A NOTE ON THE GROWTH OF FUNCTIONS IN H^p

BY

G. D. TAYLOR

1. Introduction

The main results of this paper are two theorems on the growth of holomorphic functions in D, the open unit disc. The theorems are:

THEOREM 1. Let $\varphi(r) > 0$ for $0 \le r < 1$ and $\varphi(r) \to 0$ as $r \to 1^-$. Then there exists $f \in H^2$ such that $|f(r_n)| \geq C \varphi(r_n) (1 - r_n)^{-1/2}$ for C a constant and r_n a sequence of real numbers such that $0 < r_n < r_{n+1} < 1$ and $r_n \uparrow 1$. (We assume $\varphi(r)$ $(1-r)^{-1/2} \rightarrow \infty$ as $r \rightarrow 1^-$ without loss of generality.)

THEOREM 2. There exists a function f(z) such that

- f(z) is holomorphic for |z| < 1; (i)

(ii) $|f(z)| = O\{(1 - |z|)^{-\alpha}\}, \alpha > 0;$ (iii) There exists a sequence $\{r_n\}_{n=1}^{\infty}$ such that $r_n < 1$ for all $n, r_n \uparrow 1$ and (iii)a constant C such that $|f(r_n e^{i\theta})| \ge C(1 - r_n)^{-\alpha}$ for each n.

We shall give the proofs of these theorems in Section 2. At present we shall apply them to obtain some information on the growth of a function in H^{p} . By H^{p} , $1 \leq p < \infty$, we mean the class of all holomorphic functions in D, such that

$$\|f\|_{p} = \sup_{r<1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta \right\}^{1/p}$$

is finite. As is well known H^p is a Banach space with norm $\| \|_p$. See [2] for the basic facts about H^p . In [1] it is shown that $f \in H^p$ implies $|f(re^{i\theta})| = o\{(1-r)^{-1/p}\}$. We shall use Theorems 1 and 2 to conclude that this is the best possible result.

We begin by indicating a simpler proof than that found in [1] for the growth condition. Namely, in [3; p. 31] it is shown by a simple argument using infinite series that $f \in H^2$ implies $|f(re^{i\theta})| = o\{(1 - r)^{-1/2}\}$. Since $f \in H^p$ implies $f = I \cdot F$ where I is inner function and F is an outer function in H^{p} with $|f(z)| \leq |F(z)|$, we prove the result for F. But F having no zeros implies $F^{p/2}$ belongs to H^2 so that the desired growth condition for F follows from the continuity of taking roots.

Using Theorem 1 and the factorization of functions in H^p we conclude that the above growth condition is the best possible.

THEOREM 3. For $f \in H^p$ we have that

$$|f(re^{i\theta})| = o\{(1 - r)^{-1/p}\}$$

is the best possible result.

Received January 17, 1967.

Proof. Suppose there exists $\varphi(r) \to 0$ as $r \to 1^-, \varphi(r) > 0$ for $0 \le r < 1$ such that $|f(z)| = O\{\varphi(|z|) (1-|z|)^{-1/p}\}$ for all $f \in H^p$. Let $f \in H^2$. Then $f = I \cdot F$ where I is an inner function and F is an outer function in H^2 . Then $F^{2/p} \epsilon H^p$ implying that

$$|F^{2/p}(z)| \leq C \varphi(|z|) (1 - |z|)^{-1/p},$$

C is a constant. Thus taking roots we see that we have contradicted Theorem 1.

The final remark of this section is to note that Theorem 2 implies there exist holomorphic functions of arbitrarily slow growth in D which are not in H^{p} . This says that H^{p} is a proper subset of all functions holomorphic on D and satisfying $|f(z)| = o\{(1 - |z|)^{-1/p}\}$ which is already well known and may be observed by various other examples (i.e. lacunary series).

