ON A THEOREM OF BURNSIDE

BY

RICHARD BRAUER¹

A celebrated theorem of Burnside states that the order g of a non-cyclic finite simple group G is divisible by at least three distinct prime numbers. In other words, if we set $g = p^a q^b g_0$ where p and q are primes and a, b, g_0 are positive integers, then $g_0 > 1$. We prove a refinement.

THEOREM 1. Let G be a simple group of finite order

(1)
$$g = p^a q^b g$$

where p, q are distinct primes, and where a, b, g_0 are integers, a > 0. If $g \neq p$, then

(2)
$$g_0 - 1 > \log p / \log 6.$$

Proof. We denote the irreducible characters of G by $\chi_1 = 1, \chi_2, \cdots$ and set $x_j = \chi_j(1)$. Let \mathfrak{p} be a prime ideal divisor of p in the field of g-th roots of unity. If $\sigma \in G$, denote by $c(\sigma)$ the order of the centralizer $C(\sigma)$ of $\sigma \in G$. The principal p-block $B_0(p)$ of G consists of those characters χ_n for which

(3)
$$(g/c(\sigma))(\chi_n(\sigma)/x_n) \equiv g/c(\sigma) \pmod{\mathfrak{p}}$$

for every $\sigma \ \epsilon \ G$. If $\tau \ \epsilon \ G$ has an order divisible by p, then by Theorem VIII of [4],

(4)
$$\sum_{\chi_n \in B_0(p)} x_n \chi_n(\tau) = 0.$$

Of course, $\chi_1 \in B_0(p)$. Now (4) shows that there exist $\chi_j \in B_0(p)$ with $j \neq 1$ for which x_j is not divisible by q. Let p^h be the highest power of p dividing x_j so that

(5)
$$x_j = p^h m, \qquad m \mid g_0.$$

Let X_j denote the irreducible representation of G with the character χ_j . Since G is simple and $j \neq 1, X_j$ is a faithful representation. It follows from a theorem of Feit and Thompson [5] that $p \leq 2x_j + 1$.

If h = 0, then $x_j = m \leq g_0$. Hence $p \leq 2g_0 + 1$, that is, $g_0 \geq (p - 1)/2$. This implies (2) for $p \geq 5$. Since $g_0 \geq 2$, (2) also holds for $p \leq 3$.

Assume now that h > 0. Take σ as an element of order p in the center of a p-Sylow subgroup P of G. Then $g/c(\sigma)$ is not divisible by p. The left side of (3) represents an algebraic integer. It follows that $\chi_j(\sigma)$ is divisible by p^h in the ring of algebraic integers and that

(6)
$$\chi_j(\sigma)/p^h \equiv x_j/p^h = m \pmod{\mathfrak{p}}.$$

Received January 17, 1967.

¹ This work has been supported by a National Science Foundation grant.

Let ε be a primitive *p*-th root of unity. If a_n is the multiplicity of ε^n as characteristic root of $X_j(\sigma)$, we have

$$x_j = \sum_{n=0}^{p-1} a_n$$
, $\chi_j(\sigma) = \sum_{n=0}^{p-1} a_r \varepsilon^n \Rightarrow \sum_{n=1}^{p-1} (a_n - a_0) \varepsilon^n$.

Now, ε , ε^2 , \cdots , ε^{p-1} form an integral basis for the integers in the field of the *p*-th roots of unity. Hence each $a_n - a_0$ is divisible by p^h , say

$$a_n = a_0 + p^h b_n$$

Then

$$x_j = pa_0 + p^h \sum_{n=1}^{p-1} b_n$$
, $\chi_j(\sigma) = p^h \sum_{n=1}^{p-1} b_n \varepsilon^n$

It now follows from (5) that pa_0 is divisible by p^h . Since $\varepsilon \equiv 1 \pmod{\mathfrak{p}}$, (6) shows that $pa_0/p^h \equiv 0 \pmod{p}$. This means that a_0 and then all a_n are divisible by p^h .

Thus all characteristic roots of $X_j(\sigma)$ have a multiplicity divisible by p^h . In particular, $X_j(\sigma)$ has at most $x_j/p^h = m$ distinct characteristic roots.

We say that an irreducible representation X of a finite group G is quasiprimitive, if for every normal subgroup H of G the restriction $X \mid H$ does not have non-equivalent irreducible constituents. In particular, if G is simple, every non-principal irreducible representation is quasi-primitive. It has been proved by Blichfeldt [1, Theorem 9, p. 101] that if X is a faithful quasiprimitive representation of degree x of a group G and if for an element σ of G of order p not in the center of G the transformation $X(\sigma)$ has w distinct characteristic roots, then

$$p < 6^{w-1}$$
.

Actually, Blichfeldt states his theorem only for primitive representations, but his proof remains valid for quasi-primitive representations as defined above. Applying this with $X = X_j$ we obtain

$$\log p < (w - 1) \log 6 \le (m - 1) \log 6 \le (g_0 - 1) \log 6$$

and this implies (2).

As a corollary, we note:

THEOREM 1^{*}. If G is a finite group of order (1) and if G is not p-solvable, the inequality (2) holds.

Indeed, we may assume that G is not simple. Let H be a non-trivial normal subgroup of G. At least one of the groups H and G/H is not p-solvable and we can use induction.

It is likely that the lower bound (2) in these theorems can be improved substantially. We can prove this when the *p*-Sylow group *P* of *G* is of certain special types.

THEOREM 2. Let G be a group of an order $g = p^a q^b g_0$ as in (1) and assume

350

that G is not p-solvable. If the p-Sylow group P of G is abelian then

(7)
$$g_0 \ge \sqrt{\frac{p-1}{2}}.$$

Proof. Again, it will suffice to prove this for simple groups G. Choose X_j as in the proof of Theorem 1. If again $x_j = DgX_j$ has the form (5) and if h = 0, then as we have seen above, $g_0 \ge (p - 1)/2$ and this implies (7) for $p \ne 2$. The case p = 2 is trivial.

Suppose that h > 0. Since the *p*-Sylow subgroups of *G* are abelian, the method in the proof of Theorem 1 applies for any element $\sigma \in G$ of order *p*. It follows that $X_{j}(\sigma)$ has at most g_{0} distinct characteristic roots. Now a method of Speiser [6, Theorem 202] shows that if $2g_{0}^{2} , the set of elements of$ *G*of order 1 or*p*forms a normal subgroup of*G*and this leads to a contradiction. Again, (7) must hold.

Remarks. 1. The preceding proof still applies, if G is a simple group with a non-abelian p-Sylow group P satisfying the following condition: If Y is a faithful (reducible or irreducible) representation of G and if σ is an element of order p of P not belonging to the center of P, then $Y(\sigma)$ has more than (p-1)/2 distinct characteristic roots. For instance, this condition is satisfied, when P is a non-abelian group of order p^3 .

2. Other theorems of a similar type are given in [2].

If g_0 in Theorem 1 is a fixed number, then there are only finitely many possibilities for p and for q. One may conjecture that there exist only finitely many simple groups G of an order (1) with a given value of g_0 . We can only prove this for groups G with abelian p-Sylow groups P of given rank.

THEOREM 3. Let G be a simple group of order g of the form (1) considered in Theorem 1. Assume that the p-Sylow group P is abelian of rank N. Then there exists a bound $\beta(g_0, N)$ depending only on the integers g_0 and N only such that

$$g \leq \beta(g_0, N).$$

Proof. Again, determine X_j as in the proof of Theorem 1. If $x_j = Dg X_j$ is given by (3), then X_j is of height h. It follows that h lies below a bound $\beta_1(N)$ depending on p and N; (cf. [3]). Then x_j lies below a bound depending on g_0 and N. Now, Jordan's theorem (cf. [1]) implies the existence of bounds $\beta(g_0, N)$ as stated in the theorem.

REFERENCES

- 1. H. F. BLICHFELDT, *Finite collineation groups*, University of Chicago Press, Chicago, 1917.
- 2. R. BRAUER, On some conjectures concerning finite simple groups, Studies in mathematical analysis and related topics, Stanford University Press, Palo Alto, 1962.
- 3. ——, On blocks and sections in finite groups II, Amer. J. Math., to appear.

RICHARD BRAUER

- 4. R. BRAUER AND C. NESBITT, On the modular characters of groups of finite order, University of Toronto Studies, Mathematical Series no. 4, 1937.
- 5. W. FEIT AND J. G. THOMPSON, On groups which have a faithful representation of degree less than (p-1)/2, Pacific J. Math., vol. 4 (1961), pp. 1257–1262.
- 6. A. SPEISER, Theorie der Gruppen von endlicher Ordnung, third edition, Springer, Berlin, 1937.

HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS