1[ v II

Now B(t) 1 + E*(t)E(t) and one can write

a( t, u, v) Eu, E’v) Eu, E*B-1/B1/2v
But

K(t) E*(t)B-n(t) e L(H)

by lemm in [22] (observe D(Ba/(t)) D(E(t)) c D(E*(t)) nd E*(t)
is closed). Hence one cn write

a( t, u, v) B/B-/K*Eu, Bv
nd

(t) B-/(t)K*(t)E(t).
Hence (3.7) becomes

(3.8) (B-mu) -l/u "4- ),B-1/2u + K’Ainu B-1/2f.
Of course when u(t) D(A(t)) the K*AI/2u Bl/1u term becomes simply
B-I/Au (i.e., I B-1A on D(A) which follows immediately from writing
out (Au, v) a(t, u, v) Iu, v) (Bm?iu, Bi/2v) for u e D(A ), v e

D(B1)).
Next we show that knowing how to write a weak solution of (3.1) as a

strong solution of (3.7) leads to a new type of "intrinsic" uniqueness theorem
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for weak solutions. Related theorems can be found in [23], [24], [19], [1], [15],
[16a], (see also Remark 3 for this). Setting f 0 in (3.7) we take scalar
products with B-1/2u to obtain

(3.9)
1 d B-1/u B_Zui B-I/u)t [ + )t[ + Re (B/?lu,

Re t)-u, B-u 0

We recall that X may be chosen to be arbitrarily large and thus we can ex-
ploit an estimate of the form

(3.10) IRe (-u, B-lu)
A natural hypothesis is therefore to assume that -/(t)B(t), defined on
V(t), is extendable by continuity to a bounded operator on H (with a uni-
form bound; of c for r _< _< T), that this would imply (3.10) follows imme-
diately upon writing

-/u, B-u) -2BB-/u, B-u).
More simply one could merely require that I/-lu _< c lB-u I. Further
let us assume that

(3.11) :Re u, u) >_ -, B-u s.
Observe that this is not directly an assumption of monontonicity in the usual
sense since Re a(t, u, u) Re (BIu, B1/2u) (see also Remarks 2 and 3
below). Now with these assumptions we integrate (3.9) to obtain (setting
(B-u)(r) O)

(3.12) 0

_
1/2]B-1/u [:(T) + (x c )[[ B-+u 0

where denotes the L"(r, T; H) norm and ), is now taken so that
> c -t- . Consequently B-/u 0 and we have

THEOREM 3. Let the hypotheses of Theorem 2 hold and assume

Re u, u) >_ -, B-/2u

for u e V( t). Let either -(t)B( t) Z(t) be extendable by continuity from
V(t) to an operator 2(t) L(H) with 2(t) _< c on [, T] or let more simply

Then solutions of (3.1) are unique. Similarly [-/2u <- cl u / B-i/:u
with Re (u, u) > a lu B-u"r gives the same result (and is "natural"
by Remar]c 2 below).

Remark 2. Take again the situation of Remark 1.
says that for u D(B)

Then condition (3.11)

(3.13) Re (B-/K*Au, u) Re (A1/u, A*I/2B-lu) __. --’’ B-112u 12
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since K A*I/2B-1/2. Suppose B-/2 commutes with A/2 and A*/2

this becomes
Re A/2x, A*/2x >_ -,), x ]2

for x B-2u e D(B) D(A*AI2). Recalling that

D(A1/2) C: D(A*/2) with A*X/2x 12 <__ c(I A/2x 12 + Ix 12)

;then

we will have
Re (Ai/x, A*/x) _> -, x 12

D(A/ 12for x e D(B) if D(A) is a core for A/2 and Re (Ay, y) >_ -, Y
for y e D(A) (D(A) a core--or determining set--for A/2 means An is the
closure of its restriction to D(A)). Thus there is a natural association in
the commutative case indicated between (3.11) and standard monotonicity
hypotheses for the strong problem (1.1) (cf. [23]) since it is known, for ex-
ample, that D(A(t)) is a core for D(A"(t)), 0 ,< a < 1, when A(t) is a
closed densely defined maximal accretive operator (cf. [21]). Now in general
B-2 will not commute as above so we try to estimate the deviation as iollows"

