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For a recurrent, irreducible M:arkov chain {X} with stationary transition
probabilities P. and stationary measure {r}, the Doeblin-Chung ratio-limit
theorem states [1, p. 48, Theorem 5]

Pi
(1) lim ’-t ’i

for i, j, and m any arbitrary states. Let {X}, n >_ 1 be a M:arkov process
with stationary transition probabilities P(x, E) defined on (gt, 2). Using
Chung’s notation [2] put

L(x,E) P(X,E for some n _> llX0 x)

Q(x,E) P(XeE for infinitely many n >_ llX0 x).

Throughout this paper it will be assumed that condition (C) is satisfied’there
exists a measure m on 2; such that m(E) > 0 implies Q(x, E) 1 for all
x e t. This condition was assumed by Harris [4] and under it he proved the
existence and essential uniqueness of a a-finite stationary measure (he as-
sumed 2: was countably generated, but this assumption was later shown to be
unnecessary [8]). Orey [9, p. 809] asked whether, under condition (C),_, Pk(x, E) -(E)(2) lira kl

’" P(y, F)
(F)

kl

for all E, F in 2, 0 < (F) < , and all x, y outside a fixed -null set. This
is a reasonable analogue of (1) for continuous state spaces. In this paper we
show that this conjecture is false. Jain [7] has recently proved (2) under con-
dition (C) for all E, F in 2, 0 <: (F) < , and all x, y outside a -null set which
can depend upon E and F. Examples in [7] are given, due to Chung, showing
that Jain’s theorem could not be improved to yield convergence for all x, y in
t. These examples partially suggested the idea of the counterexample given
below.
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In the second part of this paper some positive results are given concerning
the ratios in (2). In particular it is shown that an analogue of Orey’s con-
jecture is valid for subsets of a fixed set of finite measure. Elsewhere we
shall examine some more detailed aspects of these ratios.
The construction of the counterexample follows" Let X1, X, be inde-

pendent random variables each of which has the normal distribution with
mean 0 and va.riance 1. The partial sums1X S determine a Markov
process on (R, () where R is the real line and ( is the class of Borel sets. If
m is Lebesgue measure, results of [3] imply the validity of condition (C) (see
also [5]). In this case is Lebesgue measure.
Our aim now is to describe two M:arkov processes related to the S process.

In the discussion to follow, there will be occasion to refer to conditional proba-
bilities related to each of these three processes" S, T and U. The affix 1
will designate the T process and the affix 2 the U process. Lack of an affix
refers to the process S. For instance,

L(x,E) P(U,E for some n >_ l lU0- x)
and

P(x, E) P(S e E So x).

Let A [-1, 1] be the closed interval of real numbers. Since A has posi-
tive, finite Lebesgue measure, P*(x, A) oo for all x; moreover, for
11 x

(3) lim P(x, A) 0

by [7, Theorem 2.5]. Consider, now, a countable set of replicas of A lying
above A in an infinite stack. Call these A, As, let the point of the jth
layer corresponding to x A be called j and set S (Jill j. Endow each
segment A. with the topology of A, i.e., make the correspondence x -j into
a homeomorphism, and designate the Borel field of A. by (.. Let
A0 (J.l A., set R R u A0 and 6 equal to the smallest z-field in R con-
taining and each .. is countably generated and contains the points of
R. Extend Lebesgue measure m to a measure ml on (B by placing m(C) 0
for C

___
A0. Let Bore measurable functions a(x), 0 < a(x)

_
1 for x e A, be

chosen so that

4 b(x) 1/2 lI.% a.(x) >_ sups>_. P(x, A

for all n sufficiently large, and so that in addition b(x) converges monotoni-
cally to 0. This can be done since the right side of (4) converges monotoni-
cally to 0 by (3). The T process will now be defined on (R, ) by specify-
ing one-step transition functions P1. That the following functions are indeed
transition functions (for fixed x, probabilities on R for fixed sets, 6h measur-
able functions) is easily verified.

(5) if xR, P(x,E) P(x,E), E

_
R



610 RECURRENT MARKOV PROCESSES

(6) if jxeSx, PI(j,(j-F 1)x) aj(x)

PI(j E) (1 aj(x) )P+(x, E), ECR

The Tn process restricted to R behaves exactly as the Sn process. Clearly
the measure ml is stationary and it is not difficult to check condition (C) for
the T, process. The U process, defined next, is of principal importance and
exhibits the desired behavior. The Un process is also defined on (R,
with transition probabilities given by

(7) if xeR A, P2(x, E) P(x, E) P(x, E), E

_
R

(8) if x eA, P2(x,E) 1/2P(x,E) 1/2P(x,E), E___R

P2(x, 1) 1/2

(9) if j Sx P2(j E) PI(j E), E R

LEMMA 0. Let [a, b] be a closed, bounded intervaland let E be a fixed set with
re(E) > O. Then infta.b P(x, E) > 0.

Proof. For the S process,

P(x,E)
%//2r

exp
2

du,

a continuous function of x for fixed E. Thus the image of [a, b] is compact
and so closed so that the lemma is true unless P(x0, E) 0 for some x0, which
is impossible.

LEMMA 1. The U,, process satisfies condition C) relative to the measure m

Proof. IfxeR- A,L(x,A) lby(7). Also,

infx L.(x, A) >_ inf, P(x, A) inf, 1/2P(x, A) > 0

by Lemma 0. Hence, inf,,, L(x, A) > 0. Thus Q(x, R) Q2(x, A) for
every x e R by [2, Prop. 7]. If k, e S,,

L(/c, R) >_ 1 II+ a.(x) 1

by (4) and (6) and because b(x) 0. Therefore, L(x, R) 1 for x e R.
Again by [2], 1 Q(x, R1) Q(x, R) for all x e R and Q(x, A) i for all
x e R by the above. Let m(E) > 0. Without loss of generality assume
E

_
R, m(E) > O. ByLemma0,

inf L(x, E) >_ infx P2(x, E) > O,

and once more [2] and the above show Q(x, E) I for all x e R. The proof
is concluded.
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LEMMA 2. For the transition probabilities of the T, process

pk P+k E)1(3x E) < P+(x, E) (x,

for all j > 1, l > 1, all x e A and E

_
R.

Proof. The lemma is true when/ 1 by (6). The proof is by induction
on k. Assume the lemma true for/. Then

p+i(jx, E)

fR PI(J’ dY)Pk(Y’ E) A- a(x)Pk((j "4- 1), E)

1 at(x)) fR P+l(x’ dY)P(Y’ E) -b a(x)P((j -4- 1), E)

<_ (1 at(x) )P++(x, E) -4- a(x)P++(x, E)

P+k+I(X, E), E R.
The proof is complete.

LEMMA 3. For the transition probabilities of the U,, process
kP(x, E) <- P(x, E)

for all l > 1, x eR and E

_
R.

Proof. The lemma is again by induction on k. For/ 1, the truth of the
lemma follows from (7)-(9). Assume its truth for k. If x e R A

P+l(x, E) fR P2(x, E) f, PI(x,dy P2 y, dy P2 y, E)

f P,(z, dy)P(y, E) P,+*(x, E).

+(x, E) f P(x, dy)P2(y, E) -4- P:(x, I)P(I E)

(10) <_ 1/2 f P(x, dy)P(y, E) + P(I E)

kl kl plk+l_< r x, E) + (x, E) (x, E).

The last inequality in (10) follows from Lemma 2.
inally, if j e S

(j, E) P(j, dy)P (y, E) Pt(j, @)P(y, E)

f P(j, d)P(, E) P+(j,

concluding ghe proof.

IfxeA
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Let r2 be the stationary measure for the U process. r2(S) 0 for each x
by results of [4], since otherwise Q(z, S) 1 for somex and all z e R, which is
clearly impossible from the definition of the process. Also, r(A) > 0 since
m(A) > 0, by [4]. If Orey’s question were nswered ffirmtively

P(x, S)
(11) lim (S) 0

(A)P (x,A)

for all x outside aed -null set, nd for all S with x e A, provided (A) < ,
which we assume for the moment. However,

kP(x, S) -a(x) > .sup_ P
_

(x, A) > P(x, A)

for all k sufficiently large, according to (4).
This is sufficient to imply, for all x e A,

(12) lim inf > 1.

Lemma 3 yields

P. (x, S)
(13) lim inf -1 >_ lim inf k-1

’-’ P(x, A) P*(x, A)
kl k=l

(12) and (13) together contradict (11) for an x set of positive measure. If
v(A) , let A’ A be chosen with 0 < (A’) < . Substituting A’ for
A in (12) makes the ratio larger and (13) is still valid. This contradicts 11
for A replaced by A’ and again a contradiction resUlts. This completes the
discussion of the counter-example.

In this section we consider the general Markov process X,}, n k 1 defined
on (, ) with stationary probabilities P(x, E) as introduced in the first
paragraph of this paper. Condition (C) is assumed satisfied. A measurable
function f on is called excessive at x (see e.g. [6]) if

f P(x, dy)f(y) f(x).

For ease of typography, set

P(x, E)
(14) A,(x, y, E, F) - P (y, F)

kl

In case x y in (14) write A,,(x, E, F); if E F, write (14) as A,(x, y, E).
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The complement of a set E is E’.
v-null.

LEMMA 4.
point of .

Proof.

A set E of full measure means that E’ is

to obtain

Let E and F be any fixed sets, 0 < r( F), and let xo be any fixed
Then lim infn_ An(x, xo E, F) f(x) is excessive at all x [t.

Apply Fatou’s lemma and use the divergence of "kl Pk(xo, F) on

n+l

E P(x, E)

f P(x, dy)An(y, Xo, E, F)
P(xo, F)

kl

f P(x, dy)f(y)

_
](x).

LEMMA 5. Let F be a fixed set, 0 < r( F) < . Let E be any set. Then
the function lim infn An(x, E, F) g(x, E) is excessive for all x outside a

fixed r-null set (independent of E).

Proof. For all x, y inside a set gt0 of full measure, limn_ An(x, y, F) 1
by [7, Theorem 3.4]. Without loss of generality, assume [t0 stochastically
closed, i.e., P(x, 20) 1 for every x e 0. For, defining

A0 o’ and A, {x’P(x, An_l) > 0},

[to (J--0 An is stochastically closed and v-full. Thus, the process may be
restricted to [t0 assumed stochastically closed and Lemma 4 is valid for this
restriction. If E0 is the restriction of E to t0, P*(x, Eo) Pk(x, E) for all
and all x 2o. Now, if x0 is any fixed point of [to and x is any point of

lim infn_,, A (x, E, F)

15 lim infn A x, x0, E, F)/limn A x, x0, F)

lim infn, An(x, x0, E, F).

(15) and Lemma 4 complete the proof.

COROLRY. Under the assumptions of Lemma 5,

lim infn, An(x, E, F) >_ r(E)/(F)

for all x outside a fixed v-null set.

Proof. From Lemma 5, if r is a positive integer and

then
lim inf An(x, E, F) g(x, E)

f PT(x, dy)g(y, E) f PT(x, dy)g(y, E)

_
g(x, E)
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for x e 20. There is a set 21

_
20 of full measure so that

limA(y, E, F) -(E)/.(F)
by [7]. Therefore

f Pr(x, dy)g(y, E) <_ f Pr(x, dy)g(y, E) <_ g(x, E).P"(z, gh)
r(F)

r is arbitrary and lim P(x, ) 1 for every x e , yielding the conclusion.

THEOREM 1. Let B be any fixed set, 0 < r(B < .
sets of B with 0 < (S). Then

(16) limn** A,(x, y, R, S) r(R)/(S)

for all x, y outside a fixed r-null set (independent of R and S).

lary,

Let R and S be sub-

Let F be any fixed set, 0 < v(F) < . By the preceding corol-

lim inf A,(x, E, F) >_ ’(E)/’(F)

for all x in the fixed -full set 2o, for any set E. For fixed B, on a -full set
o

limn A,,(x, B, F) r(S)/r(F)

For any set R B, and any x e 20 n o,by [7].

(17)

(B)/r(F) lim A,(x, B, F)

_>. lim sup A,(x, R, F) - lim inf._, A,(x, B R, F)

>_ r(R)/r(F) + r(B R)/’(F) ’(B)/’(F)

by the corollary, and so all inequalities in (17) reduce to equalities. This
means

limsupA(x, R, F) <: ’(R)/r(F)
and by the corollary

limn An(x, R, F) r(R)/r(F).

This is true for any R B and any x restricted to a r-full set depending only
uponFandB. If0 < r(S) andS_B,

A,(x, R, F)/A,(x, S, F) A,(x, R, S)

and taking limits proves (16) when x y. We have

(18) A,,(x, y, S)A,(y, x, F) An(x, S, F)A,(y, F, S).

For x, y in 20 n 0, (18) yields lim A(x, y, S) 1, provided (S) > 0.
Then

(19) A,(x, y, S)A,(x, R, S) An(x, y, R, S),

and for x, y in 20 n 0, taking limits in (19) gives the desired result.
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COROLLARY. Let be a topological space and the Borel field. Suppose
further that the topology 5 on
measure. Then, if R and S are any sets contained in any compact set, 0

limn A,(x, y, R, S) r(R)/r(S)

for all x, y outside a fixed r-null set.

Proof. For each set Bn in
Theorem 1 so that there is a r-full set tl t0 with

lim_. A(x, B, F) r(B,)/r(F)

for each base element Bn and all x in h If R and S are contained in compact
U.= B. ClearlyK, then R u S

limA(x, R, F) r(R)/r(F) and limA.(x, S, F) r(S)/r(F)

for x e fh The proof is completed along the lines of Theorem 1.
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