APPLICATIONS OF A FUNCTION TOPOLOGY ON RINGS WITH UNIT

BY

RICHARD E. CHANDLER AND KWANGIL KOH

Let R be a ring with 1 (we assume this throughout) and let M be a left R-module. Then $M^* = \operatorname{Hom}_{\mathbb{R}}(M, R)$, the dual of M, becomes a right R-module with a module operation defined by (fr)(x) = f(x)r for each $f \in M^*$, $r \in R$, and $x \in M$. Let T be a submodule of M^* and $S = \{\ker t \mid t \in T\}$. The topology on M whose subbase for the neighborhood system of 0 is the set S is called the T-topology on M. It is easy to see that the T-topology is the weakest (coarsest) topology on M such that every element of T is a continuous homomorphism from M into R with the discrete topology (see Chase [1]). In [7], L. E. T. Wu proved that a necessary and sufficient condition that R be left self-injective is that T is precisely the set of all continuous homomorphisms from M with the T-topology into R with the discrete topology for any left R-module M and any submodule T of M^* such that the T-topology is Hausdorff.

Our aim here is to study R when M is restricted to be the left regular R-module, RR. In this case, M^* is the right regular R-module, RR and the submodules of M^* are right ideals in R. Since every element of M^* is represented by right multiplication by an element of R, S is just the set of left annihilators of the elements of T. (If X is a non-empty subset of R, we define X^l , the *left-annihilator* of X, to be $\{r \in R \mid rx = 0 \text{ for all } x \in X\}$. If $X = \{a\}$, we write $X^l = (a)^l$. The right annihilator, X^r , is defined analogously.) Thus, if I is a right ideal in R, we define the T_I topology on R to be the topology whose neighborhood system at 0 has as subbasis $\{(a)^l \mid a \in I\}$.

If I is a right ideal in R, we define C_I to be the set of all $a \in R$ such that the mapping $f_a : (R, T_I) \to (R, \text{discrete})$ defined by $f_a(x) = xa$ is continuous for all $x \in R$. We note here that $x \in C_I$ if and only if $(x)^l \supseteq \bigcap_{i=1}^n (y_i)^l$ for some positive integer n and for some y_1, y_2, \dots, y_n in I. Hence, $C_I \subseteq (I^l)^r$ and if I is finitely generated, then $C_I = (I^l)^r$. In Section 1 we consider a generalization of Wu's result [7] in determining necessary and sufficient conditions for $I = C_I$. We also consider other implications of $I = C_I$. In Section 2 we consider implications of the T_I topology being compact and/or Hausdorff.

1. Implications of $I = C_I$

We first prove the generalization of Wu's result. Note that we obtain a weaker (but similar) condition than left-self injectivity.

THEOREM 1.1. The following three conditions are equivalent:

Received August 15, 1966.

(i) If J is a finitely generated right deal in $R, J = (J^l)^r$.

(ii) If F is a finitely generated free left R-module and A is a cyclic submodule of F then any R-homomorphism from A into R may be extended to an R-homomorphism of F into R.

(iii) $I = C_I$ for all right ideals I in R.

Proof. (i) implies (ii). Let $f: A \to R$ be an *R*-homomorphism where A = Rm for some $m \in F$. Then $m = (a_1, \dots, a_n)$ for some a_1, \dots, a_n in *R*. Suppose f(m) = b. Let $L = \bigcap_{i=1}^{n} (a_i)^i$. Then $L \subseteq (b)^i$ and $L = (\sum_{i=1}^{n} a_i R)^i$. Let $I = \sum_{i=1}^{n} a_i R$. Then *I* is a finitely generated right ideal in *R* so that $I = (I^i)^r$ and so

$$b \in ((b)^l)^r \subseteq L^r = (I^l)^r = I.$$

Consequently, $b = a_1 r_1 + \cdots + a_n r_n$ for some r_1, \cdots, r_n in R. Define $\overline{f}: F \to R$ by

$$f(x_1, \cdots, x_n) = x_1 r_1 + \cdots + x_n r_n$$

for any x_1, \dots, x_n in R. Then \overline{f} is an R-homomorphism from F into R and $\overline{f}(a) = f(a)$ for any $a \in A$.

(ii) implies (iii). Suppose I is a right ideal in R such that there is an a in C_I such that a is not in I. Then there exists a finite number of elements x_1, \dots, x_n , for some positive integer n, in I such that $\bigcap_{i=1}^n (x_i)^i \subseteq (a)^i$. Let $F = R \oplus \dots \oplus R$ (n copies). Define a mapping f by $f(rx_1, \dots, rx_n) = ra$ for all $r \in R$. Then f is an R-homomorphism from the cyclic submodule $R(x_1, \dots, x_n)$ of F into R. If f were extended to an R-homomorphism $\overline{f}: F \to R$, then

$$ra = \bar{f}(rx_1, \dots, rx_n) = \bar{f}(rx_1, 0, \dots, 0) + \bar{f}(0, rx_2, 0, \dots, 0) + \dots + \bar{f}(0, \dots, 0, rx_n).$$

In particular, if r = 1 we have

$$a = \bar{f}(x_1, 0, \dots, 0) + \dots + \bar{f}(0, \dots, 0, x_n)$$

= $x_1 \bar{f}(1, 0, \dots, 0) + \dots + x_n \bar{f}(0, \dots, 0, 1)$

so that $a \in I$ since $x_i \in I$, $i = 1, \dots, n$ and I is a right ideal in R. This contradiction confirms that I cannot be properly contained in C_I . (Note: $I \subseteq C_I$ always.)

(iii) implies (i). Let $x_1, \dots, x_n \in R$ be such that $J = x_1 R + \dots + x_n R$. Then $J^l = \bigcap_{i=1}^n (x_i)^l$ and since $J = C_J$ we have $(J^l)^r \subseteq J$. Since $J \subseteq (J^l)^r$ always, we have $J = (J^l)^r$.

That this theorem is a generalization of Wu's result can be seen from the following theorem and the fact that a regular ring is not necessarily left self-injective (Utumi [5, Example 3]).

THEOREM 1.2. If R is a regular ring with 1 and I is a right ideal of R, then $I = C_I$.

Proof. Let $J = x_1 R + \cdots + x_n R$ be a finitely generated right ideal in R. By [6, Lemma 15], J = eR for some idempotent e in R. Then

$$J^{l} = (eR)^{l} = R(1-e) \text{ and } (J^{l})^{r} = (R(1-e))^{r} \subseteq eR$$

and so $(J^{l})^{r} = J$. By 1.1 we have $I = C_{I}$ for all right ideals I in R.

In general, (R, T_I) will not be a topological ring (of course, the additive group, R^+ , of R will be a topological group with the T_I topology). We end this section with a necessary and sufficient condition for (R, T_I) to be a topological ring.

THEOREM 1.3. If $I = C_I$ for a right ideal I in R, then (R, T_I) is a topological ring if and only if I is a two-sided ideal in R.

Proof. Assume (R, T_I) is a topological ring. Let u be in I and r be in R. Since R is a topological ring, right multiplication by r is a continuous map from (R, T_I) to (R, T_I) . Since u is in I, right multiplication by u is a continuous map from (R, T_I) to (R, discrete). The composition of these maps, which is right multiplication by ru, is then a continuous map from (R, T_I) to (R, discrete). Thus ru is in $C_I = I$, and I is a left (hence two-sided) ideal of R.

Conversely, let *I* be a two-sided ideal in *R*. Then, if $a \in R$, $i \in I$, $(ai)^{l}$ is open in T_{I} . We will show $(x, a) \rightarrow xa$ is continuous in T_{I} . Let

$$xa + \bigcap_{i=1}^{n} (x_i)^l$$

be an open set containing *xa*. Then $x + \bigcap_{i=1}^{n} (ax_i)^i$ is an open set containing x and $a + \bigcap_{i=1}^{n} (x_i)^i$ is an open set containing a and