Re (A/u, A*/2B-u) Re (A/2B-/-u, A*I/2B-1/2u)
+ Re (A/u, Pu) + Re (Qu, A*/2B-/2u)(3.14)

where

But by [22], A*/2B-/2 eL(H), A*B- e L(H), and if B-A/ is extendable
by continuity from D(B1/2) to H as a bounded operator then Q extends to
( e L(H) and A*I2P e L(H). Hence

(3.15) Re (A I/u, Pu) <- (u, A*Z2Pu) <- c, u ,
(3.16) IRe (Qu, A*/B-/2u) <- [0u[[ A*/2B-/U <_ c2 u .
In this case we require a somewhat stronger estimate; for example lt
(3.17) Re (A/2x, A*l/2x)
for x e D(B1/2). Then from (3.14)

(3.18) Re (A/u, A*I/B-u)

where c-t-c2. Thus if a >_ we again obtain (3.13). Condition
(3.17) is in turn a standard type monotonicity condition for the weak prob-
lem (3.1) (cf. [23]).

Remark 3. The uniqueness result of Lions [24] can be stated as follows.
One assumes K H is a dense separable Hilbert space with continuous
injection and that V(t) K is a closed subspace of K for e (-, T]
dense in H. The sesquilinear forms a(t, .,. on K )< K are given for
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r

_ _
T with -- a(t, x, y) measurable and bounded and

Re a(t, u, u) -t- lu >_ a 11 u 11 for u e V(t).

If P(t) is the orthogonal proiection P(t) K -- V(t) it is assumed that

C--+ P(t) (L(K) ),

for u e K (1/At)(AP)u--+ P(t)u weakly in K with t-+ P’(t) weakly con-
tinuous in K, and P’(t) <_ c. Then for W L(-, T; V(t)) there is
uniqueness in problem (3.1).
Now let us compare a hypothesis of the form (3.11) with a condition

(u v(t)

(3.19) Re (B1/2u, B/u) >_ a B/2u u

indicated in (3.17) and in the theorem just cited. Thus consider

(3.20) Re (9.Iu, u) Re (Bi/2B-i/2u, U) nt- Re 9 B:9.IB-)u, u)

The second term is of course

a(t, B-/:u, B-/u) (B/B-/u, B/B-:u)
and if (3.19) holds with B./B-/ R extendable by continuity to
[ e L(H) (i.e., if is extendable) satisfying R -< a then (3.11) holds
with , (verification immediate). We recall that in Remark 1,
B-/K*A and this gives a good idea of what extendabilityof to e L(H)
will involve (see also [26]). On the other hand it is evident that our hypothe-
ses on B-i](t) of strong differentiability can be weakened somewhat to re-
semble those on P(t) above but we omit details (see [15], [163]). Thus the
smoothness requirements on the way V(t) changes in Lions theorem and in
Theorem 3 with weak differentiability would be apparently of the same "order
of magnitude". We require in addition a relation between /}-/(t) and
B-(t) whereas Lions requires V(t) K as a closed subspace; thus our
theorem seems to allow more freedom in the "nature" of V(t) but this re-
mains to be clarified.
A different kind of uniqueness theorem is proved by Baiocchi in [1] where

the smoothness conditions on V(t) are apparently weakened in some respects
to conditions of the following form. It is assumed that V V(t) K
with V and V(t) closed subspaces of K, V dense in H (i.e. V H H’ V
and V’ K’ as a closed subspace), V(t) depends measurably on in K (i.e.
-+ P(t)x is measurable with values i K for x e K), H is the interpolation

space [K, V’]/, and the space of test functions of the type

v’ Lv eL( , ;V(t)), (-, ;H)

is to be dense in L(-, ;V(t))n H’/(H)and
HI(H [H(H), H(H)],/
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(HK(H) ={ueL2(-oo, ;H),uCaeL2(-, ;H) fors=0,...,k}).
The other hypotheses are substantially the same as those of [24] mentioned
above.

4. We give in this section some further results toward the solution of the
problem Su Lu Au f with L and A closed densely defined linear
operators in a Hilbert space E. The model problem is (1.1) (with r 0 for
convenience) where L Lo d/dt or L L0 + defined on

D(L) D(Lo) {u e E L(O, T; H), u’ L(H), u(O) 0}

or alternatively a globalized version in L(0, ; H), dg exp (-2,t) dr,
which involves D(L)c D(L*) and is consequently more manageable in
certain respects (cf. [23], [14], [7]); all derivatives are in D’(H). We
consider here the finite interval case and remark that it is easy to see that L0
is closed, densely defined, and maximal accretive (accretive monotone).
First observe that

(4.1) Re (Lou, u)s Re (u’, u) dt lull(T) >_ O.

Next recall that a densely defined L0 is maximal accretive if it is accretive
and L0 ), maps onto E for X > 0 (see [30]). Hence L0 is evidently maxi-
mal accretive. Clearly L -d/dt with

D(L*o {u e E, u’ e E, u( T) 0}

and by [30] L0* is also maximal accretive since it is accretive (Re (Lu, u)
1/21u Is(0)). As a model for A we suppose A defined by a suitable family
A (t) of operators in H with

D(A) {u e E, u(t) e D(A(t)) almost everywhere, A(. )u(. e E}.

If the A(t) are accretive in H then A is accretive in E L2(0, T; H).
Since we can always add a term Ay to 1.1 as indicated earlier) for problems
based on this model we can always take L strongly monotone (e.g. L L0 +
with Re (Lu, u) >_ u I]5). Now there are several immediate (unsolved)
problems.

Problem 1. Let L and A be closed, densely defined, strongly monotone
operators in a Hilbert space E. When is L - A S closed and when does
R()

Some answers to this are given in [14] and we will generalize those results
here and give some variations (see also [17a]). A first comment is that S is
not always onto or closed (cf. [14]) and thus some additional hypotheses are
always necessary. The situation of [14] involved operators L’(R) 1 and
1 (R) A in a certain Hilbert completion E H (R) F of two Hilbert spaces
H and F and led to the case of commuting operators L-1 and A-1 in E. Note
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also for example that L L0-t- is 1-1 onto with continuous inverse in
our model above. We give first a generalization of Theorem 1 of [14] (part
II) for this commutative case.

TEOR.M 4. Let L and A be strongly monotone linear operators in a Hilbert
space E mapping onto E, with L-1 and A-1 permutable. Then R(L - A) is
dense.

Proof. LetxaR(L -A) R(S) and set

y L-IA-Ix A-L-x D(S) D(L)D(A).

Then for w A-x, z L-Xx we have, since y e D(S)

0 Re (L + A)L-XA-Xx, x)

(4.2) Re (A-x, x) + Re (i-x, x)

Re(w, Aw) +Re(z, Lz) c ]w]2+c z
Consequentlyw z 0 and x 0, Q. E. D.

Coo 1. Let L be strongly mote andA motewith L- and A-defined E and permutable. Then R(L + A) is dense.

Proof. As in Theorem 4 we get z 0 and hence x 0, Q. E. D.
Theorem 2 of [14] (part II) can also be generalized in various ways and we

will give two versions. The basic argument was due to Lions [23] but we
modified this by exploiting monotonicity ia [14] (and in the present paper we
again use monotonicity in one version of the results). The main point of
this section however is to reveal the operator theoretical nature of the hypothe-
ses and results both the Lions version and the version based
tonicity, and moreover to indicate the relations between the two versions.
First we sketch the situation when coutativity prevails as in [14]. Let
A A + A with A1 self adjoint onto E, D(A) D(A) D(A), and
lAu] [Au[] for ueD(A) with < 1. Note that

and

Following Lions [23] let F D(A) D(A) with the graph Hilbert struc-
ture of say A1 and set

(e F, * Aloe O(/*)}
with the induced Hilbert structure. Note that will not be required to be
dense in F nor complete in the following. Set then

(4.a) E(u, (u, + (Au,

(4.4) (f,
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where f E, u e F, q 4). Clearly E(., .) is a sesquilinear form on F X 4)

with u E(u, ) :F C continuous. Note that At must be 1-1 with
continuous inverse A-1 and u -< c A1 u (cf. [9]); consequently con-
vergence in the graph topology of A1 on F for u, is equivalent to the con-
vergence of At u II. We have not assumed At strongly monotone although
that is a good way to realize our hypotheses. Similarly --. P(e) 4) --+ C
is a continuous semi-linear form since 4) has the topology of F. As in [23]
we set X Re (A, e*) and Y Re (e, L’e*) and then

(4.5) X IIAtll -t- Re (A,At) >_ (1 )llAtll.
We suppose now L* is monotone nd AL LA, from which follows

A-iL* L* A- and A-inL* L* A-l

(see [32] and assume A1 positive). Then

(4.6) Y Re (A-le*, L’e*) Re (A-l/2e*, L*AI2*) >_ O.

Consequently Re E(e, e) >_ (1 )11 At q >_ c I1 and by the Lions
projection theorem (cf. [23, Chap. 3]) there exists u e F such that for all
q e4), E(u, ) P(q). Hence for any D(L*) set A- and we
have/(u, ) P() which means

(4.7) (u, L*b) + (Au, ) (f, ).

Consequently u e D(L) with Lu f Au since L is closed.

THEOREM 5. Let A and L be closed densely defined linear operators in a Hil-
bert space E with A At A A positive self adjoint onto (e.g. At strongly
monotone),

D(A D(At) D(A) and A u <- At u

for u eD(A1)where < 1 If L* is monotone and A-L LA then
S L +Aisonto.

Note that neither A nor L need be monotone in this theorem. Next we
give a variation on this for the noncommutative case based on the model
E L2(H), A {A(t)} with

D(A) {u E, u(t) D(A (t)) almost everywhere, A (.)u(. e E}

(we occasionally do not distinguish between functions and equivalence
classes when the meaning is clear). If A (t) A (t) + A(t) with At(t)
and A(t) as in Theorem 5 for each then A A + A as in Theorem 5
but A-1 and L will not commute in general. In this context F D(A.)
with norm given by

T

[[ul[ f (lul + At(t)u(t)l) dt
,0

and 4) c F involves functions e F such that *(. At(.)(. e D(L*).
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The previous constructions can be repeated except that Y must be handled
differently. We record here the following formula (cf. [9]), where L L0
and L* -d/dt with zero boundary condition at T.

T

2Y 2 Re f (Al(t)q*(t), L*q*(t))s dt

(4.8) Alq* * dt q- A- * dt

T

(A-I*, *)(0) q- f0 ((A/-)’*’ *) dr.

The first term is positive but the second requires additional hypotheses on
(A-) so as to lead to an eventual estimate Re E(, ) >_ c I1 (cf. [9]).
Such hypotheses modeled on [23] will be given in an abstract form below
which shows their real content from the point of view of functional analysis.
Also the role of monotonicity in this kind of existence theory will be disclosed,
using somewhat different hypotheses and the two versions of an existence
theorem will be related.
As usual we can add a term ku with arbitrarily large / to the equation

Su f when L arises from differentiation and it is this kind of problem
which we shall mainly consider in order to concentrate on the abstract nature
of the hypothesis of differentiability of Al(t)-. Thus let again L and A
be closed densely defined linear operators in a Hilbert space E with
A A1 + As, D(A) D(AI) c D(A2), A self adjoint onto (e.g. self
adjoint strongly monotone--observe that lower semi-bounded A will ob-
viously lead to an equivalent theory by adding a /u term) and consider
(S-t-k)u =f or (L +A +/c)u =f. Let F D(A1) again with graph
Hilbert structure and let be as before. Define X and Y as before and as-
sume now for < 1 and u e D(A),

(4.9) As u - A u -t- C A2u I[.
Then setting X X W/(, *) we estimate the term (As , A) by the
Schwartz inequality, using (4.9), and exploit the relation

1 bab

_
-(a q-- {l/v)

with a A ]], b A to obtain

(4.10) X >_ 1- - IIAl[[sq- /_ ]is.

