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In an arcwise connected CW-complex, higher order Whitehead products are
determined, as areall homotopy operations, by the Postnikov invariants of the
space. This fact has been used implicitly in [3] to prove that certain products
are non-zero. In this note we calculate this relationship explicitly. This is
done by relating Whitehead products and classical obstruction theory. Let
P(C) denote n-dimensional complex projective space. As an application we
show that if e (P(C) is a generator, then the set of (n H- 1 order White-
head products [...., e] equals (n-F 1)! , where is a generator of
,+(P(C) ).
The author would like to thank M. Arkowitz for raising the question about

P(C) which led to this note.
Let T denote the subset of the cartesian product, X: S, consisting of

those points with at least one coordinate at a base point. We assume through-
out that n > 1, all i, and } 2. Choose a generator H( X S; Z), where,

N n. Given a map g" T X, the } order Whitehead product,
W(g) _(X), is defined by W(g) g, Hj,(), wherej, is induced by the
inclusion,

j" (XS,,)(XS,T),

H is the Hurewicz homomorphism, and O is the boundary in he homotopy
sequence of the pair X S, T). These products were defined and studied in
[2]. It was shown there that g can be extended to the cartesian product if and
only if W(g) O.
On the other hand classical obstruction theory yields an element,

o(g) eH( X S, T; v_(X)),

such that g can be extended if and only if o(g) 0. (We use here the fact
that the (N 2) skeleton of X S equals T.)

Let ( ) denote the Kronecker pairing

H;( X sni; N-I(X)) @ H( X ni; Z) N-I(X).

The following lemma is then evident.

LEMMA 1. (j*o(g), ) W(g).

Given a fibre space (E, p, B) with fibre F and a map g T E such that
pg can be extended to h X S B, the usual obstruction theory for cross-
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sections of a fibre space extends in an obvious manner to yield a cohomology
class

u(g) e H( X S, T; r_(F)

such that g can be extended to cover h if and only if u(g) 0; u(g), of course,

depends upoon the choice of h. The inclusion map F - E induces

1, r_(F) - _(E)
which in turn induces

l U( X Sn, T; r_l(E) -- UV( X ni, T; r_(F) ).

The next lemma follows at once from the definition of u(g).

LEMMA 2. l u(g) o(g).

In particular if r_(B) r(B) 0, then p, W(g) 0 and there exists
an extension, h, unique up to homotopy. If in addition E is induced by

e Hv(B; G), j*u(g) h*(). Combining this with the above lemmas we
have:

THEOREM 3. Let E be the fibre space induced by e HV(B; G) and suppose
v(B) r_(B) O. Giveng T E

where h is any extension of pg to the cartesian product.

We note that the above hypothesis implies that la is an isomorphism.

Applications
The Postnikov system of a space X is a sequence of spaces and maps

(X, p, q), qn X - X, p X - X_, such that

(i) p is a fibre map with K(r,(X), n) as fibre,
(ii) q is an n-equivalence,
(iii) X0 is a point,
(iv)

X is induced from X_I by ].+ e H+(Xn_ (X)).
Since v(X_) _(X_) 0, Theorem 3 implies

ConoAaV 1. If g T-- X, (q_). W(g) (l h*(lc),) where h is any
extension ofq_ g to the cartesian product.

This determines W(g) since q_ is an (N 1)-equivalence.
We recall that

[fl,...,f] {W(g) :gj.f, for each i},

wherej is the canonical injection of Si --. T.
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COROLLARY 2. The set of (n -- 1)s order Whitehead products [, ] is a
single element which is equal to n - 1 a, where

e r(P’(C)) and r,+(P’(C))
are generators of their respective groups.

Proof. It is well known that if X pn(c) then

X2n X2_1 X2 K(Z, 2)

and kn+2 a"+1 where a H2(Z, 2, Z) is the fundamental class. Since X2n is
an H-space, the map S Y Y S - X., which, restricted to each S2,
represents a generator of -.(K(Z, 2)), can be extended to h, mapping the
cartesian product of (n + 1) copies of S to X2. Moreover h T can be
lifted to g T -* P’(C). Clearly, W(g) e [, ].
A straightforward calculation such as [3, 3.15] shows that for all such ex-

tensions, h*(a"+I) (n + 1 s where s is a generator ofH( X Sni; Z). Thus
by Corollary 1

(q+), w(a) (j, *(+), > (n + )! <j, , >.
Since (j s, g} is a generator of 2+l(X2n+) it follows that (q2,+)l(j, s, } is a
generator of v:n+(P(C)).
We close by noting that our characterization of W(g) differs in spirit from

that given by J-P. Meyer [1] in the case of the usual Whitehead product. One
wonders if his characterization can in some way be extended to the general
case.
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We take this opportunity to note that [3, 3.15] requires the additional hypothesis
that each k is even. This does not affect the validity of the results of [3].