$$[x + \bigcap_{i=1}^{n} (ax_i)^{l}][a + \bigcap_{i=1}^{n} (x_i)^{l}] = xa + x[\bigcap_{i=1}^{n} (x_i)^{l}] + [\bigcap_{i=1}^{n} (ax_i)^{l}]a + [\bigcap_{i=1}^{n} (ax_i)^{l}][\bigcap_{i=1}^{n} (x_i)^{l}] \subseteq xa + \bigcap_{i=1}^{n} (x_i)^{l}$$

since $\bigcap_{i=1}^{n} (x_i)^l$ is a left ideal in R and $[\bigcap_{i=1}^{n} (ax_i)^l] a \subseteq \bigcap_{i=1}^{n} (x_i)^l$. Thus, $(x, a) \to xa$ is continuous and so (R, T_I) is a topological ring.

2. Implications of (R, T_I) being compact and/or Hausdorff

We now consider the implications of (R, T_I) being compact Hausdorff. It is easy to see that (i) (R, T_I) is Hausdorff if and only if $I^l = (0)$ and that (ii) if (R, T_I) is compact then $R/(x)^l$ finite for all x in I. We shall use these facts subsequently.

It is known that a compact Hausdorff topological group cannot be countably infinite [2, 4.26, p. 31]. We first give two sufficient conditions that it be finite.

THEOREM 2.1. Let (R^+, T) be a compact topological group $(R^+$ is the additive group of R) such that there is an $x \neq 0$ in R with $(x)^l$ open in T. If R is a prime ring, then it is finite.

Proof. Since $R/(x)^{l}$ is compact and discrete and $Rx \cong R/(x)^{l}$, Rx is a

582

finite left ideal in R. Hence, R is a primitive ring with a finite minimal left ideal. By the Wedderburn Theorem [4, p. 445], R is finite.

COROLLARY 2.2. If (R, T_I) is compact for some right ideal $I \neq 0$ and R is prime, then R is finite.

2.2 is not true if we replace the hypothesis that R be a prime ring with the hypothesis that R be a semi-prime ring: Let R be the complete direct product of the rings Z/(p), p a positive prime, $R = \Pi Z/(p)$. Addition and multiplication are component-wise. Let I be the direct sum $\Sigma Z/(p)$. (The subset of $\Pi Z/(p)$ where all but finitely many of the components are zero.) The T_I topology is the product topology (Tichonoff) on $\Pi Z/(p)$ where each Z/(p) has the discrete topology. Thus (R, T_I) is compact Hausdorff and R is an infinite, semi-prime ring.

Denote by C^{I} the set of all a in R such that for each x in R and each open set W containing xa there are open sets U, V containing x, a such that $UV \subseteq W$.

Lemma 2.3. $I \subseteq C^{I} = \overline{C^{I}}$

Proof. Let $t \in I$, $x \in R$, and $xt + \bigcap_{i=1}^{n} (y_i)^{l}$ an open set containing $xt (y_i \in I)$. Let

$$U = x + (t)^{l}, \quad V = t + \bigcap_{i=1}^{n} (y_{i})^{l}.$$

Then

 $UV = xt + x[\bigcap_{i=1}^{n} (y_i)^{l}] + (t)^{l} \cdot t + (t)^{l}[\bigcap_{i=1}^{n} (y_i)^{l}] \subseteq xt + \bigcap_{i=1}^{n} (y_i)^{l}$

since $(t)^{l}t = 0$ and $\bigcap_{i=1}^{n} (y_{i})^{l}$ is a left ideal in R. Thus $I \subseteq C^{I}$.

Let $t \in \overline{C^{r}}$. If $x \in I$, $[t + (x)^{l}] \cap C^{I} \neq \emptyset$. Let $f \in C^{I}$ such that f = t + s for some $s \in (x)^{l}$. Then fx = tx. Since $f \in C^{I}$ there is an open set U containing 0 such that $Uf \subseteq (x)^{l}$. Consequently, $Ut \subseteq (x)^{l}$ so that

$$U[t + (x)^{l}] = Ut + U(x)^{l} \subseteq (x)^{l}.$$

Thus, $t \in C^{I}$.

THEOREM 2.4. Let (R, T_I) be compact Hausdorff for some right ideal I in R. If I is a prime ring, R is finite.

Proof. Let $x \in I$, $x \neq 0$. (Since the space is Hausdorff, $I \neq (0)$.) For each $t \in \overline{I}$ there are open sets U_t , V_t containing 0, t, respectively, such that $U_t V_t \subseteq (x)^l$ by 2.3. Since \overline{I} is compact in the subspace topology, finitely many of the V_t cover \overline{I} . Let U_1, \dots, U_n be the corresponding U_t 's and let $U = \bigcap_{i=1}^n U_i$. Then $U\overline{I} \subseteq (x)^l$ and so UIx = (0). If there were a $y \neq 0$ in $U \cap I$, then $yIx = 0, x, y \in I, x \neq 0 \neq y$, contradicting the hypothesis that Ibe a prime ring. Thus $U \cap I = (0)$ and so I is discrete in the subspace topology. By [2, Th. 5.10, p. 35], I is closed and consequently must be compact and is thus finite. Let $I = \{x_1, \dots, x_n\}$. Then $(0) = I^l = \bigcap_{i=1}^n (x_i)^l$ so that (0) is an open set. Hence, T_I is discrete.

The next theorem is an analogue of a theorem of Kaplansky [3, Cor. 1, p. 162]. We first prove the following lemma.

LEMMA 2.5. If (R, T_I) is Hausdorff and $a \in R$, $(a)^r$ is closed in T_I .

Proof. Suppose there is a $t \in (a)^r$, $t \notin (a)^r$. Then $at \neq 0$. Let $at + \bigcap_{i=1}^n (y_i)^i$ be an open set containing at and not containing 0. Then

 $a[t + \bigcap_{i=1}^{n} (y_i)^{l}] \subseteq at + \bigcap_{i=1}^{n} (y_i)^{l}.$

However,

 $[t + \bigcap_{i=1}^{n} (y_i)^{l}] \cap (a)^{r} \neq 0.$

So there is a b in $t + \bigcap_{i=1}^{n} (y_i)^{l}$ such that $b \in (a)^{r}$. Consequently,

$$0 = ab \epsilon at + \bigcap_{i=1}^{n} (y_i)^{l},$$

a contradiction. Thus, $(a)^r$ is closed.

THEOREM 2.6. Let (R, T_I) be compact Hausdorff for some right ideal I. If R has no proper closed two-sided ideals, then R is a finite prime ring.

Proof. Suppose $x \in R, x \neq 0$. Then $xR \neq 0$ and so xR is a non-zero right ideal of R. Since $(xR)^r$ is the intersection of all sets of the form $(t)^r$, $t \in xR$, by 2.5 we have that $(xR)^r$ is closed in T_I . By hypothesis, $(xR)^r = (0)$. Consequently, $xRt \neq (0)$ if $t \neq 0$. Thus R is a prime ring so by 2.1, R is finite.

Finally, we give two theorems which are concerned with the structure of rings which are compact Hausdorff in a T_I topology. The first involves semiprime rings. In the second we remove this restriction.

THEOREM 2.7. Let R be a semi-prime ring and (R, T_I) compact Hausdorff for some maximal right ideal I in R. Then, either R/I is a division ring, or R is isomorphic to a subdirect sum of finite simple rings.

Proof. Since R is a semi-prime ring, $\bigcap_{\alpha \in A} P_{\alpha} = (0)$, where $\{P_{\alpha}\}_{\alpha \in A}$ is the set of all prime ideals in R. If $I = P_{\alpha}$ for some $\alpha \in A$, R/I is a division ring. If R/I is not a division ring, $I \not \oplus P_{\alpha}$ for any $\alpha \in A$. Let $Q(T_{I})$ be the quotient space topology induced on R/P_{α} by T_{I} (see [2, p. 36]). If $(x)^{l} + P_{\alpha} = R$ for all $x \in I$ then 1 = t + p for some $t \in (x)^{l}$ and $p \in P_{\alpha}$. Hence, x = tx + px = px and $I \subseteq P_{\alpha}$. Thus $Q(T_{I})$ is not indiscrete. Since $(R/P_{\alpha}, Q(T_{I}))$ is compact and there is x in R not I such that