Now let us give an abstract version of (4.8).
written formally as (/q*, *) where

The last term in (4.8) can be

(4.11)

Thus corresponds to (A-)’ and we are saying in particular that D(L*)



implies Alb e D(L*) in our model problem. Then (4.8) becomes, setting

(4.12) 2Y (A-I, L*) + (L*, A-) Z-{- (/, )
and Z (A, L*) (L*A, ). The condition Z 0 is therefore
somewhat "peculiar" as an operational hypothesis. Note however that if
eD(L)nD(L*) and L*=-L then Z 0. Now the abstract hy-

potheses modeled on [23] would be Z 0 and

(4.13) (, ) 2 ] + 2 AU ][;
then edently

(4.14) Y -a A ]] A ]
and combining this with (4.10) and setting

E(, ) E(, ) + k(, A ),

we obtuin Re E(, ) provided a + < I and k c/2 +
(obsee that is arbitrary). If a + # 1 this can always be achieved
since k is arbitral. Then by the Lions projection theorem again (see [23])
we have

TEOnEM 6. Assume L and A are closed densely defined linear operators
in a Hilbert space E with A A + A ,D A c D A A1 positive, self
adjoint onto, and suppose b D(L*) implies Ab D(L*). Let (4.9) and
(4.13) hold with Z >_ 0 and - < 1. Then for suitably large It, S - k
is onto.

It is natural to examine what role monotonicity can play in the noncom-
muting case (in view of Theorem 5). Let us estimate X1 as in (4.10) but
try to replace (4.13) and the condition Z _> 0 by something involving the
more natural hypothesis of monotonicity. Assume again that A is positive
explicitly (since we want to use A,/ again) and write formally for

Y Re (A-u., A-/L*)
(4.15)

Re (A/2, L*A-/2) -t- Re (A-/,, Rh)
where

(4.16) R ATI/L* L*A

corresponds to (AI/2)! (cf. (4.11)). It is only necessary here to assume that
D(L*) implies A-@ D(L*) which is reasonable (and true in the model

problem). Then if L* is monotone we can assume

(4.17) Re (A7, Re) >_ -c ATt/  
which will imply (4.14).
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THEOREM 7. Assume L and A are closed densely defined linear operators in a
Hilbert space E with A A A, D(A) D(A) D(A), A self-
adjoint positive onto, and suppose b D(L*) implies A e D(L*). Let
(4.9) and (4.17) hold with L* monotone and a < 1. Then for suitably
large k, S is to.

One kind of connection between these last two theorems is given by the
formula

RA-U(4.18) AR+
Putting this in (4.13) one would have on the left a term

R, A/ + RAI/2, )
which is not equal to 2 Re (A, R) in general unless R R*. Thus a
direct comparison of the hypotheses is not apparent. In the model problem
of course (4.15) simply reads

T

-Re [ (A/, AI/’) dt

(4.19)
T T

-Re (A’, (A/)’) dt + Re (a;’, (AT’)’)dt.

The hypotheses (4.17) with a arbitrarily small can be realized for example if

(4,2o0 c A’ + c II,
Indeed in this event

(4.2)
II A’ ( (/v)II AV )

and a c v/2 can be made as small as desired.

Coao 1. Let the first sentence of Theorem 7 5e true and suppose (4.9)
holds with < , (4.20) holds, and L* is motone. Then for suitably large

We observe that a hypothesis of the form

A’ c

does ot imply (4.13) with small a uless c is itself sall. Thus the situa-
tion of Corollary 1 to Theorem 6 seems prticularly nice.
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