## ON A THEOREM OF BURNSIDE

## BY <br> Richard Brauer ${ }^{1}$

A celebrated theorem of Burnside states that the order $g$ of a non-cyclic finite simple group $G$ is divisible by at least three distinct prime numbers. In other words, if we set $g=p^{a} q^{b} g_{0}$ where $p$ and $q$ are primes and $a, b, g_{0}$ are positive integers, then $g_{0}>1$. We prove a refinement.

Theorem 1. Let $G$ be a simple group of finite order

$$
\begin{equation*}
g=p^{a} q^{b} g_{0} \tag{1}
\end{equation*}
$$

where $p, q$ are distinct primes, and where $a, b, g_{0}$ are integers, $a>0$. If $g \neq p$, then

$$
\begin{equation*}
g_{0}-1>\log p / \log 6 \tag{2}
\end{equation*}
$$

Proof. We denote the irreducible characters of $G$ by $\chi_{1}=1, \chi_{2}, \cdots$ and set $x_{j}=\chi_{\rho}(1)$. Let $p$ be a prime ideal divisor of $p$ in the field of $g$-th roots of unity. If $\sigma \in G$, denote by $\mathrm{c}(\sigma)$ the order of the centralizer $C(\sigma)$ of $\sigma \epsilon G$. The principal $p$-block $B_{0}(p)$ of $G$ consists of those characters $\chi_{n}$ for which

$$
\begin{equation*}
(g / c(\sigma))\left(\chi_{n}(\sigma) / x_{n}\right) \equiv g / c(\sigma) \quad(\bmod \mathfrak{p}) \tag{3}
\end{equation*}
$$

for every $\sigma \in G$. If $\tau \in G$ has an order divisible by $p$, then by Theorem VIII of [4],

$$
\begin{equation*}
\sum_{\chi_{n} \in B_{0}(p)} x_{n} \chi_{n}(\tau)=0 \tag{4}
\end{equation*}
$$

Of course, $\chi_{1} \in B_{0}(p)$. Now (4) shows that there exist $\chi_{j} \in B_{0}(p)$ with $j \neq 1$ for which $x_{j}$ is not divisible by $q$. Let $p^{h}$ be the highest power of $p$ dividing $x_{j}$ so that

$$
\begin{equation*}
x_{j}=p^{h} m, \quad m \mid g_{0} \tag{5}
\end{equation*}
$$

Let $X_{j}$ denote the irreducible representation of $G$ with the character $\chi_{j}$. Since $G$ is simple and $j \neq 1, X_{j}$ is a faithful representation. It follows from a theorem of Feit and Thompson [5] that $p \leqq 2 x_{j}+1$.

If $h=0$, then $x_{j}=m \leqq g_{0}$. Hence $p \leqq 2 g_{0}+1$, that is, $g_{0} \geqq(p-1) / 2$. This implies (2) for $p \geqq 5$. Since $g_{0} \geqq 2$, (2) also holds for $p \leqq 3$.

Assume now that $h>0$. Take $\sigma$ as an element of order $p$ in the center of a $p$-Sylow subgroup $P$ of $G$. Then $g / c(\sigma)$ is not divisible by $p$. The left side of (3) represents an algebraic integer. It follows that $\chi_{j}(\sigma)$ is divisible by $p^{h}$ in the ring of algebraic integers and that

$$
\begin{equation*}
\chi_{j}(\sigma) / p^{h} \equiv x_{j} / p^{h}=m \quad(\bmod \mathfrak{p}) \tag{6}
\end{equation*}
$$

Received January 17, 1967.
${ }^{1}$ This work has been supported by a National Science Foundation grant.

Let $\varepsilon$ be a primitive $p$-th root of unity. If $a_{n}$ is the multiplicity of $\varepsilon^{n}$ as characteristic root of $X_{j}(\sigma)$, we have

$$
x_{j}=\sum_{n=0}^{p-1} a_{n}, \quad \chi_{j}(\sigma)=\sum_{n=0}^{p-1} a_{r} \varepsilon^{n} \Rightarrow \sum_{n=1}^{p-1}\left(a_{n}-a_{0}\right) \varepsilon^{n} .
$$

Now, $\varepsilon, \varepsilon^{2}, \cdots, \varepsilon^{p-1}$ form an integral basis for the integers in the field of the $p$-th roots of unity. Hence each $a_{n}-a_{\iota}$ is divisible by $p^{h}$, say

$$
a_{n}=a_{0}+p^{h} b_{n}
$$

Then

$$
x_{j}=p a_{0}+p^{h} \sum_{n=1}^{p-1} b_{n}, \quad \chi_{j}(\sigma)=p^{h} \sum_{n=1}^{p-1} b_{n} \varepsilon^{n}
$$

It now follows from (5) that $p a_{0}$ is divisible by $p^{h}$. Since $\varepsilon \equiv 1(\bmod p)$, (6) shows that $p a_{0} / p^{h} \equiv 0(\bmod p)$. This means that $a_{0}$ and then all $a_{n}$ are divisible by $p^{h}$.

Thus all characteristic roots of $X_{j}(\sigma)$ have a multiplicity divisible by $p^{h}$. In particular, $X_{j}(\sigma)$ has at most $x_{j} / p^{h}=m$ distinct characteristic roots.

We say that an irreducible representation $X$ of a finite group $G$ is quasiprimitive, if for every normal subgroup $H$ of $G$ the restriction $X \mid H$ does not have non-equivalent irreducible constituents. In particular, if $G$ is simple, every non-principal irreducible representation is quasi-primitive. It has been proved by Blichfeldt [1, Theorem 9, p. 101] that if $X$ is a faithful quasiprimitive representation of degree $x$ of a group $G$ and if for an element $\sigma$ of $G$ of order $p$ not in the center of $G$ the transformation $X(\sigma)$ has $w$ distinct characteristic roots, then

$$
p<6^{w-1}
$$

Actually, Blichfeldt states his theorem only for primitive representations, but his proof remains valid for quasi-primitive representations as defined above. Applying this with $X=X_{j}$ we obtain

$$
\log p<(w-1) \log 6 \leqq(m-1) \log 6 \leqq\left(g_{0}-1\right) \log 6
$$

and this implies (2).
As a corollary, we note:
Theorem $1^{*}$. If $G$ is a finite group of order (1) and if $G$ is not p-solvable, the inequality (2) holds.

Indeed, we may assume that $G$ is not simple. Let $H$ be a non-trivial normal subgroup of $G$. At least one of the groups $H$ and $G / H$ is not $p$-solvable and we can use induction.

It is likely that the lower bound (2) in these theorems can be improved substantially. We can prove this when the $p$-Sylow group $P$ of $G$ is of certain special types.

Theorem 2. Let $G$ be a group of an order $g=p^{a} q^{b} g_{0}$ as in (1) and assume
that $G$ is not $p$-solvable. If the $p$-Sylow group $P$ of $G$ is abelian then

$$
\begin{equation*}
g_{0} \geqq \sqrt{\frac{p-1}{2}} \tag{7}
\end{equation*}
$$

Proof. Again, it will suffice to prove this for simple groups G. Choose $X_{j}$ as in the proof of Theorem 1. If again $x_{j}=D g X_{j}$ has the form (5) and if $h=0$, then as we have seen above, $g_{0} \geqq(p-1) / 2$ and this implies (7) for $p \neq 2$. The case $p=2$ is trivial.

Suppose that $h>0$. Since the $p$-Sylow subgroups of $G$ are abelian, the method in the proof of Theorem 1 applies for any element $\sigma \epsilon G$ of order $p$. It follows that $X_{\jmath}(\sigma)$ has at most $g_{0}$ distinct characteristic roots. Now a method of Speiser [6, Theorem 202] shows that if $2 g_{0}^{2}<p-1$, the set of elements of $G$ of order 1 or $p$ forms a normal subgroup of $G$ and this leads to a contradiction. Again, (7) must hold.

Remarks. 1. The preceding proof still applies, if $G$ is a simple group with a non-abelian $p$-Sylow group $P$ satisfying the following condition: If $Y$ is a faithful (reducible or irreducible) representation of $G$ and if $\sigma$ is an element of order $p$ of $P$ not belonging to the center of $P$, then $Y(\sigma)$ has more than $(p-1) / 2$ distinct characteristic roots. For instance, this condition is satisfied, when $P$ is a non-abelian group of order $p^{3}$.
2. Other theorems of a similar type are given in [2].

If $g_{0}$ in Theorem 1 is a fixed number, then there are only finitely many possibilities for $p$ and for $q$. One may conjecture that there exist only finitely many simple groups $G$ of an order (1) with a given value of $g_{0}$. We can only prove this for groups $G$ with abelian $p$-Sylow groups $P$ of given rank.

Theorem 3. Let $G$ be a simple group of order $g$ of the form (1) considered in Theorem 1. Assume that the $p$-Sylow group $P$ is abelian of rank $N$. Then there exists a bound $\beta\left(g_{0}, N\right)$ depending only on the integers $g_{0}$ and $N$ only such that

$$
g \leqq \beta\left(g_{0}, N\right)
$$

Proof. Again, determine $X_{j}$ as in the proof of Theorem 1. If $x_{j}=D g X_{j}$ is given by (3), then $X_{j}$ is of height $h$. It follows that $h$ lies below a bound $\beta_{1}(N)$ depending on $p$ and $N$; (cf. [3]). Then $x_{j}$ lies below a bound depending on $g_{0}$ and $N$. Now, Jordan's theorem (cf. [1]) implies the existence of bounds $\beta\left(g_{0}, N\right)$ as stated in the theorem.

## References

1. H. F. Buchfeldt, Finite collineation groups, University of Chicago Press, Chicago, 1917.
2. R. Brauer, On some conjectures concerning finite simple groups, Studies in mathematical analysis and related topics, Stanford University Press, Palo Alto, 1962.
3. -, On blocks and sections in finite groups II, Amer. J. Math., to appear.
4. R. Brauer and C. Nesbitt, On the modular characters of groups of finite order, University of Toronto Studies, Mathematical Series no. 4, 1937.
5. W. Feit and J. G. Thompson, On groups which have a faithful representation of degree less than ( $p-1$ )/2, Pacific J. Math., vol. 4 (1961), pp. 1257-1262.
6. A. Speiser, Theorie der Gruppen von endlicher Ordnung, third edition, Springer, Berlin, 1937.

Harvard University
Cambridge, Massachusetts

