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1. Introduction

Let G be a connected algebraic linear group over an algebraically closed field
F of characteristic 0, and let L be a fully reducible algebraic subgroup of G.
Let R denote the F-algebra of all rational representative functions on G or,
which is the same, the F-algebra of all polynomial functions of the algebraic
variety structure of G. It is known that G/L has the structure of an affine
algebraic variety, with the left L-fixed part RL of R as the algebra of the poly-
nomial functions. Here, R is viewed as a left L-module, the transform x.f of
an element f of R by an element x of L being defined by (x.f)(y) f(yx) for
all elements y of G.

If L is a maximal fully reducible subgroup of G then G is a semidirect product
N. L, where N is the maximum unipotent normal subgroup of G. Hence R
is then isomorphic with the algebra of all polynomial functions on N, which is
an ordinary polynomial algebra F[tl, t]. Using the cohomological
results of [5], we shall show here that, conversely, if R is an ordinary poly-
nomial algebra then L is a maximal fully reducible subgroup of G.
The general case, where L is not necessarily connected, is reduced to the

case where L is connected by an appropriate consideration of unramified ex-
tensions of affine algebras. Section 2 contains an exposition of the relevant
known algebraic-geometric facts that is especially adapted to our present
purpose. The main results are contained in Section 3, while Section 4 gives
an illustrative example and an implication of the main result concerning the
structure of the algebra of representative functions of a complex analytic
linear group.

2. Unramified extensions

Let R and S be commutative rings with identity element, and with S c R.
We say that R is unramified over S if, for every (unitary) R-module M, the
only S-derivation of R into M is the 0-map. From the point of view of differ-
ential algebra, the significance of this notion may be illustrated as follows.
Suppose that R is an integral domain, and that the field of fractions [R] of R is
separably algebraic over the field of fractions [S] of S. Then every deriva-
tion of S is the restriction to S of one and only one derivation of [R]. The
restriction of this derivation to R, followed by the canonical R-module
epimorphism [R] -- [R]/R is evidently an S-derivation of R into the R-module
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[R]/R. If R is unramified over S this is the 0-map, which means that our
derivation of JR] sends R into R. Thus, in this case, every derivation of S
extends uniquely to a derivation of R.
We shall eventually be concerned only with the case where R and S are

arlene algebras over a field F, i.e., integral domains containing F and being
finitely generated as F-algebras.

In discussing unramified ring extensions, it is convenient to introduce the
module of differentials, which is defined as follows. Let R and S be commuta-
tive rings with identity element and with S c R. Let J denote the kernel of
the multiplication mapR (R) s R --, R. The module Ds(R) of the S-differentials
of R is defined as the R-module j/j2. One has the canonical S-derivation
d:R Ds(R), where d(x) is the canonical image in J/J2 of the element
x (R) 1 1 (R) xofJforeveryxinR. One sees easily that the image of R
in Ds(R) is a system of R-module generators. Now if M is any R-module and
if r is any S-derivation of R into M then there is one and only one R-module
homomorphism r* Ds(R) --+ M such that r* d r. Hence R is unramified
over S if and only if Ds(R) (0).

Let P be a commutative ring with identity element containing S as a sub-
ring. Then the identification of (P (R) s R) (R) e (P (R) s R) with P (R) s (R (R) . R)
gives rise to a canonical P (R) s R-module homomorphism of P (R) s Ds(R) into
De,(P (R) s R), where P’ denotes the canonical image of P in P (R) s R. Using
the above universal property of the module of differentials, one shows readily
that this is actually an isomorphism. In particular, suppose that R and S
are algebras over a field F. Let K be an extension field of F, and put
P K (R)S. ThenP (R)sR K (R)R, so that the above becomes an
isomorphism of K (R) Ds(R) onto DK(R)Fs(K (R) r R). Hence R is unramified
over S if and only if K (R) R is unramified over K (R) S.
We observe, for use below, that if F is algebraically closed and R is an

affne algebra over F then K (R) R is an integral domain and hence an affine
algebra over K. A proof of this well-known fact is easily extracted from
[3, Ch. V]; see Corollary 2, p. 82 and Lemma 3, p. 84, noting that the field of
fractions of R is separable over F.
The following result on polynomial algebras is vital for our present purpose.

Let S be the ordinary polynomial algebra Fix1, x,] over an algebraically
dosed field F of characteristic O. Let R be an ane F-algebra containing S.
Suppose that R is unramified over S and finitely generated as an S-module.
Then R S.

Our definition of unramified ring extension is in accord with the notions of
algebraic geometry to the extent that our assumption that R be unramified
over S implies that the affine algebraic variety determined by R is unramified
over the affine algebraic variety determined by S, in the sense of Chapter VI
of [2] (for example). Hence the above result is actually contained in known
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far more general results of algebraic geometry. In particular, it is contained
in Th. 5, p. 88, of [1]. The following explicit application of the "Lefschetz
Principle," which was pointed out to me by Chevalley, reduces the above
result to the case where the base field F is the field C of the complex numbers,
in which case the result, follows almost immediately from the elementary
facts of the topology of manifolds.

It is easy to see that we can find a subfield F0 of F that is an algebraic closure
of a finitely generated extension of the field Q of the rational numbers such
that R F (R)o Ro, where Ro is an Fo-algebra that contains Fo[xl, x]
and is finitely generated as an Fo[xl, x]-module. Then Ro is evidently
an affine Fo-algebra. Since R is unramified over S F (R) ’o Fo[x x],
we know from what we have seen above that Ro is unramified over
Fo[x, "", x,d.
Now we may regard F0 as a subfield of the field C of the complex numbers.

Since F0 is algebraically closed, we know from the above that C (R) y0 R0 is an
affine C-algebra. Evidently, it contains C[x, Xn] and is finitely generated
as a C[x, ..., x.]-module. Moreover, since R0 is unramified over
Fo[xl x,d, we know that C (R)0 R0 is unramified over C[x x,d
C (R) ’o Fo[x, x,d. If our result holds in the case where F C then we
conclude that C (R) 0 R0 C[xi, Xn], whence R0 Fo[x, Xn] and so
R S. Thus it suffices to prove the result in the case where F C.

In that case, let V denote the affine algebraic variety whose points are the
specializations of R into C and whose algebra of polynomial functions is R.
There is an evident algebraic variety morphism of V onto the algebraic
variety associated with C[xl, x,d, which is simply C. The cohomomor-
phism of is the injection C[x, ..., x,d -+ R. Since R is integral over
C[xl, ..., x,d, t is surjective.

Let p be a point of V, and let T denote the tangent space to V at p. The
elements of T may be identified with the C-differentiations R -. C, i.e., with
the C-derivations R -- C, where C is viewed as an R-module, the endomorphism
of C corresponding to an element f of R being the multiplication by f(p).
The differential of at p is the map of T into the tangent space to C at
t(p) that sends each element of T onto its restriction to C[x, ..., x,].
An element of T that is annihilated by the differential of t is therefore a
C[x, ..., xn]-derivation of R into C. Hence the fact that R is unramified
over C[x, ..., x,d implies that the differential of tt at p is injective. Since
the dimension of Tp is at least equal to the dimension n of V, we conclude that
the differential of is bijective at every point p of V.
Viewing V and C" as complex analytic manifolds and t as a complex analytic

map, we see from the last result and from the fact that the inverse image in V
of each point of C is non-empty and finite, that is a topological covering
map V - C. Since C is simply connected, must therefore be a homeomor-
phism, whence it is clear that we must have R C[x, x].
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3. Affine algebraic homogeneous spaces
Let G be a connected algebraic linear group over an algebraically closed

field F of characteristic 0, and let L be a fully reducible algebraic subgroup of
G. Let R denote the F-algebra of all polynomial functions on G. Then the
left L-fixed part RL of R is the algebra of all polynomial functions on the
affine algebraic variety G/L (see [5, Th. 5.1]). If r is an element of the
R-module TR of all F-derivations of R and x is an element of G then we define
the transform x. r as an element of TR by (x.r) (f) x. r(x-1.f). Similarly,
we define a right action of G on T= by (r. x) (]) r(f. x-1) .x, where (f. x) (y)

f(xy). The Lie algebra G of G may be identified with the right G-fixed
part aTR of TR. Clearly, G is stable under the left action r -- x.r, and this
is the adjoint action of G on G. The R-module of all F-derivations RL

--* R
is canonically isomorphic with R (R) (G/L), and T=L is canonically iso-
morphic with the left L-fixed part (R (R) (G/L)) [5, Cor. 2.1].
For every commutative F-algebra P with identity element, we denote by

A(Tp) the complex of the P-valued differential forms for P, and we refer the
reader to [5, Section 3] for the details of the definition. We recall from there
that the right action of G on T=L, which is defined exactly as the right action
of G on T= was defined above, dualized to a left action of G on A(T=L) with
respect to which A(T==) is a G-module complex over F. By [5, Th. 3.1],
the cohomology space H(A( TR=)) of the G-fixed part of this complex is iso-
morphic, as a graded vector space over F, with the L-fixed part H(G, L)" of the
relative Lie algebra cohomology space H(G, L) for (G, L) in F. The
key facts leading to this result are the relations between derivations and Lie
algebra elements that we described above.

