THE HOMOTOPY CATEGORY OF SPECTRA. |

BY
DAN BURGHELEA AND ARISTIDE DELEANU

The objective of this paper is to show that the homotopy category of semi-
simplicial spectra8pg in the sense of Kan [4] canbe fully embedded in a very con-
venient manner into an abelian category GSpz (Theorem 6.1). We mean by
this the following: 8pz coincides with the full subcategory of projectives of
@8pr , @8px has enough injectives and projectives and the injectives and pro-
jectives coincide, and there exists a one-to-one correspondence between exact
functors on G8px to an abelian category and functors on §pz to the same cate-
gory which transform mapping cone sequences into exact sequences. Peter
Freyd has proved [7] a general theorem according to which there exists for an
additive category satisfying certain conditions a full embedding into an abelian
category having properties of the above type; he has applied this to the stable
category. It is the work of Freyd which suggested to the authors the con-
siderations of the present paper.

In a letter to a friend of the authors R. L. Knighten stated that he knew
some of the results below.

The point of view developed here facilitates the study of some questions
concerning the structure of the homotopy category of spectra, such as the
Postnikov resolutions and others, which will be dealt with in a subsequent
paper. We believe that the homotopy category of spectra is important since
it permits the classification of additive generalized cohomology theories.

In §1 we have collected for the convenience of the reader a few notions and
results due to D. Kan and G. W. Whitehead, and we have adapted their cover-
ing homotopy theorem to our needs.

The main result is contained in Theorem 6.1, and the rest of the paper is
devoted to setting up the machinery we need to prove this theorem.

The results contained in this paper have been announced in [1].

1. Preliminaries

The category of semisimplicial specira Sp. The objects are semisimplicial
spectra defined as follows: A semisimplicial spectrum X consists of
(i) for every integer q a set X, with a distinguished element * (called
base point) ; the elements of X (4 will be called simplices of degree g,
(ii) for every integer ¢ and every integer ¢ > 0 a function
dit X = Xgn
such that d; * = * (the 7-face operator), and a function

8t X = Xgsn
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such that s; * = * (the i-degeneracy operator). These operators are required
to satisfy the following axioms:

I. The following identities hold: d; d; = d;_1 d; for ¢ < j; s; 8; = 8; 8i for
T > j;dis; = sjadifors < j;d;s; = identity fors = j,j + 1;dis; = s;dia
fort>j+ 1.

II. For every simplex « ¢ X all but a finite number of its faces are the base
point, i.e. there is an integer n (depending on «) such that d; « = * for ¢ > n.

The morphisms are maps f : X — Y which are degree-preserving and com-
mute with all face and degeneracy operators.
The cone functor C : $p — 8$p is defined as follows:

(CX) = {(p, )| p 20, xe Xgp , where (p, %) is identified with *}
and
d‘(p: a) = (p — 1, @), 8 p, a) = (p+1, @), 1 < p,

= (p, dip @) = (p, 81'—1)0‘), 12> p.

The suspension functor S : Sp — 8p is defined as follows: SX is obtained
from CX by identifying, for every « ¢ X, the simplex (0, o) with the appropri-
ate base point.

For a family (X;).: of objects of 8p, the direct sum \/;; X; and the direct
product X X; are defined by (Vier Xi)@ = Vier (Xi) (@ (i.e. the union of
the (X:)’s with the base points identified) and ( Xier X:) (g = Xier (Xi) @
with the system (*)q; as base point.

For any subspectrum A of a spectrum X, we denote by X\A the spectrum
for which (X\4)y is the set obtained from X, by identifying A, to . If
f: A — Y is a map of spectra, where 4 is a subspectrum of X, we denote by
X u; Y the spectrum for which (X u; Y)(, is obtained from X u Yy by
identifying each z e X with f(z) e Y . In particular, if we identify X
with the subspectrum of CX consisting of the simplices of the form (0, ) and
if f : X — Y is a map of spectra, then we denote by C; the spectrum CX u; Y.

We denote by ~ : 8p — $p the functor (which is an automorphism of 8p)
which assigns to each spectrum X the spectrum X defined by X = Xy -

For any integer n > 0, we denote by ~” the n-th iterate of the automorphism
~, and by ~™" the n-th interate of the inverse of this automorphism.

For any spectrum X we can consider the spectrum I-X [3, ch. 2] and the
inclusions j , j» ¢ X — I+ X which identify X with subspectra of I-X. Thisis
the analogue of the cylinder and it permits the definition of the homotopy
relation.

Let 8px be the full subcategory of $p consisting of Kan spectra, i.e. spectra
satisfying the extension condition (ecf. [4, 7.3]).

Let Spe be the subcategory of Spz whose objects are group spectra, i.e.
spectra for which each X is a group and the d/s and s.’s are homomorphisms,
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and whose morphisms are maps of spectra which are homomorphisms for
each q.

Finally, let Sp, be the full subcategory of $pe consisting of free group
spectra.

We denote by F : $p — 8$p.. the functor which associates to each X the spec-
trum F(X) defined as follows: (FX)q is the group with a generator Fa for
every ae X and one relation F* = x; the face and degeneracy homo-
morphisms are given by d; Fa = Fd; a, s; Fa = Fs;a (7 2> 0).

If K : $pe — Spxis the inclusion functor, there exists a functorial morphism
7 % idgpy — KF [4] given by 7(X)(a) = Fo. Whenever there willbeno danger
of confusion, we shall write simply F(X) instead of KF(X).

There are two equivalent definitions for the concept of homotopy of two
maps of a spectrum into a Kan spectrum.

DerinitioN 1 [4]. fi,fo : X — Y, where Y e Spg are said to be homotopic
if thereisamap f: I-X — Y such that fji = f1, fje = f2.

DeriniTiON 2 [6, App. Al. fi,f2: X — Y, where Y ¢ Sps are said to be
homotopic if fy f3* : X — Y can be extended to amap f : CX — Y.
If Y € Spx , f1 , o are said to be homotopie if

([, U(Y)e: X > FY
are homotopie.

In [6], App. A, it is shown that the two definitions coincide.

Homotopy groups can be defined as in [4] and [5], and homology groups as in
[5]. Homotopic maps induce the same homomorphism for the homotopy and
homology groups.

DerFiniTiON 3. A map f: X — Y where X, Y ¢ 8p, is said to be a weak
homotopy equivalence if it induces isomorphisms for the homotopy groups.

According to the definition of homotopy groups, ¢(X) is a weak homotopy
equivalence for every X.

The notion of a strong homotopy equivalence for objects of Spz is defined
as in [4, 8.1]. It is shown in [4] that for spectra in $pxz weak and strong homo-
topy equivalences coincide and therefore we shall simply say homotopy
equivalences.

We use fibrations in the sense of [5, (5.1)]. By [5, (5.5)], if X is a sub-
spectrum of Y, then the sequence

x-Lyv-5Lnx
is a fibration, where j denotes the inclusion and p the identification map.

Tue Homorory ExTENsION THEOREM [6, A8]. Let X ¢ Sp, Y eSp, and
let A be a subspectrum of X. Let

w: X =Y, vw,n:A—-Y
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be maps such that wo | A = voand vo~v,. Then thereisamap wy: X — Y
such that wy | A = vy and wo >~ wy .

DrriniTION 4. A map of spectra p : X — Y is said to be a Kan fibration,
if for any family xo, 21, -+, ®s—1, Tey1, -++, ;€ X and y e Y such that
diz; = djqzifori < 7,4, # k and px; = d;yfor 7 % k there exists z ¢ X such
that d;z = z;forz % k and pz = y.

ProposiTioN 1.1. Any epimorphism of group spectra
f: X->Y
(te. f * Xy — Yo s onto) is a Kan fibration.
The proof is similar to that of group spectra (see, for instance, [9]).

Prorosition 1.2. Letp : X — Y be a Kan fibration and f : CZ — Y a map.
Then there exists a map g : CZ — X such that pg = f.

Proof. We use an analogon of the Eilenberg-Zilber lemma which is proved
in Appendix A.

Let Z" be the subset of Z consisting of all simplices z such that d;z = * for
i > n. Weremark that Z' contains only non-degenerate simplices (except for
the base points) and 2" < 2™

LetzeZ’. Weconsiders; = 2, = +-- = xin X andy = f(1,2) ¢ Y. The
extension condition furnishes a simplex z¢X. We set g(1, 2) = z, and
9(0,2) = dog(1, 2).

Let ze Z' — Z°. Then doz e Z’ since didyz = dodsysz = * for all . We
take x; = g(1,dp2), s =23 = --- = xin X and y = f(1,2). Wehave

pr1 = pg(1, do2) = f(1,do2) = fdu(1,2) = df(1,2),
pri =% = f(1,diaz) = fd(l,2) = dif(1,2)

forz > 2.
The extension condition furnishes a simplex = ¢ X and we set g(1, 2) = .
Furthermore, for any z ¢ Z* — Z° we set ¢(0, 2) = dog(1, 2).
It is easily shown that d;g(1,2) = g di(1, 2) and d:g(0, z) = g d«(0, 2).
For any z ¢ Z' and any system of indices 4, > 45 > ++- > 7, > 0 we set
" g(1, 86 - -+ 85, 2) = Sy -+ Si19(1, 2)
9(0, 83, - -+ 85, 2) = dog(l, 85 -+ 85, 2).

It is checked immediately that d;g = g d; and, for ¢ ¢ 0, 8;9 = gs..
Assume inductively that we have defined g on all simplices of the form

(07 z)? (1, z), (0: 8y 00 84, 2), (1’ Siy 00 8, z)

with 2z € Z" nondegenerate, 43 > --- > %, > 0 and that g commutes with d; for
any < and with s; for 2 > 0 and pg = f.
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Let 2z ¢ Z"™ — Z" be nondegenerate. Then, for any j < n and any 7 > n
we haved;d;z = d;di12 = % henced;jz e Z". d;zis either nondegenerate or
of the form d;z = s;, +++ 8, y with 4y > -+ > 4, > 0, with y nondegenerate
(see Appendix A). In the latter case, it is easily shown that ¢4 < n. Then,
for any k > n, we have * = dyd;jz = di sy, + - 8, y which implies either
y=sordi,y = % ie yeZ". It follows that g(1, d;2) is already defined.

We take 2y = ¢(1, doz), -++, ZTnpp = g(1, du2), Tnye = -+ = *» and
y = f(1,2). Wehave

pxi = pg(1, diaz) = f(1,diaz) = fdu(l,2) = diy 1<i1<n+1)
=% = f(1,dia2) =fdi(l,2) = d;f(1,2) = diy (z>n+1).
Let0 <2< n+ 1.
dig(1, dj2) = gdil, dja2) = g(1, diadsa2) = g(1, dj2dir2)
= gd;a(1,diaz) = di1g(1, diy 2).
For0 <7<n-+1,5 2n+ 2wehave
dig(1l,dj12) = dig(l, %) = di% = % = dj_y .

Thus we can apply the extension condition which yields a simplex z such that
dix = 2; (2> 0),p(x) =y. Wesetg(l,2z) =x. Moreover, for any non-
degenerate z e Z"" — Z" we set g(0, 2) = dog(1, 2).

We also define g on simplexes of the form

(0: 84y 0 Sy z): (1; Sy st’rz)

where 3 > +++ > 4, > 0 and z ¢ Z""' — Z" is nondegenerate by the formula
(1).

We check that d;g = g d; (all ), and s;g = gs; (¢ > 0).

(a) If z is nondegenerate, it follows from the definition of g that
dig(1l,2) = gdi1,z) forall 2.

| gsi(1,2) = g(1, 8ia02) = sig(1,2) (1> 0)
by (1)

It is easily shown that d; g(0, 2) = g d«(0, 2), s:9(0, 2) = gs:(0, 2).

(b) Let# > 42 > -+ > 7, 2 0 and z nondegenerate.

gdo(1, si -+ 8i,2) = g(0, 8 -~ 85, 2) = dog(L, 85 -+ 85, 2).
If + > 0, we have
g di(l, Siy v Si, z) = g(1, di18i, * - S, 2).

By the commutation rules of d; and s;, di—y s, * - 8i, is either of the form
Sjy *tt Sjy_y, With i > -+ > j,.3 2 0, or of the form s, -« s, d; with
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ki > -+ > k. > 0. In the first case,
9(1, dig 85 o 8i,2) = g(1, 8, +++ 8,_,2)
= Sjyu1 8,41 (1, 2)
= di s+ Sin g(1, 2)
=d;g(1, i, -+ 8, 2).

In the second case, according to Appendix A, d; z is of the form s,, * -+ 8p,, ¥,
where py > --+ > pm > 0 and y € Z” is nondegenerate. But by the com-
mutation rules of the s;’s the expression sy, - -« 8k, 8p, ** * Sp, can be written
as 8s, ** St,.,, Where fy > «++ > tm > 0 so that we have

g(1,diy s - 8i,2) = g(1, 8, *+* St,m Y)
= 841 St 9(1,Y)
= Spy41 * " Skl Spyd c ot Spa1 g(1, Y)
= Skpt1 0t Sk1 9(1, Sy 00t Spn Y)
= S+t *** Sk g(1, di2)
= Sp41 - Sk g dia(1, 2)
= Sky+1 * " Skl dig(1, 2)
= disiy1 - Sin g1, 2)

= d,-g(l, Si 0 84, z)
Furthermore,

d:g(0, 8i +++ 85, 2) = didog(l, 8i, -+ 8i, 2)
= dodip1g(1, 84, -+ 84, 2)
= dog dsya(1, 8i, +++ 85, 2)
=dog(l,disi *++ 8, 2)
= g(0,d; 8+ 8i,2)
= g di(0, 8, +** 8i,2).

It is also proved without difficulty that
Sig(L, 84y -+ 8i,2) = gsi(1, 8, +++ 8, 2)

8790, 8iy * -+ 8i,2) = g8;(0, 83 * - - 84, 2)
for any j > 0.
The verification of the induction is now complete.
By Appendix A and by the fact that Z = U, Z", it follows that g is de-
fined on all simplices of the form (0, 2), (1, 2).
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For any n > 1 and z € Z we set
g(n, 2) = st 7'g(1, 2).
We have for every z ¢ Z
gso(1,2) = 9(2,2) = s09(1, 2),
809(0,2) = s, dog(l,2) = dos1g(1,2) = dogsi(1, 2) = dog(1, 802)
= 9(0, s02) = gs0(0, 2).
It is also proved easily that
dig(n,2) = gdin,2), sig(n,2) = gsin,z)
for all 2 and any ze¢Z and n > 1.
ProrosiTiOoN 1.3. Let A be a subspectrum of X and
jiA—X, s: X—->X\A

the canonical morphisms. Then the obvious inclusion F(A) — Ker F(s) is a
weak homotopy equivalence, where Ker F(s) s the subspectrum consisting of all
z e F(X) such that F(s)x = .