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let n_1 be an integer such that $\varphi(1 - 1/2n_1) < 1$. Let $r_1 = 1 - 1/2n_1$. Choose n_2 an integer such that $n_2 > 2n_1$ and $\varphi(1 - 1/2n_2)$ < 1/2. Let $r_2 = 1 - 1/2n_2$. Continue by induction getting a sequence of integers $\{n_k\}_{k=1}^{\infty}$ such that $2n_k < n_{k+1}$ and $\varphi(r_k) < 1/k$ where $r_k = 1 - 1/2 n_k$. Let

$$f(z) = \sum_{k=1}^{\infty} \sum_{n=n_k+1}^{2n_k} (\varphi(r_k)/\sqrt{n_k}) z^n.$$

Note that f is holomorphic for |z| < 1 since each Taylor coefficient, a_n , of f is less than M/\sqrt{n} , where M is some constant. Also, we note that

$$|f(r_k)| = f(r_k) \ge \sum_{n=n_k+1}^{2n_k} (\varphi(r_k)/\sqrt{n_k}) (r_k)^n$$

$$\ge (\varphi(r_k)/\sqrt{n_k}) (1 - 1/2n_k)^{2n_k} (n_k)$$

$$\ge (\sqrt{n_k}/4) \varphi(r_k) = (\sqrt{2}/8) \varphi(r_k) (1 - r_k)^{-1/2}$$

for all k.

Finally, we see that $f \in H^2$ since

$$\sum_{k=1}^{\infty} \sum_{n=n_{k}+1}^{2n_{k}} (\varphi(r_{k})/\sqrt{n_{k}})^{2} = \sum_{k=1}^{\infty} \varphi^{2}(r_{k}) < \sum_{k=1}^{\infty} 1/k^{2} < \infty.$$

Proof of Theorem 2. (The author would like to thank Professor P. Lappan for the assistance he rendered here.)

We need the following well known lemma.

LEMMA 1. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ be holomorphic for |z| < 1. If there exists a constant C such that $\sum_{n=0}^{N} |a_n| \le C(N+1)^{\alpha}$ for all N then $|f(re^{i\theta})| =$ $O\{(1-r)^{-\alpha}\}$ where $\alpha > 0$.

Proof. Fix z such that |z| < 1; then

$$(1 - |z|) |f(z)| \leq (1 - |z|) \sum_{n=0}^{\infty} |a_n| |z|^n$$

$$\leq C \sum_{n=0}^{\infty} (N + 1)^{\alpha} |z|^n$$

$$\leq K(1 - |z|)^{-\alpha+1}$$

since $(1 - |z|)^{-\beta} \sim \sum_{n=0}^{\infty} (n+1)^{\beta-1} |z|^n$ for $\beta > -1$.

Proof of Theorem 3. Let $r_1 = \frac{1}{2}$, $n_1 = 2$ and $P_1(z) = n_1^{\alpha} z^{n_1}$. Noting that for r fixed (r < 1), $n^{\alpha} r^n \to 0$ as $n \to \infty$ and also that $(1 - 1/n)^n \downarrow e^{-1}$ (n > 2), we choose n_2 such that $n_2^{\alpha} > 8(n_1^{\alpha} - 1)$, $n_2 > n_1$ and $r_1^{n_2} < \frac{1}{2}$. Let $r_2 = 1 - 1/n_2$; then $(1 - r_2)^{-\alpha} = n_2^{\alpha}$. Let $P_2(z) = P_1(z) + n_2^{\alpha} z^{n_2}$. Note that for $|z| = r_2$ we have

$$|P_2(z)| \ge n_2^{\alpha} (1 - 1/n_2)^{n_2} - n_1^{\alpha} \ge (n_2^{\alpha}/4) - (n_1^{\alpha}/8) + 1 \ge (n_1^{\alpha}/8) + 1.$$

Suppose $n_1 < n_2 < \cdots < n_{k-1}$ have been choosen (set $r_i = 1 - 1/n_i$ for $i = 1, \cdots, k - 1$) satisfying

(i) $n_i^{\alpha} r_j^{n_i} \leq 2^{j-i}$ for i > j; (ii) $n_i^{\alpha} \leq 8(n_{i-1}^{\alpha} + \dots + n_1^{\alpha} - 1)$ for $i \leq k-1$; and (iii) $|P_i(z)| \geq (n_i^{\alpha}/8) + 1$ for $|z| = r_i$ where $P_i(z) = n_1^{\alpha} z_1 + \dots + n_i^{\alpha} z_i^{n_i}, i \leq k-1$.

