
ON THE COHOMOLOGY OF THE MOD-2 STEENROD ALGEBRA AND
THE NON-EXISTENCE OF ELEMENTS OF HOPF INVARIANT ONE

BY

JOHI S. P. 6

A very handy E term of the Adams spectral sequence for the sphere spec-
trum is obtained in [5]. Here we shall use it to calculate the cohomology of the
mod-2 Steenrod algebra Hs’t(A) in the range s _< 3 and find some relations
among the hi’s and c.’s in the range s <_ 4. The structure of H3’t(A)and the
relations h0 h 0 for i _> 4 yield the information d2hi ho hi_lfori_> 4
by an easy induction starting from dh4 ho h. Hence a new proof for the
non-existence of the elements of Hopf invariant one is obtained.

1. The structure of (E, d)
We recall from [5] that the structure of (E1, d) is given by the following

THEOREM 1.1 [5]. (i) (E, d1) is a graded associated differential algebra
(with unit) over Zs with

(ii) a generator ) (of degree i) for every integer i

_
0

(iii) for every m 1 and n >_ 0 a relation

(1.2),m +’=n (i + J) -+’ )-+"

(iv) d is given by

(1.3) ( )__, n>2.dlxn_l i - j
i+jn j

Given a sequence of non-negative integers I (n, ..., nr), we call r
the length, -=1 n the degree, n the leading integer and nr the ending integer
of I. I is said to be admissible if 2n _> n+ for i _< i _< r 1. Let) stand
for ), ), then the additive structure of E is given by the following

THEOREM 1.4 [5]. The set consisting of the unit and with I admissible
forms a vector basis for E.

In the sequel we shall always express elements in E in admissible forms,
i.e., in terms of the above basis. Formulas (1.2) and (1.3) are written in
symmetric forms. For the convenience of computation, it would be better
to derive admissible expressions for them.

1.5. The mod-2 binomial relations generated by + 0 for i >_ O.

PROPOSiTiON 1.5.1. There is a derivation D" E -- E sending to)+
fori >_ O.
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Proof. Let /1 be the free graded associated algebra generated by
(of degree i), for i _> 0, and p /1

__
E be the algebra homomorphism given

by p(,) X, for i _> 0. Clearly there is a derivation D /1 -/ sending
to + for i _> 0. It is easy to verify that the kernel of p is closed under the

action of/) and/) induces a derivation D with the desired property.

PROPOSITION 1.5.2. (iii) is equivalent to Dt(kX2+I) 0 for t, i >_ O.

Proof. XX2+ 0 is (1.2)0,+ and an easy induction shows that
Dt(X+) 0 is (1.2)t,+.

Let :k X+I+ j0a_j,+_++ be expressed in admissible form,
i.e., a_., 1 or 0 and a_.,. 0 for 2(i + n j) < 2i 1 j. Applying
D on both sides, we get the following recursive formula.

PROPOSITION 1.5.3.

a,, + a,_,+ + a-1,_1 a,+ for i >_ 1,

a_,o + a,,o 0 for n >_ 2

a,o + a_, a,,x for n

_
2

a0,0 0, a,0 1, a, 0 (mod 2).

XY. Then Proposition 1.5.3 yields the iden-Set F(X, Y) .,_0 a,.
tityF(X, Y) F(X, Y)(X Y + XY) + X + XY (mod 2). Hence

F(X, Y) Z/(1 (1 + Y)X) Z + _,:-_Z+(1 Y) (mod2)

and

n 1) (rood 2)an, i

THEOnEM 1.5.4.

++,= (n--J-- I)X+,-X,+I+;.
_o 2

the binomial coecients are, of course, taken rood 2 and with the usual conven-
tion () O for u v.

1.6. We recM1 from (5.7) that the spectrM sequence is bigrded such that
E, is the subgroup of E generated by k with length I r nd deg I n,
deg d (m, -1). Furthermore E nd H*(A) re linked through

H,+’(A)TEOEM 1.6.1 [5] E,
Given ny deriwtion d of E with deg (1, -1), we write
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in admissible form. Comparing the coefficients of the admissible terms
k(_l, in d(X k2+1) 0, we have

PROPOSITION 1.6.2.

(n-- l --J) b,,o for j > O.(j- 1)b-.,.
j

Similarly compare the coefficients of the admissible terms k(,, in
d(X,),2+) d(k,+ k+), we get

PROPOSITION 1.6.3. b._. b2_2.2’+.

