TRIVIAL LOOPS IN HOMOTOPY 3-SPHERES'

BY
WorreaNe HAKEN

In this paper we show that every homotopy 3-sphere possesses a cell-de-
composition I' which is in some respect especially simple:

TuEOREM. If M® is a homotopy 3-sphere then there exists a cell-decomposition
T of M?® with the following properties:

(1) T consists of one vertex E°, v open 1-cells, Ei , -+ - , Er, r open 2-cells,
Ei,.--, E}, and one open 3-cell E°.

(ii) There exist (nonsingular, polyhedral) disks Vi, -+, Vi in M® such
that' Vi =Eiforalli=1,---,r.

(iii) Thedisks Vi, -, Vi may be chosen such that the connected components
of Vin Vi — E° (i % j, between 1 and r) are normal double arcs in which V3 and
V% pierce each other such that the interior of each double arc lies in °Vin °V5,
one of its boundary points lies in Ei , and the other one lies in Ej (see Fig. 1),
and such that Vin Via Vi = E° (if 4, j, k are pairwise different, between 1
and 1).

It is a known fact that every closed 3-manifold M° possesses a cell-decompo-
sition T with property (i) (this follows easily from results in Seifert-Threlfall
[4], see [2, Sec. 5]). If M*is a homotopy 3-sphere, i.e., simply connected, then
this is equivalent to the fact that the 1-skeleton G = Ui E} of I' bounds a
“singular fan” in M® (see [2, Sec. 6]). Now property (ii) of I' means that
G" is a wedge of trivial loops in M?, and (iii) means that G* bounds a singular
fan U, V? which is especially simple in the sense that its single leaves V3
are nonsingular.

As Bing has shown in [1] it would be sufficient for a proof of the Poincaré
conjecture if one could show that every polyhedral, simple closed curve in M®
lies in a.3-cell in M?, or that the 1-skeleton G* of some cell-decomposition I' of
M?liesin a 3-cellin M°. The property (ii) of T means that every single closed
curve Ei © G" lies not only in a 3-cell V3 (which may be obtained as a small
neighborhood of V3) in M* but moreover is unknotted in that 3-cell V. So
one may hope that the above theorem could be used as a tool for proving the
Poincaré conjecture or for deriving further partial results on homotopy
3-spheres.

Proof of the theorem

1. Preliminaries. We choose the semilinear standpoint as described in
[3, Sec. 3], i.e., we assume for convenience that M’ is a piecewise rectilinear
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FIG.I

polyhedron in a euclidean space €*; and all point sets denoted by capital
roman letters are supposed to be piecewise rectilinear polyhedral point sets in
&, ete.

2. Decomposing a singular fan Vi by arcs By. We start with a cell-de-
composition Ty of M*® into one vertex Ej, r; elements, By, - -+ , B, of di-
mens1on 1, r; elements, E%,, - -+ , B3, , of dimension 2, and one open 3-cell
E? ; (the existence of T'; has been proved in [2, Sec 5]). We consider a singu-
lar fan, defined by a map ¢ : Vit — M® with &( V1) denoted by Vi, such that
the followmg holds (the existence of ¢ has been proved in [2, Sec. 6]):

(i) V1® consists of 7y dlsks Vi, .- Vx,, (see Fig. 2), possessmg one
common boundary point E and otherw1se being pairwise disjoint; Vi is dis-
joint, from M°.

(ii) V% is the 1-skeleton Gi = UL, B}, of Ty .

(iii) The only smgulamtles of V3 (with respect to {) are pairwise disjoint,
normal, double arcs A1, -+, A} such that each of the two connected compo-
nents A} ip A of (A (see Fig. 2) possesses Just one boundary point in

Vi — EY and otherwise lies in °Vy (forallj = 1, ,8).

If s = 0 then we may take I; for I and the theorem is proved. So we may
assume that s > 0.

We ehoose a small nelghborhood T% of Giin M®. Thereisa connected com-
ponent Vi of (Vi T?Y) (see Fig. 2) that is a nelghborhood of Vitin Vi
the other connected components of ; (VinT}) are nelghborhoods of the
points "Aj' n °Vitand ‘A7 n °Vi¥in Vi%. Obviously, T%is a Heegaard -handle-
body in M 3 ( compare [3, Sec 2]). For brevity we denote ~(Vy — Vo ) by
V and (VI, - VT ) by Vp .

Now we choose pairwise disjoint arcs By AR B}'in Vi such that (see
Fig. 2):
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FI6.2  ["(WnT’) is indicated by hatching
L (W2nV]) s for brevity denoted by W,

(a) 'B,,',‘ = B'n Vi (forall k =1,-,0); ,

1( b)2 B,,la is disjoint from the A;“s, A7"s, and °B}' is disjoint from
§(VinTy);

(c),1 each connected component of V2 — UL_; B! contains at most two of
the B;’s in its boundary;

(d) each ('3onne(,3ted compon,ent of Vi¥ — UL, B! contains at most one of
the points ‘A n Vi, A" na Vi (j =1, -+, s).

We denote ¢(By), ¢(Vi), ¢(Vid) by BY, Vi:, Vi  respectively, and
Iial Bi by Bl.

3. Projecting the arcs B; into the Heegaard-surface T%. The arcs B}
decompose V3« into nonsingular disks. Hence, if we add small neighborhoods
B of the By’s to the handlebody T3 , then we get a handlebody with ¢ more
handles such that ‘“‘each handle spans a nonsingular disk”; (i.e., we can find a
complete system of meridian circles and a corresponding “‘canonical’”’ system of
longitude circles in the boundary of the new handlebody such that each longi-
tude bounds a nonsingular disk in M* and intersects just one of the meridians,
and that in just one point). But the new handlebody T° 4+ Ui, B is not
necessarily a Heegaard-handlebody in M°. In order to overcome this difficulty
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FIG3

we shall add some more handles to the handlebody in such a way that we ob-
tain a Heegaard-handlebody with the desired properties.

We choose a cell-decomposition T'y of M® which is dual to T' such that the
1-skeleton G of T'y is disjoint from T'% and from the arcs By . Let Tk be a small
neighborhood of Gy in M®. Now M® — °(T% 4+ T%), denoted by H®, may be
represented as cartesian product ‘T% X I', where I' means an interval
0 <z =<1suchthatp X 0 = pforall pe T} and such that ‘T% X 1 = Tk.

We may assume that the product representation of H® is chosen such that
B' “projects normally into "T%”, i.e., such that the following holds:

(A) if pis a point in "T% then p X I' intersects B' at most in two points;

(B) if pis a point in ‘B' then p X °I'is disjoint from B';

(C) if po X I' (poe T?) intersects B' in two points po X @, po X b (see
Fig. 3), where 1 > a > b > 0, and if N3, N are small neighborhoods of
po X a and po X b, respectively, in B', then N “overcrosses” N+ , i.e., N pierces
the “projection cylinder” of Ni (which is the union of all those intervals
p X [0, c]withpe Tiand p X ceNy).

We consider the projection cylinder K* of B, i.e., the union of all those
intervals p X [0, ¢] with p € 'T% and p X ¢ ¢ B' (where ¢ may be zero such that
the interval degenerates to a point in "B'). Correspondingly we denote by
K the projection cylinder of By (k = 1, --+,¢). Letpi, -+, p. be those
points in T for which p; X I" intersects B* in two points, say p: X a;, pi X b,
with1 > a; > b; > 0. We call the points p; X a; the overcrossings points, and
p1 X by the undercrossing points of B, and the intervals p; X [0, b;] the double
arcs of the projection cylinder K>.  We may further assume that

(D) py, -+, pudonot liein Vis.
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4. Decomposing the projection cylinder K by arcs C;. We choose pairwise
disjoint, small neighborhoods N3; of the points p; X a; (I = 1, -+, %) in B’
(see Fig. 4) ; then we choose small neighborhoods L7 of the double ares p; X [0, by
in the projection cylinders of the arcs Ni;. Now ~('Lin °K?®) is an arc C;
(and "L} — °C}is an arc in "T%). Moreover, “(K*> — U%_; L}) consists of ¢
pairwise disjoint disks J; (k = 1, --- , ¢) where J; = ~(K; — U%_, L}).

6. Adding handles B: and C} to the handlebody 7%. We choose small,
pairwise disjoint neighborhoods B: (k = 1, ---,¢) of the ares B} and
Ci(l=1,---,u;see Fig. 4) of the arcs €7 in M® — °T%. Then we consider
the handlebody T% + Ui_; Bi 4+ U%_; C%, denoted by T°. The genus r of T*
isr=r +1t+ u

We denote ther; 4+ ¢ connected components of _[Vg — Ui ¢ (Bin Vi)
(see Fig. 2) by Vite , e, V{%,m; their images under {, denoted by

Viea, -+, Vimgee, are nonsingular disks. Further we denote the disks
(LT — C) (I = 1,---, u) by Vimgui. The boundaries Vi
(¢ =1, -+, r) of the disks Vi are pairwise disjoint (because of (D) in
Sec. 3).

6. Choosing suitable meridian disks in 7°. Now we choose 1 + ¢ pairwise
disjoint meridian disks W3, - -+, Wi, in T% (compare Fig. 2) such that for
allm =1, ---,r .+ ¢

() Wh intersects Vipm in just one piercing point and is disjoint from
Vieiif i = m, i =1,--+,r;
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(8) ‘W2 is disjoint from the ‘B¥Ys (k = 1, -+, ¢) and from the 'C}’s
(I =1,---,u) and intersects ‘K> n "T% at most in isolated piercing points.

Further we denote one of the two connected components of ‘Ci n T% by
Wisri (foralll = 1, .-+, u;see Fig. 4). Then the disks Wi, - -+, W} form
a complete system of meridian disks of 7%, i.e., *T® — Ui W? is an open 3-cell
C*; moreover, the ‘W¥s and the "Vim’s are two “canonical” systems of
1-spheres in "T? i.e., we have

() ‘Win Vis; = one piercing point if j =1 (4,5 =1,---,7).
*
=0 if 71
7. T' is a Heegaard-handlebody. We prove that M° — °T° is a handle-
body by constructing a complete system of meridian disks in M* — °T°.
We choose a complete system, Fi , - - - , Fy; , of meridian disks in the handle-
body M® — °T% such that forall ¢ = 1, - - - , r; the following holds:

(1) FinH'=F; X I}

(2) °F}is disjoint from the arcs ‘Lin T3 (I = 1, --- , %) and from ‘B,

(3) 'F%intersects 'K’ n T} and the Wis (j = 1, ---, r) at most in iso-
lated piercing points;

(4) thg neighborhoods B} , C} of B, Ci, respectively, are small with re-
spect to F; .

Now
M — (T* + K* + UL, F})
is an open 3-cell, since T° + K* + UL, F} collapses to T% + UL, F?; (definition
see [5, p. 201]).

The disks Fy, -+, Fr;, Visees1, -+ +, Viseers are pairwise disjoint
and disjoint from the °C3’s; we denote their union by F*. Further we denote
thedisks J; —"T°(k =1, --- ,¢) by E%. Obviously T® + K* + UL, F} =
T + F* + UL, ES, .

We remove, step by step, the intersections of F* with the E+’s and with
the °BYs in the following way:

If D' is a connected component of F* n E%, (see Fig. 5) then D' = ¢ X [0, c]
for some point ¢ ¢ ‘E% n "Ts where ¢ X ce Eixn 'Bi. Then we may find a
connected component D} = ¢ X [0, &i] of F* n E%, such that a connected
component, say Q*, of E% — D} is disjoint from F*. Then we choose a small
neighborhood @ of @* in M*® — °T*® (see Fig. 5); Q* n F* is a disk D’ containing
D}, such that “("D* — T®) consists of two disjoint arcs Dk , Dyg , “parallel”
toD}. Now Q® — ('T® + 'D?) consists of three disjoint open disks, such that
one of them, denoted by Q% , has a boundary which is the union of Dk and an
open arc in 7%, and such that a second one, denoted by Q¥g , has a boundary
which is the union of Dyy and an open arc in ‘T? (see Fig. 5). Finally let R’
be that connected component of F” n B that contains g1 X ¢. Now we re-
place F* by
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‘Q* is drawn heavy

Exn Eqn Ty FOTS
Fiy = [F" — (D" + "R)] + Q% + Qss .
Obviously F% is the union of #; 4+ u pairwise disjoint disks such that
M? — (T® + Fty + Ui E%) is an open 3-cell; but the number of intersection
arcs in F{yy n Ui, B3, is one less than the corresponding number of F”.

We repeat the procedure described in the above paragraph as often as pos-
sible, and by this we obtain a union Fix of r; + u pairwise disjoint disks, de-
noted by B2y, - - - , B+, , which are disjoint from the disks E% (k= 1, -+ - ,¢)
such that M® — (T® + Uj; E%.) is an open 3-cell, and B} = Ei,nT° =
E%n T® That means that M® — °T° is a handlebody and that the E3/s
form a complete system of meridian disks of M® — °T®; moreover, the meridian

circles "E*; of M® — °T? intersect the meridian circles ‘W3 of T® at most in
isolated piercing points.

8. Constructing I'. We take forI' a cell-decomposition of M® corre-
sponding to the Heegaard-diagram defined by "T° and by the "E*’s and the
Wos:

For the only vertex of I' we choose a point E° in the open 3-cell
°T* — Uiy Wi. For the 1-dimensional elements of T we choose open arcs
Ei,---, E;in °T?such that 'E} = E°,

Ein W} = one piercing point if ¢ =j (forall 4,7 =1,---,7)
=0 if 27

and T® may be regarded as a neighborhood of Uj.; Ei in M® For the
2-dimensional elements of T we choose open disks E, - ,ElinM®— Ui E’i
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such that E; n (M® — °T%) = E2; (as constructed in the last section), and

such that E} n°T® is an open annulus Ex; with Ewin T° = E3;,

‘Er; n°T* © Ui E} where E} lies as often in "Ex; as "E%; intersects ‘W3 (if

"%, does not intersect any ‘W7, then "E%;n °T" is just the vertex E°). For

the only 3-dimensional element of I' we choose the open 3-cell M* — Uj_, E7 .
Now T fulfills condition (i) of the theorem.

9. Constructing the V’s. It remains to show that the EY’s bound non-
singular disks V3 in M® as demanded.

First we choose annuli Virr; in T° such that Vir; = Vi + Ei (this is
possible because of (*) in Sec. 6); we may choose the Viirds such that
“Vir: © °T% and Viipin Vi, = E°ifj 5 ¢ (forall4,j = 1, -+, 7).

Next we deform Vi isotopically into a disk Vir:, in such a way that
Vi — °T° remains fixed and ~( Vim:n °T?) is deformed within 7%, such that
*Vie: 0 Virr: = @; (this is possible since ™( Vim: n °T?) is disjoint from one
of the boundary curves, namely Virin 'T° = Vipg, of Virri). We do this

deformation for all ¢ = 1, - - -, r (where it is permissible to introduce new inter-
sections between different Virpsss).
Then we denote the nonsingular disks Vi 4+ Virpiby Vims (6= 1, - -+ , 7).

The Vins fulfill condition (ii) of the theorem.

In order to fulfill condition (iii) of the theorem we normalize the inter-
sections Vi n Vi (j # 4) by a procedure as described in [2, Sec. 6, Steps
1 to 4]. This does not destroy the nonsingularity of the single Vs, and we
obtain in this way the demanded V?’s.

This finishes the proof of the theorem.
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