$$(x+P_{\alpha})^{l} \supseteq ((x)^{l}+P_{\alpha})/P_{\alpha},$$

by Theorem 2.1, R/P_{α} is a finite prime ring. Let $h_{\alpha}: R \to R/P_{\alpha}$ be the canonical mapping and define f from R onto $\mathfrak{S}_{\alpha\epsilon A} R/P_{\alpha}$, the subdirect sum of the R/P_{α} , by

$$f(r) = (h_1(r), \cdots, h_{\alpha}(r), \cdots).$$

Then f is an isomorphism.

THEOREM 2.8. If (R, T_I) is compact Hausdorff for some right ideal I in R, then there is a mapping f from R onto a subdirect sum of rings, $S_{\alpha \in A} S_{\alpha}$, such that

(i) f is a ring isomorphism

(ii) f is a homeomorphism from (R, T_I) onto $(S_{a \in A} S_a, Product Topology)$

(iii) Characteristic $(S_{\alpha}) \neq 0$.

Proof. If Characteristic $(R) \neq 0$, the theorem follows. Suppose Characteristic (R) = 0. Then for each $x_{\alpha} \in I$, $x_{\alpha} \neq 0$, $R/(x_{\alpha})^{l}$ is finite and has more than one coset. Let n_{α} be the number of cosets in $R/(x_{\alpha})^{l}$. Since $R/(x_{\alpha})^{l} \cong Rx_{\alpha}$, Rx_{α} has n_{α} elements and so $n_{\alpha}x_{\alpha} = 0$. Thus, $n_{\alpha} \cdot 1$ is in $(x_{\alpha})^{l}$. Note that $n_{\alpha} \cdot 1 \neq 0$ since Ch (R) = 0. Define a mapping

$$g: (R, T_I) \rightarrow (R, T_I)$$

by $g(r) = n_{\alpha} r$. Then g is an R-homomorphism from $_{R}R$ into $_{R}R$ and, furthermore, g is continuous. Thus, $g(R) = n_{\alpha} R$ is compact and, hence, is a closed subgroup of R in T_{I} . In the quotient space topology $R/n_{\alpha} R$ is Hausdorff [2, Th. 5.26, p. 40]. Let $S_{\alpha} = R/n_{\alpha} R$ and let $h_{\alpha} : R \to S_{\alpha}$ be the canonical mapping. Define f by

$$f(r) = (h_1(r), \cdots, h_{\alpha}(r), \cdots).$$

Then f satisfies (i) and (ii) by [2, Th. 5.29, p. 42] and Ch $(S_{\alpha}) \leq n_{\alpha}$ so that Ch $(S_{\alpha}) \neq 0$.

Acknowledgment. The authors are indebted to the referee for many helpful suggestions. In particular, a simpler proof of the "only if" part of Theorem 1.3 should be entirely credited to him.

References

- 1. STEPHEN U. CHASE, Function topologies on Abelian groups, Illinois J. Math., vol. 7 (1963), pp. 593-608.
- 2. EDWIN HEWITT AND KENNETH A. Ross, Abstract harmonic analysis, Berlin, Springer-Verlag, 1963.
- 3. IRVING KAPLANSKY, Topological rings, Amer. J. Math., vol. 69 (1947), pp. 153-183.
- 4. SERGE LANG, Algebra, Reading, Mass., Addison-Wesley, 1965.
- YUZO UTUMI, On continuous regular rings and semisimple self injective rings, Canad. J. Math., vol. 12 (1960), pp. 597-605.
- 6. JOHN VON NEUMANN, On regular rings, Proc. Nat. Acad. Sci. U.S.A., vol. 22 (1936), pp. 707-713.
- L. E. T. WU, A characterization of self-injective rings, Illinois J. Math., vol. 9 (1965), pp. 61-65.

NORTH CAROLINA STATE UNIVERSITY RALEIGH, NORTH CAROLINA