Equate the coefficients of the admissible term X+k kl in

we obtain the identity b,,0 b+,0.

PROPOSITION 1.6.4.

b-i,i j + 1 b.,o.

b-’, b2n-21,2’+2 2j -]- 2

=(n--j--j+l 1) b’
2n-- 2j- 2)2j + 2 b2,0

(:mod 2).

THEOREM 1.6.5.
and

d is the only nontrivial derivation of E with deg (1, -1)

dX,= o(n-J- 1)j -t- 1 X--I X.

Proof. From (!.3), we have a.o 1 for d.
Remark. (1.5.4) and (1.6.5) are the admissible versions of (1.2) and (1.3)

respectively.

1.7. An importan endomorphism 0 of E.
THEOREM 1.7.1. There is a unique differential algebra endomorphism 0 of

E which sends X to X2+t for j >_ O.

Proof. Let 0 E -- E be defined by

0X X+
where2I+l= (2nW1,...,2n,+l) ifI= (n,...,n). Wehaveto
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verify that 0 is well defined and satisfies the required condition. It suffices to
show that 0 is compatible with the defining relations and commutes with d1.

O()ki)k2id-nd-1)’--2iq-l4iq-2n+3"--
j_O (2n--13.

(2n-- l--2U)2uo ++l-+a+

Hence 0 is well defined. To see d 0 0 d, we need only to check this on
generators of E.

0 (2n 2j--1)
Coaoav 1.7.2. 0 induces an endomorphism 0 H*(A) H*(A) which

sends h, c, d, to h c+ d+ ....
Corollary 1.72 tells us that relations, which exist at low degrees, are stabi-

lized by 0. For example, if we know h0 h 0, then h h+ 0 follows
immediutely for i 0.

PaOOSITION 1.7.3. 0 E E is monic.

Proof. If I is admissible, so is 2I + 1. Thus that 0 is monic is immediate.
1.8. In this subsection, we look more deeply into the multiplicative struc-

ture of E and try to figure out some special properties concerning cycles
of E1. For brevity, we shall even use I fork when no confusion is introduced.

LEMMA 1.8.1. Let (n n m) be a sequence such that (n n) is
admissible and n + + n + r + n m, n n ; then in admissible form
the leading integers are n and g n, unless (n, ..., n, m) O, i.e.,

Proof. This is obviously true for r 1 and m 0. Thus we make induc-
tion on r, m. Assume 2n W 1 ( m, and write

(n m) (m 2n 2 J) (m n l j, 2n + l + j)
_0 j

Sincen+ +n,+ (r- 1) +n m- (n+ 1+ j), n nandby
induction on r, the leading integers of the admissible form of

(nl n_i m n 1 j)
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are_> nland _< n, or (nl, ...,nr_,ra nr- 1 -j) 0. Note that
2n, + 1 + j is always smaller than m. Again by induction on m, the leading
integers of the admissible expression of

(n, n,_, m nr 1 j, 2n -b 1 - j)

are_> nand

_
nor (nl, nr_,m- n,- 1 -j, 2nr-b 1 -j) 0.

However we have the identity

(n ,n,,m)

=,(2m--2n"--2--J)(nl,... n.- m--n.--j--12n,.W1Wj)
>o J

thus the Lemma follows immediately.

POPOSTON 1.8.2. Let (nl, n, ..., nr+) be any sequence admissible
or not, and e n+ 2n, 1 <_ i

_
r. Then in the admissible form the

leading integers are )_ n and

_
max (n + _-1 (e 1); s 0, 1, r)

unless n n2 n,+) O.

Proof. We make induction on r. First express (n, n) in admissible
form, then apply the preceding lemma.

PROPOSITION 1.8.3. Let (n, ..., n,) be an admissible sequence; then
(d ),)), ),, has leading integers

_
nl 1 in its admissible form.

Proof. Immediate from Lemma 1.8.1.

THEOnEM 1.8.4. Let E(n) be the subgroup of E generated by ) with I ad-
missible and the leading integer of I

_
n. Then E(n) is a subdifferential-al-

gebra of E.
Proof. By Lemma 1.8.1, E(n) is closed under multiplication and by

Proposition 1.8.3, E(n) is closed under the action of d.
TIEOaEM 1.8.5. Let x ), x -- x’ be in admissible form, i.e., the leading

integers of x(x’) are

_
2n (n 1). If dx O, then dx O.

Proof. Since dx O, we have h dx (dlh)xl -- dlx’. From Proposi-
tioa 1.8.3, the leading integers of the right hand side are _< n 1. However
the leading integers of ) dx are equal to n unless dx O. Therefore we
must have dlx O.

Similarly we have

PROPOSITION 1.8.6. Let x ), x - x’ + x" such that )2,, xl -b x’ is in
admissible form and x" is in Im (0). If d x O, then d x O.

Proof. Since Im (0) is a sub-differential-algebra of E1, dx is in Im (0).

This was pointed out to the author by E. Curtis.
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If dlxl O, then k2 dlxl is not killed by dl( x’ -k x’) and dlx 0 which con-
tradicts our assumption.

PROPOSITION 1.9. Let x be an element in Elr, with n > O. If dlx O, then
in the homology class of x there is an element y with odd ending integers unless x
is a boundary.

Proof. Assume that x is not a boundary. In the homology class of x,
we choose y with minimum such that y -0yk where the ending
integers ofyare 0for0_< i_< t. We claimt 0. Suppose not. Let

E
then n8 has to be odd, otherwise (nl, n8 1)k+1 will appear in dx and
dlx O. Let

z, ..., n, +
y -k d zt would give a contradiction to our choice of y. Hence s 0, y y0

and the ending integers of y are clearly odd.

COROLLARY 1.10. Let x be an element in Er,,, such that 0 < n < r. If
dx O, then x is a boundary.

Proof. Under the condition 0 < n , r, in the homology class of x we cannot
find y with odd ending integers. Thus x has to be a boundary.

COROLLARYI.10’. Hs’(A) O for O < t-- s < s.

Proof. Hs’(A) E,_, O forO < t--s<s.

PROPOSITION 1.11. Let x be an element with odd ending integers. If x
is a boundary, there is y with odd ending integers and dly x.

Proof. Same argument as that used in the proof of Proposition 1.9.

2. The structure of E, for r _< 3

In this section we shall use the machinery developed in the preceding section
to compute Er, in the range r < 3.

LEMMA 2.1.

(n J--J)=0 (mod2)

for j > O, if and only if n 2 i for a non-negative integer i.

Proof is easy and is omitted.

When we speak of the ending (leading) integers of an element we always mean those
in the admissible expression of the element.
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PROPOSITION 2.2.

form a basis for _,, E,,
Proof. Since

h cl (X2-1), the homology class of X-I, for i >_ 0

] 0 (mod 2)

for k > 0. Therefore by Lemma 2.1, the proposition is immediate.

PROPOSITION 2.3. Let 02" ,, E.,, ,, E]..+2 be induced by 0; then
02 is monic.

Proof. Let x be a cycle in E,.. If 0x is a boundary, i.e., 0x d h.+a
dON+ 0 dl+. Since, by Proposition 1.7.3, 0 is i)nic, we have x d X,+.
I-Ienee 0. is monie.

PROPOSITION 2.4. Let x be a cycle in E.,2,,+ with odd ending integers;
then x is 0 or )toX_ for a non-negative integer i.

Proof. We can assume that x 0. Let x k2-2k2"+ + x be the
admissible form of x. Equate the admissible terms (2m 2v 1, in
dlx 0; we must have k0k2+ 0, that is, v 0. Thus we can write
x k0 k2+ + xr such that the leading integers of x are

_
2m 2. Claim

that 2m -t- 1 2 1 for a non-negative integer i and x 0. If 2m -t- 2
is not a power of 2, i.e., 2m - 1 2’+1/ + 2 1 for a j _> 1, then we have

(2+]- 2, 1,2- 1) + a forj 2
(2.5) dx" dl(x0 X,+) (S/ 4, 3, 3) -t- a for j 2,

where the leading integers of a’ are < 2’+k 2(8/c 4) for j 2 2).
Since ( 1, 2 1 and (3,3) are not boundaries with the exception thatj 0, 2,
the maximum leading integer 2m 2u of x’ has to be larger than
2/ 2(8/ 4) for j 2 (= 2). Equate the admissible terms
(2m 2u 1, in (2.5); again we get u 0. However this yields the
contradiction that 2m 2m- 2u

_
2m- 2. Hence 2m + 2 is a power of

2 and x" 0 follows from the fact that x" has odd ending integers, dlx" 0
and the leading integers of x are

_
2m 2.