Then choose n_k such that $n_k > n_{k-1}$, $n_k^{lpha} r_i^{n_k} \leq 2^{i-k}$ for i < k and

 $n_k^{\alpha} > 8(n_{k-1}^{\alpha} + \cdots + n_1^{\alpha} - 1).$

Let $P_k(z) = P_{k-1}(z) + n_k^{\alpha} z^{n_k}$ and $r_k = 1 - 1/n_k$. Note that for $|z| = r_k$, $|P_k(z)| \ge n_k^{\alpha} r_k^{n_k} - |P_{k-1}(z)|$ $\ge (n_k^{\alpha}/4) - (n_{k-1}^{\alpha} + \cdots + n_1^{\alpha} - 1)$ $\ge (n_k^{\alpha}/8) + 1.$

Let $f(z) = \sum_{k=1}^{\infty} n_k^{\alpha} z^{n_k}$. We have that f(z) is holomorphic for |z| < 1 since $\limsup_{k \to \infty} (n_k^{\alpha})^{1/n_k} = 1$. For $|z| = r_i$, we have

$$|f(z)| \ge n_i^{\alpha} r_i^{\alpha} - \sum_{j=1}^{i-1} n_j^{\alpha} - \sum_{j=i+1}^{\infty} n_j^{\alpha} r^{n_j}$$

$$\ge (n_i^{\alpha}/4) - (n_i^{\alpha}/8) + 1 - \sum_{j=i+1}^{\infty} 2^{i-j} = (n_i^{\alpha}/8).$$

Thus $f | (r_k e^{i\theta}) | \ge (\frac{1}{8}) (1 - r_k)^{-\alpha}$ for each k. Also we note that $r_k \uparrow 1$, showing that condition (iii) is satisfied.

To obtain (ii) let n be a positive integer and choose n_p such that $n_p \leq n < n_{p+1}$. Then

$$\sum_{i=0}^{n} |a_{i}| = \sum_{k=1}^{p} |a_{n_{k}}| = n_{p}^{\alpha} + (n_{1}^{\alpha} + \dots + n_{p-1}^{\alpha})$$
$$\leq (\frac{9}{8})n_{p}^{\alpha} \leq (\frac{9}{8}) (n+1)^{\alpha}.$$

Thus $|f(re^{i\theta})| = O\{(1-r)^{-\alpha}\}$ by Lemma 1.

3. Concluding remarks

In this section we conclude the paper with two observations. The first concerns Theorem 1.

THEOREM 1'. Theorem 1 is true for p such $0 . (Replace <math>\frac{1}{2}$ by 1/p in all appropriate places.)

Proof. Suppose $\varphi(r) > 0$ for $0 \le r < 1$ and $\varphi(r) \to 0$ as $r \to 1^-$ then $\psi(r) = \varphi^{p/2}(r)$ has the same properties. Letting F be the outer part of the $f \in H^2$ with the property that

$$|f(r_n)| \ge C \psi(r_n) (1-r_n)^{-1/2},$$

we have that $G(z) = F^{2/p}(z) \epsilon H^p$ and

$$|G(r_n)| = |F(r_n)|^{2/p} \ge C' \varphi(r_n) (1 - r_n)^{-1/p}$$

on the sequence $\{r_n\}_{n=1}^{\infty}$ where $C' = C^{2/p}$.

The second observation is that the result on the growth condition for H^p also holds for $0 since the factorization theory of <math>H^p$ is also valid for 0 [4; Pg. 338].

References

- 1. G. H. HARDY AND J. E. LITTLEWOOD, A convergence criterion for Fourier series, Math. Zeitschr., vol. 28 (1928), pp. 612-634.
- 2. K. HOFFMAN, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
- 3. E. LANDAU, Darstellung und Begrundung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1929.
- 4. W. RUDIN, Real and complex analysis, McGraw-Hill, New York, 1966.

MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN