
SOME EXAMPLES OF SPECTRAL OPERATORS

BY

D. R. SMART

Examples of spectral operators will be produced by two processes"
(i) If T is a given bounded linear operator in a Banach space with eigen-

vectors 1, ., and is the subspace of vectors x ce for which
the series converges unconditionally, we can renorm 9 (2) to make a
Banach space. Then T restricted to becomes a spectral operator (3). A
similar procedure (sketched in 4) can be followed for unbounded operators.

(ii) If T has the Fourier series as its eigenfunction expansion, then on a
subspace of L consisting of functions with lacunary Fourier series, T is a
spectral operator (5).

1. Preliminaries

For our terminology on spectral operators and resolutions of the identity we
refer the reader to [2], [3], where various properties of these objects will also be
found. The notation x will mean1x, where the x are vectors in a
Banach space and convergence means convergence in norm.
By unconditional convergence of x to x, I mean that all rearrangements

of the series converge to x; in other words, reordered convergence as defined in
[1]; i.e.,

(B) x() converges to x for each permutation p(i) of the positive integers.

Following [1] we speak of subseries convergence, if

(D) x() converges for each increasing sequence n(i) of positive integers,

and of bounded-multiplier convergence, if

(E) aix converges for each bounded sequence (ai) of real numbers.

We require

LEMMA 1.1. (B) : (D) ,: (E).

Day [1] proves that (D) (B), and the proof that (B) (D) is similar.
Clearly (E) (D). The following proof that (D) (E) was kindly sup-
lied by Professor Day. We first note that it is enough to consider non-nega-
tive sequences in (E).

If xi is not bounded-multiplier Cauchy, then there is a sequence (ti),
0 _< t _< 1 for all i, for which t x is not Cauchy. Hence there exists a
convex neighborhood U and disjoint blocks B. of terms such that
i, tx U. As runs over the subsets of a set B., x runs over the
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corners of a parallelopiped which contains,tx,:. Therefore, for each j
there is a corner,xwhich does not belong to the convex neighborhood U.
Hence the subseries of x which is made up of all terms in all the . is not
convergent.

Convention. In expressions of the form

sups(...) or sup(...),

J varies over all subsets of the natural numbers and I varies over all finite
subsets.

LEMMA 1.2. If X, is unconditionally convergent, then

This follows from Lemma 1.1.

LEMMA 1.3. If y, is unconditionally convergent and (b,,) is a bounded
sequence, then b,, y,, is unconditionally convergent and

Proof. If b, y then x satisfies (E) and so is unconditionally
convergent.
From the proof quoted for Lemma 1.1, we see that if 0 _< b <_ 1 and

(,) b has only a finite number of non-zero values

then 11 < ill Z: Ilo Moreover, this is true without (,), since
b, yn converges. It follows that

for each bounded real sequence (b,), and hence that

for these sequences.

LEMM 1.4. If X,, is unconditionally convergent, then for each > 0 there
exists K > 0 such that

x, < , if i > g for all i in I.

For if not, choose a sequence I, I, of disioint finite sets of natural
numbers such that ]] x, > for each r; this gives a non-convergent sub-
series of x,,.
We can restate this as

LEMMA 1.5. If

_
x, is unconditionally convergent to x, then

i.e., Ill x Ef Xn ill ---> O, as K -k o.
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2. The space

Let !! be a Banach spce nd let () be a linearly independent sequence
in such that no is in the closed span of { i n/. Equiwlently, there
exists a sequence () in* such that bn() . Thus, if x c,
we must have c i(x).

DEFINITION. j is the set of vectors x such that b(x) is unconditionally
convergent to x, with the norm

Ill x Ill up E,(x) I1.
(By Lelnma 1.2, the right side is finite.

THEOREM 2.1. 9 is a Banach space with the norn

Proof. It is sufficient to show that 9 is complete. Let xn 9 (n >_ 1) and
IIxn x Iii - 0. Then xn x - 0 so that there exists an x such that
x. x -- 0. Thus, for each finite set of integers I, putting

E(I)x _, ,(x)i
we have

sine we hv ll- , II < for , n > K(c), then for each I,

<I). <I). < for , > K(c).

Thus I! <). <I> < for > K<) nd hn

lli--lll< for

LEMMA 2.2. J*
__
*.

Proof. This is obvious since ill’Ill >- I["
3. Behaviour of T in

With !), , and as before, let T be a bounded linear operator in having
the . as eigenvectors with eigenvalues ), (which are not necessarily distinct).

THEOaEM 3.1. T9

__
and T is bounded in

Proof. Since T is bounded, then XI <_ TII. Thus, by (1.3), if
x (x) is in 9, then Tx hi(x) will be in 9. Also by (1.3),
T is bounded in with bound at most 2 sup
To show that T is a spectral operator in 9, write

E() ,.(x),

for each x (x) in 9 and each subset r of the complex plane. Clearly
E(r) is a projection operator in .
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THEOREM 3.2. E(r) is a resolution of the identity and is countably additive
on the Boolean algebra d5 of all subsets of the plane.

Proof. The properties (a) of [2, p. 324] are obvious with the exception of

E(a)II -< K.

To prove (.) with K 2, note that

By countable additivity I mean that E(r)x E(r)x for all x in if r r.
This implies Dunford’s property (e).) In fact, (1.5) gives

THEOnE 3.4. T is a spectral operator in .
Proof. ( can consist of all subsets of the plane, or of all Bord subsets and

r can be the whole of 9*.)
vious, but the property

(3.5)

must be proved. Let g .
The fact that T commutes with all E(r) is ob-

a(T; E(r)9)

___
For x in E(r); i.e., x x,C(x), define

sx (x- .)-’(x).
Since I(), g)-l] _< d-1 where d is the distance from g to , then Sx exists.
By (1.3),

Ill x ill 2 d- III x
Thus S is bounded and

S(T- gI)x (T- gI)Sx x
on E(r).
We can show that T is a scalar type operator.

THEOnEM 3.6. T f XE(dX) in the uniform operator topology.

Proof. Let L, L2, ..., L be disjoint sets with diameter less than
whose union is the disc of radius T . Choose in L. Then

][] Tx S(i)x Ill

up Ix- ,l’[ll (x)lll (by (1.3)

2 I11 111.
4. Unbounded operators

Let , n and be as before. Let T be a closed linear operator in for
which the are eigenvectors with the eigenvalues X let Xn . AS be-
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fore we can define E(r) and show that it is a uniformly bounded resolution of
the identity. Since 9 is not necessarily invariant under T we define a new
operator S in 9 by

D(S) {x xD(T) n 9 and Tx 9}

Sx Tx forxinD(S).

Since T is closed in , S is closed in . If is not equal to some , then
(S ki)-i is closed. If x is a finite linear combination of the , i.e.,
x ,(x),, then

x

and ]ll(S )I)-lx]ll <_ 2sup I(X, ),)-ll.lllxlll. Since (S XI) -1 is
closed, bounded and defined on a dense subset of it is bounded on 9 to .
By 3, (S )I)- is a scalar type spectral operator. Thus we can regard S
as a spectral operator. (For the definition of [4], (S )I)- must be com-
pact, which is true since, by (3.6), (S )I)- can be approximated by finite-
dimensiaal operators.)

5. Spaces of lacunary series

Fix a sequence nl n < of positive integers such that n.+l/nr > Q > 1
for some Q. Consider the subspace of L consisting of functions of the form

(at cos n x + b sin n x).

From [5, Theorem V.8.20] it follows that the L norm on is equivalent to the
L norm (for r > 1). Since the Fourier series is unconditionally convergent
in L2, it is unconditionally convergent in . Thus any operator in L having
the functions cosn x and sin nr x as eigenfunctions will be a spectral operator
in .
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