This follows immediately from the above remark that

4—-X—-X\4
is a fibration.

CoveriNng Homorory TuEOREM. Let Y, Z eSp,andlet p: Y — Z be an
epimorphism of groups. Let X e $p and let

vo:X—)Y, WQ,W1:X'->Z
be maps such that pvo = wo, wWo =~ w1 . Then there isa map v, : X — Y such
that pvy = wy and vo 2 vy .

Proof. Let w: CX — Z be an extension of wy-w;. By Proposition 1.2
there is a map v : CX — Y such that pv = w.
Set v = (v]X) .

ProrosiTION 1.4.) For any object X ¢ Spx there exists a homotopy equiva-
lence ex : F(SX) — F(X) which is natural up to homotopy.
The proof is to be found in Appendix B.

2. The Puppe sequence

Let f : X — Y be a morphism in the category Sp. Denote by ' : ¥ — C;
the natural inclusion. Consider the diagram

1The authors are grateful to Dr. Klaus Dudda for drawing their attention to an
error in connection with this proposition in an earlier draft.
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F(X) F(f) » F(Y) F(f")
F(q) i(li")_) F(CI;) _M_) F(C,II) M F(Cf{n — e

W’O Fp 1 P(q) I F()
3

s=eipr\  FSX) 8 p(sy) L&, p(scy)

1S 1‘; Gc,
! l

FE) D, gy £ p@)

where f”, f”, fiv, - - - are inclusions and p is defined as follows: the simplices of
CY are sent to #, i.e. p(n, y) = * (see the definition of C in §1), and the sim-
plices of the form (=, ), with z ¢ X and n £ 0 are sent to (n, ) e SX. Like-
wise for ¢ and r. Clearly, we have the following sequence infinite in both
directions:

S 22 pey 29, pory -2 pix)

I pvy 29 piey -5 1) £ reey -

3. The homotopy category of spectra

—> F(Y) —>

We denote by Spx the category whose objects are Kan semisimplicial spectra
and whose morphisms are homotopy classes of morphisms from 8pg. Simi-
larly, we have the categories Spg , SpL

We can consider the functors I : Sp, — Spg and F : $py — S$p;, induced by
IandF.

ProrostrioN 3.1. Each of the functors I and F establishes an equivalence
between the categories Spz and Spy, .

Proof. F establishes an equivalence. This is an immediate consequence of
the fact that each X e 8pg is isomorphic in 8pz with F(X) and of Corollary
(A.11) of [6]. [ establishes an equivalence for the same reasons.

Proposirion 3.2. The category Sps possesses arbitrary direct sums and
direct products.

Proof. The direct sum of a family (X.)aea is the object F(\ qea Xo) of
Spr . Tosee this, one uses Definition 2 of the homotopy relation. The direct
product of a family (Xa)aes is the object Xqes Xeo of 8pr. To see this, one
uses Definition 1 of the homotopy relation.

Prorosition 3.3. In the category Sps each object possesses a well-defined
multiplication of group-object and a well-defined comultiplication of associative
comonotid object.
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Proof. For any object X of Spz, F(X) is a group-object in 8pr. Then

we consider the following multiplication of X:
X X XM.L(._)_)F(X) X F(X)'_LF(X)‘MX,
where p is the multiplication given by the group structure of F(X), j(X)
is the homotopy inverse of ¢(X) which exists according to §1. The inverse
is given by
(X (X
x 1 )‘F(X) v F(X) X X,

where » is the passage to the inverse in the group F(X). It is readily verified
that this defines a structure of group-object on X.

For any object X of 8pz , there exists a comultiplication defined as follows:

(X 0
X B, F(X)—™ F(X)«F(X) = F(XV X)

where 6 is the comultiplication in the category Sp, defined by 6(z) = 2z,
zx being a “word” in the free product F(X) * F(X). F commutes with
wedges because, for instance, it admits the functor I as a right-adjoint functor.
# is a comultiplication of an associative comonoid in the category Sp. [3].
It is easy to check that it remains so in the category Sp. . Using Proposition
3.1, it follows that the above comultiplication turns X into an associative
comonoid object.

Remark. Any morphism f: X — Y in 8py is a homomorphism of group
objects (of associative comonoid objects), for the multiplication (resp.
comultiplication) just defined.

TuroreM 3.4. The category Spx s additive..

Proof. By Theorem 4.17 in [2], the multiplications on Homg,, (X, Y)
given by the group structure of ¥ and the comonoid structure of X coincide
and are abelian. This implies also the bilinearity of the composition of
morphisms.,

4. The Puppe sequence in 3pg

Lemma 4.1.  For any object X of 8pr , CX has trivial homotopy groups.

Proof. Let r: CX — . We shall prove that r is a weak homotopy
equivalence. To this end it is sufficient to prove that

i(CX) : CX = F(CX)

is null homotopie (see for instance, [6, (A.15)]). We shall prove that we can
define a map h : C(CX) — CX such that & induces the identity on the “base”
of C(CX). The definition of A is as follows:

h(e, (B, x)) = (a -+ 8, x) fore,$20,z¢X.
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It is shown straightforwardly that A commutes with the d/s and the s/s
and that the “base”, i.e. the simplices of the form (0, (8, )) are sent onto

(B, ).
ProrosiTion 4.2.  The square

F( //l)
F(Cr) 2 peey)

F(p) F(g)

©s homotopy anticommutative in 8py, .
Proof. It is sufficient to show that
(i(8Y) o Sfop)(i(8Y) o go f”) : Cpr — F(8Y)

is extendable to C(C;) (using Definition 2 of the homotopy relation and
Theorem (A.15) of [6], which asserts that if v : X’ — X is a weak equivalence,
then v™ : [X, Z] — [X’, Z] is a one-to-one correspondence, where Z is any
group spectrum).

To do this, we define a map of spectra

¢ H C(Cf/) - F(SY)
by setting:

¢(7,(a,y))=F('y+a,y) for'y,a_>_0,er
é(v, (B,z)) = F(y + B, f(z)) forv,8 20,zeX.

Clearly this map is well defined and degree-preserving. We now check
that it commutes with the operators d;. We have

di(v, () = (v — L () ifi <,
=(7,(ea—1,y)) ifizvi—rv<aq
= (v, (&, diy—a y)) otherwise.

di(v, (B,x)) = (v — 1, (B,®)) ifi<n,
=(v,(B—12)) ifi=2rvi—7v<B
= (v, (B, diy—gx)) otherwise.

Therefore we have by our definition
ddi(v, (e, y)) = F(y +a—1,y) ifi<y,
=Fly+a—19 ifi>vi—v<ae

= F(y + a,diy—ay) otherwise.



464 DAN BURGHELEA AND ARISTIDE DELEANU

¢di(v, (B,2)) = F(y +8 -1 f(2)) i<,

=F(vy+B8—1f(z)) ii>nv1—v<8,

= F(y + B8, f(diys)) = (v + B, diy—pf(x)), otherwise.

On the other hand, we may write
di¢(v, (&, 9)) = diF(y + &,y) =Fly+a—1y ifi<v+ a
= F(y 4+ &, diy—ay) otherwise

did(, (B,2)) =di F(v +8,f(2)) = F(v +8—1,f(x)) ifi<~y+8
F(y + B, diy—sf(x)) otherwise.

A similar calculation yields the commutation of ¢ with the operators s, .
This completes the proof.

ProposiTioN 4.3. p : C;r — SX is a weak homotopy equivalence.

Proof. We have the sequence

k
CY — ¢ -5 ¢,N\CY = 8X

where k is the canonical injection. According to Proposition (5.5) in [5],
this sequence is a fibration in $p. By the exact homotopy sequence of this
fibration [5, p. 245] and by Lemma 4.1, p induces isomorphisms for the
homotopy groups.

Tueorem 4.5. In the diagram in Spz
r(x) FY92, py) £
F) P, pey) I, Fep) EE R(Cp) —— -

\O) lr(z) @O lF(m) I1) lF(n)
F()

FE 2D, g B F@)

wherel = exF (p), m = exF(q), n = e, F(r), thetriangle (0) is commutative,
the squares (1) and (II) are anticommutative and 1, m, n are isomorphisms.

Proof. The theorem follows from §2, and Propositions 1.4, 4.2 and 4.3.

5. Weak kernels and cokernels

DerinitioN. Let @ be an additive category. The morphism 4 : X — YV
in @ is said to be a weak kernel of the morphism v : ¥ — Z if

1° ww =20

2°.  For any morphism w : U — Y in @ such that vw = 0, there exists a
(not necessarily unique) morphism ¢ : U — X such that ut = w.

The dual definition gives the weak cokernel.
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LEmma 5.1. If A is a subspectrum of X and
jiA—-X, s: X—->X\A
are the canonical morphisms, then in the sequence

ra) 29 pix) 29 pxva)

F(j) is a weak kernel of F(s) and F(s) is a weak cokernel of F(j) in Spx .

Proof. F(j) is a weak kernel. Let B a spectrum and v : B — F(X) such
that F(s)v ~ 0. According to the covering homotopy theorem in §1 there
exists a map v’ : B — F(X) such that F(s)v” = 0 and v ~¢’. Thus v’ fac-
torizes through Ker F(s) and, by using Proposition 1.3 we infer that there
exists a morphism w : B — F(A) such that F(j)w ~ v.

F(s) is a weak cokernel. Consider the commutative diagram

ra) 22 pix) 9 poxna)

i(A){ i(X)I i(X\A)]

A — X > X\A.
J S

Let u : F(X) — G be such that u o F(j) ~ 0, where G is a group-spectrum
(the assumption that G is a group spectrum does not restrict the generality).
Then ui( X )j ~ 0 and, according to the homotopy extension theorem (see §1),
there exists w’ : X — G such that 4j = 0 and ' ~ w#(X). This implies that
there exists w’ : X\A — G such that w's = u’. We set w = kow, where &
is the homotopy inverse of ¢( X\4).

ProrosiTioN 5.2. Every morphism in the category Spxz has a weak kernel
and a weak cokernel and every morphism in Spg is a weak kernel and a weak
cokernel.

Proof. Letf: X — Y be an arbitrary morphism in 8pg .

We consider the sequence

Fo7ty 2% pexy 29 pory 295 peey).

We shall prove that F(f') is a weak cokernel of F(f), F(§™") is a weak
kernel of F(f), F(f) is a weak kernel of F(f'), and F(f) is a weak cokernel
of F(&7'). This is clearly sufficient, in view of the commutative diagram

x 1oy

i(X)l li(Y)
F(X) —— F(Y),

F(f)
where 7(X) and ¢(Y) are isomorphisms.
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1°. F(f") is a weak cokernel of F(f). This is equivalent with the asser-
tion that F(fiv) is a weak cokernel of F(f”), by Theorem 4.4. Consider the
diagram

F(C(Cp)

F(b)

v

@  Fn 2% pe,) LS R

m} |F@

F(Cy\Cy) = F(Csn\CCy)

where f” and b are inclusions, ! and @ are indentification maps. According
to Lemma 4.1, F(a) is an isomorphism in 8pg. According to Lemma 5.1,
F(1) is a weak cokernel of F(f”), whence it follows that F(fiv) is a weak
cokernel of F(f”).

2°. F(87") is a weak kernel of F(f). This is equivalent to the assertion
that F(f”) is a weak kernel of F(f”). This results from arguments similar
to those at 3°.

3°. F(f) is a weak kernel of F(f'). This is equivalent to the assertion
that F(f”) is a weak kernel of F(fiv), and this follows from diagram (2) and
Lemma 5.1.

4°. F(f) is a weak cokernel of F(§™"). This is equivalent to the assertion
that F(f”) is a weak cokernel of F(f”) and this follows from arguments
similar to those at 1°.

6. The main theorem

THEOREM 6.1. There exists a full embedding J of the category Spx into an
abelian category GSpr having the following properties:

1°.  G8pxz has enough injectives and projectives and the injectives and projec-
tives coincide.

2°.  Every object of the form J(A) with A € Spxg s injective (and projective)
and every injective (or projective) object of QSpz is isomorphic with an object
of the form J(A4).

3°. The category GSpr verifies the conditions AB3, AB4 and their duals
(in the sense of Grothendieck).

4°, For any abelian category G and for any additive functor T : §pz — @
there exist functors R, M, L : @8pgz — @, each of them unique up to an isomor-
phism, which extend T and such that R is right exact, L is left exact and M pre-
serves tmages.

5°.  The following assertions are equivalent:
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(a) The sequence

7x) s 5y L y(z)

of G8px 1s exact.
(b) g is a weak cokernel of f in Spx .
(¢) f1is a weak kernel of g in Spx .

6°. If G is an abelian category there exists a one-to-one correspondence be-
tween the exact functors G : G8pz — G and the funciors H : Spy — @ which
transform the sequence

F(X) L), F(Y) — F(Cy)

wnto an exact sequence for each f.

Proof. The assertions 1°,4°, 5° as well as the following assertion (contained
in 2°):

2/°,  Any object of the form J(A) where 4 e §py is injective (and projec-
tive) and any object of @Spr admits an injective (or projective) resolution by
objects of the form J(A), are immediate consequences of a general theorem
of Peter Freyd [7], according to which each additive category having weak
kernels and cokernels and in which each morphism is a weak kernel and a
weak cokernel admits an embedding into an abelian category with the proper-
ties 1°, 27°, 4°, 5°.

Since the work of Freyd is not yet published,? we give brief indications about
these facts for the convenience of the reader. The objects of the category
@8pg are morphisms

A1 B

in 8pg ; the morphisms from

A1sB o a4 Lp

are equivalence classes of couples of morphisms (u, ) such that the diagram

4-L B

A’ '—,——) B’
i)
is commutative, the equivalence being defined as follows: (%, v) is equivalent

with (w’,v") if f'u = fu’ (or, equivalently, if of = v'f).

2 Added in Proof. Freyd’s papers [7] and [8] have now appeared in the Proceedings
of the Conference on Categorical Algebra, La Jolla, 1965, Springer-Verlag, New York
1966.
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The functor J sends the object A of Spz onto the object

1
A—5 4
of GSpx .
Every diagram of the form
A—B A — B
llg resp. 14 J }
A'—- B L A — B

represents a monomorphism (resp. an epimorphism) in QSpz.
Given

.| L B
A — B
7
let K — A be a weak kernel of of (B’ — K’ a weak cokernel of vf). Then
K—B A'—>B
l l resp. l l
A—B A'—-K

is a kernel (resp. cokernel) of (u, v).
The definition of the functors R, L, M is as follows:

R(A — B) = Coker (T(K) — T(4)),
where K — A is a weak kernel of A — B.
M(A—B) =Im(T(A) - T(B))
L(A — B) = Ker (T(B) — T(())

where B — C is a weak cokernel of A — B.
We now complete the proof of the theorem.
For assertion 3°, it is straightforward to verify that if

(4: L5 B

is a family of objects of @Spz , then

D ier AzM @ ier B

is the direct sum, where the existence of @ A: and @, B; is guaranteed by
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Proposition 3.2. Likewise, the direct product of this family is

H“I A “’fl Hzel B

The existence of direct sums and products implies in an abelian category the
existence of arbitrary inductive and projective limits.

To show that the direct sum of a family monomorphisms is & monomorphism
let (ui s 1),')

u'l ‘vi (1el)

be a family of monomorphisms. This diagram may be decomposed as

’
B, —— B;.
gi
The diagram I represents a monomorphism, since (u; , v;) is a monomorphism;
moreover, diagram I represents an epimorphism, as noted above. Thus I is
an isomorphism. Hence, to prove that

DBier (U, V) = (Dier Uiy Dier vs)

is a monomorphism, it is sufficient to show that (@i u:, @iczls;) is 8 mon-
omorphism, which is indeed the case since @iz 15; = lo, ;5! -

Remark. Analogously, the sum of a family of epimorphisms is an epimor-
phism. Dually, it can be shown that a product of a family of epimorphisms
(monomorphisms) is an epimorphism (monomorphism).

It remains to show that any projective object of the category @Spy is iso-
morphic with an object of the form J(A) where 4 ¢3pz. To do this, we use
the following two propositions.

ProproSITION 6.2. Any retract in the category Spr admits a complement.
Proof. Let f: X — Y be a retract in 8pg, ie. there exists p: ¥V — X
such that pf = 1x. Consider the Puppe sequence

IPx) L 1p0yy = ar(e,) — T8 %) — 2 grer



470 DAN BURGHELEA AND ARISTIDE DELEANU

which according to assertion 5°, which has been proved, is exact. The exist-
ence of p implies that JF(f) is a monomorphism. Then JF(J) is also a mono-
morphism and the sequence

0 — JF(X) LGN JF(Y) = JF(C;) =0

is exact. Since JF(p) yields a splitting of this sequence, it follows that
JF(Y) =JF(X) ® JF(C;), whence F(Y)=F(X) ® F(Cy)

(see the definition of direct sums above), i.e. the given retract has a com-
plement.

ProrositioN 6.3 (P. Freyd [8]). If in the additive category @ for every ob-
ject A there exists the sum @Dn-rs,... An, where A, = A for any n, and any
retract admits a complement, then for any morphism v : P — P such that v = v,
there exists an object Q and morphismst : P — @, s : Q — P such that ts = 14
and st = v.

To finish the proof of 2°, let X be a projective object of @Spz. According
to 2'°, there exists an epimorphism p : J(P) — X, where P ¢ 8py ; the projec-
tivity of X yields a monomorphism » : X — J(P) such that pu = 1x. Thus
(up)? = up. Since J is a full embedding, there exists v : P — P such that
J(v) = up. We clearly have o = v. By Proposition 6.3 there exist an
object Q € Spr and morphisms ¢ : P — @, s : @ — P such that s = 14 and
st = v. We assert that J(@Q) is isomorphic with X. For, consider the dia-
gram

J(p) —P— x —%— J(P)

J(1P)T qI IJ(IP)

J(P) W J(Q) W J(P)

where ¢ = poJ(s). We check the commutativity of this diagram,
uog=wuopod(s) = J(s)oJ(¢)oJ(s) = J(s),
qoJ(t) = pelJ(s)eJ(t) =poucp = p.

Since p is an epimorphism and J(s) a monomorphism, we infer that ¢ is an
isomorphism.

To prove assertion 6°, let H : §pz — @ be a functor which carries the se-
quence F(X) — F(Y) — F(Cy) into an exact sequence for each f. It is
immediate that H is additive. Let then L be the left-exact extension of H
provided by 4°. It can be shown that H preserves epimorphisms. The
proof paraphrases that given by Freyd for the stable category (Lemma 4.1
of [7]).

CoROLLARY 6.4. The functors Hom (J(A), ) and Hom ( , J(4)) are
exact in G8px for any object A of 3px .
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This follows from the fact that J(4) is both injective and projective.

CoROLLARY 6.5. Every representable exact functor on the category GSpz s
represented by an object of the form J(A), where A ¢8pg.

This follows from assertion 2° of the theorem.

CoROLLARY 6.6. The functor J carries the Puppe sequence onto an exact
sequence.