THEOREM 2.6. h h for j _> i and j i - 1 form a basis for ,, E2.,

E2.. such that w is not in Im (02). Then nProof. Let w be an element in
is either 0 or odd. By the preceding proposition, w h0 h for a non-negative
integer i 1. Since 0h h+l and 0 is monic, the theorem follows easily.

1)ROPOSITON 2.7. Let x be a cycle in Ea.,,+ ; then there exists an element y

dlx,=_ (n- 1-J)x,__iXi>o 1 +j

dX 0 is equivalent to
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in E.,_I such that Oy is homologous to x if 2n -- 2 is not a power of 2 and y
is homologous to x or x -- (0, O, 2 1) if 2n - 1 2 1.

Proof. By Proposition 1.9, we can assume that x has odd ending integers.
Write x )-1 xl - -- ,, x, in admissible form.If all n are odd, then xis
already in Im (t). Assume that not all ni are odd. Let n be maximum
among those even nl. By Proposition 1.8.6, dx 0 and by Proposition
2.5, x-- (0,2k- 1) fora/_ 2. /- 2, otherwise(n- 1,2k-4,2,1)
will appear in d1()., x.) and dlx O. Therefore x has to be of the form

x- (2n-- 1,1,1) -t- (2n-- 2, 2, 1)- (terms with leading integers <_ 2n 3).

Through the defining relations of E1, we can write

x (0, 0, 2n -[- 1) -[- x(terms with leading integers <_ 2n 3).

If 2n -I- 1 2 1, then x - ,_ x is in Im (0) otherwise, as what
we have just proved above for x, the maximum leading integer of x is 2n 1.
If 2n -t- 1 2+/c -{- 2 1 for an m _> 1, the part with maximum even
leading integers of d(0, 0, 2n 1) is

(8/ 7, 2, 3, 3) m-- 2

(16/c- 8, 6,1,7) m- 3

(2m+1] 4, 2, 1, 2 1) m > 3.

Let 2t be the maximum even leading integer of x. Since (2, 3, 3), (6, 1, 7) and
(2, 1, 2 1) for m > 3 are not boundaries, 2t is larger than 8]c-7

(16] 8, 2m+1] 4) for m 2 (m 3, m > 3). Equate the terms
(2t, and (2t 1, ind’(0,0,2n + 1) d’x’. Again we
lead to 2t 2n 2 which contradicts the fact that 2t _< 2n 3. If 2n -{- 1
1 -{- 4], we lead to the contradiction that (1, 1, 1) is a boundary. Hence-
forth we draw the conclusion that if 2n - 2 is not a power of 2, x is already in
Im (0), and if 2n - 1 2 1 either x or x -t- (0, 0, 2 1) is in Im (0).

In the following when we write x ), x - x’ we always mean that this is in
admissible form, i.e., the leading integers of x(x’) are <_2n(n 1) except
otherwise explained.

PROPOSITION 2.8. Let x be an element in E.:,, with odd ending integers. If
x (2m, 3, 3) - x’ and its maximum leading integer 2m is smallest among those
homologous to x with odd ending integers, then x is not a cycle for m > 1.

Proof. Case 1. l < m 2] -1.

d(2m, 3, 3) d(4] + 2, 3, 3) (4] 1, 2, 3, 3) + a’.

(4k 1, 2, 3, 3) is not killed by dx, hence x is not a cycle.
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Case 2. m 4k -[- 2. Then x - d(O, 2m - 7) would give a contradiction
about the minimum of 2m.

Case 3. m 4lc.

d(2m, 3, 3) d(8/c, 3, 3) (8/c 4, 3, 3, 3) + b’

and (8/ 4, 3, 3, 3) is retained in dx.
Let x ), x W x be a boundary in E.+ with odd ending integers.

Among all the z’s in E.+. with odd ending integers such that dz x, we
choose y ), y W y with minimum n. Then we have the following

IROIOSITION 2.9. n is even and n >_ 2m,
(ii) if n 2m, x is a boundary,
(iii) ifn > 2m, we can assume that y (1, 2 1), (3, 3).

Proof. (i) Suppose on the contrary that we have odd n. By Proposition
2.4, y (0, 2 1) with ani > 2. Theny- d(n-t- 1,2’- 1) hasa
smaller n which contradicts our choice of y. Hence n 2r _> 2m. (ii) is
trivial.

(iii) If 2r 2m, then equating the admissible terms (n, and
(n 1, we get d y 0 und)0 y is a boundary, y is not a boundary,

2 1) withotherwise n can be made smaller. Therefore y (2 1,
i j --1 and (0, 2 1, 2 1) homologous to 0 implies i j 2 or
min (i,j) 1. In casej 1, y - d(n, 2 - 1) gives the desired element.

1)ROI’OSITION 2.10. For n > O, E.:, is generated by Co, Co cl (2, 3, 3),
2n 8; ho h h 2n 2 + 2- 2; O, otherwise.

Proof. We shall show that any cycle y inE. is homologous to 0, (2, 3, 3),
(0, 2 1, 2 1). We prove this assertion by induction on the maximum
leding integer of y. Assume thut y is not a boundary, y has odd ending
integesrs and its maximum leading integer is minimum among elements
homologous to y with odd ending integers. Then by Propositions 2.9 and 2.8,
y (2, 3, 3) or y (2r, 1, 2 1) + y, for a k > 2. Hence we need only to
consider the.latter case. Write

y (0,2r + 1,2 1) + y (terms with leading integers _< 2r 1).

If 2m + 1 2 1, by induction the assertion is true for y’ and hence true
for y. If 2m + 2 is not a power of 2, by the method of equating admissible
terms und Proposition 2.9 we would lead to contradiction.

TIEOIE 2.11. E.,, is generated by c, n 2+ + 2+ + 2+ 3; h h. h,
n= 2+2+2-3#2+2++2+ 3; 0, otherwise.

Proof. Siace Oh h+ Oc c the theorem follows from Propositions
2.7 and 2.10 immediately.
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3. Some relations in E2 for r <_ $r,n
The following two propositions are immediate from the defining relations

of E.
PROPOSITION 3.1. -1+,-1 O, -12-1+r 0 for r > O.

PROPOSITION 3.2. +1-1)-I+(r+1). ^+l_lfor r > O.

THEOREM 3.3. (1) The only relations among h,’s in E2.,, for r <_ 3 are
h,+2 0, h, h ,+1h h+ O, h h h hi, h hl+i h O, h h for i, j > O.

Proof. All these relations follow easily from Propositions 3.1 and 3.2. We
leave the other part to the readers.

PROPOSITION 3.4. ho h 0 for i >_ 4.

Proof. Let

x-- (0,2-1,2-1,2-1,2-1) (2-2,1,2’-1,2-l)-a.
If x is a boundury, choose y ) yl + y’ with dy x as we have done in
Proposition 2.9. Since (1, 2 1, 2 1) is not a boundary for i >_ 4, by
Proposition 2.9, yl (3,3) or(l, 2- 1) withi>_j>_ 3. Ify (3,3),
then (2+ - 2 12, 3, 3, 3) will appear in d(N, yl) and retain in dy. Thus
we lead to the contradiction that dly x. Therefore we must have
yl (1,2- 1) withi_>j_> 3and2r 2’+-l-2’- 2- 2. Write

y (0, 2r-t-1, 2- 1) -t-y" (terms with leading integers

_
2r- 1).

If j i, i.e., 2r 1 2’+1 1, y" gives contradiction to our choice of y.
Hencei>j_> 3and

d(0,2r+ 1,2- 1)
(2+-2- 2’+- 2,1,2- 1,2’- 1) -t-b’, j_> 4
(2+ -t- 2- 18, 7, 7, 7) -t-b’, j 3.

However the term

(2+1 -t- 2’- 2+ 2, 1, 2- 1, 2- 1)

forj _> 4((2’+ - 2’ 18, 7, 7, 7) forj 3) keeps in dly. Again we lead to
contradiction.

Similarly we have

PROPOSITION 3.5. ho c 0 for i >_ 2.

THEORE 3.6. dh+ ho h for i >_ 3.

Proof. It is well known that ha survives in E. Let ha be the element cor-
responding to h in the stable homotopy group of sphere. Since dim h’a 7,
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2h’a 0. Hence h0 h can not survive in E. The only chance that h0 h is
killed, is in the process from E to E. Hence dh ho h. By induction

hsuppose dh. h0
_

fori n _> 4. Then fromhh+ 0, we hve
(dh)h_ ho dhh_ 0. Hence 0. Byh_. Since i 1 > 4, h0
Theorem 2.11 EI,2i-2 is generated by h0 h_, thus d h h0 h_ follows easily.
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