It is known that L is contained in a maximal fully reducible algebraic sub-
group K of G, and that G is a semidirect product N. K, where N is the maximum
unipotent normal subgroup of G. For details and references concerning this,
see [4, Section 3]. Since G is connected, so is K. By [5, Th. 4.1], there
is an isomorphism of graded vector spaces

H(K, L) (R) H(G, K) -- H(G, L)which is obtained by putting together the canonical homomorphism

H(G, K) -- H(G, L),

linear and degree-preserving pre-inverse of the restriction homomorphism

H(G, L) ---+ H(K, L)
(which is surjective because G is the semidirect sum K + N) and the cup
product

H(G, L) (R) H(G, L) -- H(G, L).

Moreover, since L is fully reducible, the L-modules involved here are semi-
simple, whence one sees easily that the map H(K, L) -- H(G, L) may be
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chosen so that it is an L-module homomorphism. Since H(G, K) is trivial
as a K-module and hence as an L-module, the above isomorphism then induces
an isomorphism

H(K, L)L (R) H(G, K) -- H(G, L).Via the isomorphism between differential forms cohomology and relative Lie
algebra cohomology given above, and the similar one in which K takes the
place of L, this gives us an isomorphism of graded vector spaces

H(K, L) (R) H(A(TR) a) H(A(TRL)a).
It was shown in [5, pp. 273-274] that A(TL), and similarly A(T),

is rationally injective as a G-module, in the sense of [4]. Because of the semi-
direct product decomposition G N. K, the F-algebra R is isomorphic with
the algebra of all polynomial functions on N. Hence R is an ordinary poly-
nomial algebra over F. This implies, by the elementary algebraic version of
the Poincar Lemma, that the cohomology of A(T.) is trivial, so that this
complex, augmented bythe inection F -- R, is a rationally iniective resolution
of the trivial G-module F, in the sense of [4].
Now let us suppose that R is also an ordinary polynomial algebra. Then

the G-module complex A(TL), augmented by the injection F -- R, is also a
rationally injective resolution of the trivial G-module F. This implies, by
the elementary facts concerning rational group cohomology (see [4]), that the
cohomology spaces H(A(TRy) a) and H(A(T,) a) are isomorphic as graded
vector spaces. In fact, each is isomorphic with the rational cohomology space
of G for the trivial G-module F. If we combine this fact with the above tensor
product isomorphism, we see that we must then have H(K, L) (0)
for every positive n.
The next lemma will show that this implies that L K, provided that L

is connected, or at least unimodular, in the sense below.
If V is a vector space over F then we shall denote by Era(V) the homogeneous

component of degree m of the exterior F-algebra built over V. With represen-
tations of groups and Lie algebras on V, we associate representations on E(V)
in the canonical fashion. Let s denote the dimension of the Lie algebra P
of an algebraic linear group P over F. Then E’(P) is 1-dimensional, so that
the representation of P on Es(P) that is obtained from the adjoint representa-
tion of P on P yields a homomorphism /of P into the multiplicative group F*
of F. We call the adjoint character of P, and we shall say that P is uni-
modular if , is trivial.

IEMMA 3.1. Let Q be a unimodular algebraic linear group over a field F of
characteristic O, and let P be a fully reducible algebraic subgroup of Q. Let
denote the adjoint character of P. Then " is trivial on the connected component
P1 of the identity in P, and H(Q, P) (0), where d is the dimension of
Qo/po and H(Q, po) denotes the characteristic P-submodule of Ha(Q, P)
that belongs to .
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Proof. Since P is fully reducible, P is generated by its center and its com-
mutator subgroup. Hence it is clear that , is trivial on P.

Since P is fully reducible, po is a direct P-module summand of Q. Let
be a P-module projection of Q onto a P-module complement for P in QO.

Let p and q denote the dimensions ofP and QO, respectively, so that d q p.
We choose a non-zero element u of E (P) and define the d-dimensional cochain
f for Q in Eq(Q) by

f(, ..-, ) () ()u,

where the product is taken within the exterior lgebr built over Q, ff,er

identifying E(P) with its canonical image in E(Q). Using that r is u
P-module homomorphism and that Px acts trivially on E(P) as well as on
Eq(QO), one sees directly that f is fixed under the canonical action of P on
the space of cochains for Q in Eq(Q). Moreover, f(a, a) is evidently
0 whenever one of the a’s belongs to po. Thus f is u relative cochain for
(QO, po) in Eq(Q). Since the dimension d of f is equal to the dimension of
Qo/po, it follows that f is necessarily a cocycle. If x is any element of P we
have

(x.f)(, ,) x.f(x- -*0"1 X "0"d)

,()... ()(x.u) ,(x)f(,..., ),

which shows that the cohomology class of f is an element of H(Q, P) note
that the Q-module Eq(Q) may be identified with the trivial Q-module F,
because Q is unimodular.
Now we claim that if g is any (d 1)-dimensional relative cochain for

(QO, po) in Eq(Q) then the coboundary of g is 0. In order to verify this,
choose an F-basis (, ..., ) of (Q), and let v be the product
in E(Q). Then vu is a non-zero element of Eq(Q), so that we may write

g*(( (_)vu, with g*(a a_each g(a, a_) in the form
in F. Now it suffices to show that (g)(, ) 0. A direct compu-
tation with the explicit coboundary formula, using that the exterior multi-
plication by u annihilates every element of P, shows that

()(, ..., ) ]_ (-)-*(, ..., , ..., )(.u).
Here, .u is the transform of u by with respect to the action of QO on

E(QO) that corresponds to the adjoint representation of QO. Hence it is
seen that .u is a sum of products each of which has one factor in (QO),
whence v(e.u) O.

This proves our above assertion, so that we may now conclude that the
cohomology class of f is not 0. Lemma 3.1 is therefore established. Note
that the first part implies that every fully reducible connected algebraic linear
group is unimodular.
Now we are in a position to prove the main result.
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THEOREM 3.2. Let G be a connected algebraic linear group over the alge-
braically closed field F of characteristic O. Let L be a fully reducible algebraic
subgroup of G. Then the algebra RL of all polynomial functions on the ane
algebraic variety G/L is an ordinary polynomial algebra if and only if L is.
maximal fully reducible in G.

Proof. Let K be a maximal fully reducible subgroup of G containing L..
It is known that if L K then RL is a polynomial aIgebra. Now suppose
that R is a polynomial algebra. If L is connected it follows then from the
above that L K. In fact, since both K and L are then unimodular, Lemma
3.1 says that H(K, L) (0), where d is the dimension of K/L. By
what we had seen earlier, this forces d 0, so that L K and so L K.

It remains to be proved only that if R is an ordinary polynomial algebra
then L must be connected. Let L1 denote the connected component of the
identity in L. We claim that R1 is unramified over RL. In order to see this,
consider the module D,(R1) of the RL-differentials of R1. Let A denote
its annihilator in R1. The left action of L on R1 reduces to an action
of the finite group L/L1, and R is the L/Ll-fixed part of R1. In particular,
this shows that R is finitely generated as an RL-module, so that

R + + R%,
where the f’s are elements of R that are integral over R. Let m(x) denote
the monic minimum polynomial for f in the polynomial ring R[x]. Then,
if m’i(x) denotes the formal derivative of m(x) in R[x], it is easily seen that
the product m(f) m(f) is a non-zero element of A. Thus A (0).

Since the intersection of the family of all maximal ideals of R is (0), there
must therefore be a maximal ideal P of R such that A is not contained in P.
Now the right action of G on R stabilizes R and R, and the induced action
of G on RL corresponds to the transitive action of G on GILl. It follows that
G stabilizes A and acts transitively on the set of the maximal ideals of R.
Hence we conclude that A is not contained in any maximal ideal of R,
which means that A R’, whence D,(R’) (0).
Thus R is unramified over RL. Hence we conclude from the main result

of Section 2 that we must have R R, so that L1 L. This completes
the proof of Theorem 3.2.

4. Illustration

If A and B are affine algebras over a field F, with A B, and if B is un-
ramified over A and finitely generated as an A-module, then let us say that
B is an unramified module-finite extension of A. If F is algebraically closed
and of characteristic 0, and if A is the algebra R of polynomial functions
on a homogeneous affine variety G/L as above, then our result shows that if
the cohomology of the A-valued differential forms for A is trivial and if A has no
proper unramified module-finite extensions then A is an ordinary polynomial
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algebra over F. It would be interesting to know whether or not this is a
characterization of the ordinary polynomial algebras among arbitrary (or at
least among the regular) affine algebras over F.
The following example shows that the condition that the differential forms

cohomology be trivial does not suffice for the conclusion that A is a polynomial
algebra. Let G be the group SL(2, C) of all 2 by 2 matrices of determinant
1 over the field C of the complex numbers. Let L be the fully reducible
algebraic subgroup of G that is generated by the matrices of the form ( a-1)
where a ranges over all non-zero complex numbers, and the matrix (0 -0).
Then L1 is the group of the matrices ( a-l) and L/L1 is of order 2. Let R
be the algebra of all polynomial functions of G. Noting that G is fully re-
ducible, we may apply [5, Th. 3.2], which gives that H(A(T,.) is isomorphic
with H(G, L)L. Now this relative Lie algebra cohomology space is easily
computed. One finds, first, that HI(G, L) (0), while H2(G, L) is
1-dimensional. Now the action of L on H(G, L) goes via the group L/L1
of order 2 and hence is determined by the action of the single element ( -01),
which is easily seen to act on H(G L) so as to send each cohomology class
u onto -u. Hence we have H’(G, L)L (0) for every n > 0. Thus RL

has trivial differential forms cohomology. On the other hand, R cannot
be a polynomial algebra, because this would imply that G/L is homeomorphic
with C2, while the canonical map G/L1 ---. G/L is a non-trivial covering.

Finally, we point out a bearing of Theorem 3.2 on the structure of the
algebra (R(G) of all complex analytic representative functions of a faithfully
representable complex analytic group G. It has been shown in [7] that G
can be endowed with affine algebraic variety structures that are compatible
with the structure of G as a complex analytic manifold and are such that the
translation action of G on itself from the right is an action by automorphisms
of the algebraic variety. It has been shown there also that the corresponding
algebras of polynomial functions may be identified with the left stable basic
subalgebras of (G), i.e., with the left stable subalgebras B such that the
elements of exp (Hom (G, C) are free over B and, together with B, generate
all of t(G).
These structures all arise in the following way. For every such algebraic

variety structure, there is an algebraic group hull G* of G and a fully reducible
(abelian and connected) algebraic subgroup L of G* such that G* LG
and G*n L (1), and the algebraic variety structure of G is obtained by
transporting the canonical algebraic variety structure of L\G*. The cor-
responding basic subalgebra B is then canonically isomorphic with the algebra
of all polynomial functions on L\G*.
Changing sides appropriately in Theorem 3.2, we conclude that B can be an

ordinary polynomial algebra over C only if L is maximal fully reducible in G*.
But a maximal fully reducible subgroup of G* must contain a maximal reduc-
tive subgroup of G. Hence, if B is a polynomial algebra then G has no non-
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trivial reductive subgroups. By the structure theory of complex analytic
linear groups, this implies that G is simply connected and solvable.

Conversely, if G is simply connected and solvable then the basic subalgebras
of (R(G) are ordinary polynomial algebras over C. For this, we recall that
all basic subalgebras of t(G) are isomorphic as C-algebras, and that the stand-
ard construction of basic subalgebras yields a polynomial algebra in the case.
where G is simply connected and solvable (see [6, Section 3]). Thus we have.
the result that if G is a faithfully representable complex analytic group then the
basic subalgebras of ((G) are polynomial algebras over C if and only if G is
simply connected and solvable.

REFERENCES

1. S. ABHYANKAR, Tame coverings and fundamental groups of algebraic varieties, Amer.
J. Math., col. 81 (1959), pp. 46-94.

2. C. CHEVALLY, Fondements de la g$omtrie algtbrique, Facult4 des Sciences de Paris,
1957/1958, mimeographed notes.

3.--, Algebraic functions of one variable, Amer. Math. Soc. Math. Surveys, no.
VI, 1951.

4. G. HOCHSCHLD, Cohomology of algebraic linear groups, Illinois J. Math., col. 5 (1961),
pp. 492-519.

5. G. HOCHSCHILD AND B. KOSTANT, Differential forms and Lie algebra cohomology for
algebraic linear groups, Illinois J. Math., col. 6 (1962), pp. 264-281.

6. G. I-IOCHSCHILD AND G. D. MOSTOW, On the algebra of representative functions of an
analytic group, Amer. J. Math., col..83, (1961), pp. 111-136.

7., Aine embeddings of complex analytic homogeneous spaces, Amer. J. Math.,
col. 87 (1965), pp. 807-839.

UNIVERSITY OF CALIFORNIA
BERKELEY CALIFORNIA