Denote by H™(A, B) = Homg,, (4, B") = Homg,, (4™, B) and by
H"(A, f) = H"(A, F(Cy)) and H"(f, B) = H"(F(C;), B) where f: X > Y
is a morphism in 8pg .

CoROLLARY 6.7. The following sequences are exact:
U _)H”+1(A,f) '_)Hn(A7 X) "*Hn(A7 Y) __)Hn(Ayf) > e
o — HYX, A) « HY(Y, A) «— H'(f, 4) < H™(X, 4) « ---

Appendix A

TrE EILENBERG-ZILBER LEMMA FOR SPECTRA. Let X be a semi-simplicial
spectrum and x e X. Then x can be written uniquely as

T = 84y iyt 80, Yy
where y 1s non-degenerate and @, > 45 > -+ > 1, > 0.
Proof. We first remark that, if we have
T =8 8, Y,
then, using the commutation relations of the s’s, ¢ may be written as
T =8 8, Y,
wherej; > jo > -+ > j» = 0.
To prove the existence of a representation as in the lemma, let n be the
integer such that d; & = *for ¢ > n. Then clearly if z # *, for any represen-

tation
T =85 " 8, Y, i1> e >1:r>0;

we must have r < n + 1. This implies that there exists at least one repre-
sentation of the required form. The uniqueness of this representation is
proved in the same manner as in the case of semi-simplicial complexes.

Appendix B

Our objective is to prove Proposition 1.4. To do this, we introduce a defi-
nition for the suspension of a semisimplicial complex in addition to the one
given in [5, p. 241].

Let K be a semisimplicial complex. The “left’” suspension of K is the com-
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plex S; K which has as n-simplices the appropriate degeneracy of the base
point and all pairs (p, o) such that p > 0,0 ¢ K, ¢ #* and p + dim ¢ = n.
The degeneracy and face operators are given by

d%(p) 0') = (p -1, 7)7 Si(p’ 0') = (p + 1, 0’), T < D,
= (py di—p‘") = (p’ 81'«-1?0')7 12> D,

whenever this has a meaning and d;(p, ¢) = * otherwise.
Now, given a semisimplicial spectrum X, we associate with it two semi-
simplicial spectra X and Z; X as follows: Let Ps X = {X,, A} be the pre-
spectrum associated to X([4, p. 468]. Consider the prespectra {SX,;, SA;}

and {8; X, SiM}. (To see that {S; X,;, Si\} is a prespectrum, notice that
the map

(¢, (&, p)) = ((¢, @), p), 1q20,aeK
establishes an isomorphism between S; SK and SS; K for every semisimplicial
complex K.)

Set

X = Sp{SXi, S\, =X =Sp{SiX:, S,

where Sp is the functor defined in [4, p. 468].
Lemma B.1.  For every spectrum X there exists a natural map

¢x:2X'9X

which is a weak homotopy equivalence.
Proof. Consider the prespectrum {Y.,} where Y; = X;.;. The maps \; of
the prespectrum {X,} determine a map of prespectra
f: {SX, y S)\,’} nd {Y,}
On the other hand, it is easy to show that the spectra Sp {Y.} and X are iso-
morphic. Set ¢x = Spf. One proves without difficulty that ¢x induces
isomorphisms for the homotopy groups of the prespectra associated to =X
and X.
LemmA B.2.  For every spectrum X there exists a natural map
Yx: 21 X - 8X
which 1s a weak homotopy equivalence.

Proof. Let Ps X = {X;} and Ps 8X = {(S8X),}. It is straightforward to
verify that any n-simplex (p, «) of S;X; is also an n-simplex of (SX),.
Thus we have a map of prespectra j:{S:X;} — {(8X).;}. But Sp Ps8X is
isomorphic with SX [4, p. 469]. Set ¢x = Spj. It can be checked readily
that ¢x induces isomorphisms for the homotopy groups of the prespectra
associated to £, X and SX.

Lemma B.3. For any spectrum X there exists a natural morphism in Spg

0x : F(ZX) — F(Z,: X)
which s an isomorphism.
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Proof. Let R and Sin be the geometric realization functor and the singular
functor [4], and let Ps X = {X,;}. Then we have maps of prespectra

f: {SXi} —> {SinRSX,}, f;:{SlXi} —> {SmRSlX,}

which are weak homotopy equivalences. Moreover, we have maps of pre-
spectra

g:{Sin RSXJ — {Sin SRXJ, ¢i:{Sin RS X — {Sin SRX}

which are isomorphisms, since by Proposition 2.3 of [4], S commutes with R
and one can verify that, for every semisimplicial complex K, the spaces RS; K
and SRK are homeomorphic in a natural manner. Now, by Proposition 9.2
of [4], a map in Spy is a weak homotopy equivalence if and only if it is a
homotopy equivalence. Thus we may set in Spz

6x = F(Spfi)" e F(Spgi) " o F(Spg) o F(Sp f).
To complete the proof of Proposition 1.4, it is sufficient to set in Spe
ex = Fex) o 6x' o F(¥x) ™.
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