A NOTE ON THE GROWTH OF FUNCTIONS IN H^{p}

BY
G. D. Taylor
\section*{1. Introduction}

The main results of this paper are two theorems on the growth of holomorphic functions in D, the open unit disc. The theorems are:

Theorem 1. Let $\varphi(r)>0$ for $0 \leq r<1$ and $\varphi(r) \rightarrow 0$ as $r \rightarrow 1^{-}$. Then there exists $f \in H^{2}$ such that $\left|f\left(r_{n}\right)\right| \geq C \varphi\left(r_{n}\right)\left(1-r_{n}\right)^{-1 / 2}$ for C a constant and r_{n} a sequence of real numbers such that $0<r_{n}<r_{n+1}<1$ and $r_{n} \uparrow 1$. (We assume $\varphi(r)(1-r)^{-1 / 2} \rightarrow \infty$ as $r \rightarrow 1^{-}$without loss of generality.)

Theorem 2. There exists a function $f(z)$ such that
(i) $f(z)$ is holomorphic for $|z|<1$;
(ii) $|f(z)|=O\left\{(1-|z|)^{-\alpha}\right\}, \alpha>0$;
(iii) There exists a sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ such that $r_{n}<1$ for all $n, r_{n} \uparrow 1$ and a constant C such that $\left|f\left(r_{n} e^{i \theta}\right)\right| \geq C\left(1-r_{n}\right)^{-\alpha}$ for each n.

We shall give the proofs of these theorems in Section 2. At present we shall apply them to obtain some information on the growth of a function in H^{p}. By $H^{p}, 1 \leq p<\infty$, we mean the class of all holomorphic functions in D, such that

$$
\|f\|_{p}=\sup _{r<1}\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}
$$

is finite. As is well known H^{p} is a Banach space with norm $\left\|\|_{p}\right.$. See [2] for the basic facts about H^{p}. In [1] it is shown that $f \in H^{p}$ implies $\left|f\left(r e^{i \theta}\right)\right|=o\left\{(1-r)^{-1 / p}\right\}$. We shall use Theorems 1 and 2 to conclude that this is the best possible result.

We begin by indicating a simpler proof than that found in [1] for the growth condition. Namely, in [3; p. 31] it is shown by a simple argument using infinite series that $f \in H^{2}$ implies $\left|f\left(r e^{i \theta}\right)\right|=o\left\{(1-r)^{-1 / 2}\right\}$. Since $f \in H^{p}$ implies $f=I \cdot F$ where I is inner function and F is an outer function in H^{p} with $|f(z)| \leq|F(z)|$, we prove the result for F. But F having no zeros implies $F^{p / 2}$ belongs to H^{2} so that the desired growth condition for F follows from the continuity of taking roots.

Using Theorem 1 and the factorization of functions in H^{p} we conclude that the above growth condition is the best possible.

Theorem 3. For $f \in H^{p}$ we have that

$$
\left|f\left(r e^{i \theta}\right)\right|=o\left\{(1-r)^{-1 / p}\right\}
$$

is the best possible result.
Received January 17, 1967.

Proof. Suppose there exists $\varphi(r) \rightarrow 0$ as $r \rightarrow 1^{-}, \varphi(r)>0$ for $0 \leq r<1$ such that $|f(z)|=O\left\{\varphi(|z|)(1-|z|)^{-1 / p}\right\}$ for all $f \epsilon H^{p}$. Let $f \in H^{2}$. Then $f=I \cdot F$ where I is an inner function and F is an outer function in H^{2}. Then $F^{2 / p} \in H^{p}$ implying that

$$
\left|F^{2 / p}(z)\right| \leq C \varphi(|z|)(1-|z|)^{-1 / p}
$$

C is a constant. Thus taking roots we see that we have contradicted Theorem 1.

The final remark of this section is to note that Theorem 2 implies there exist holomorphic functions of arbitrarily slow growth in D which are not in H^{p}. This says that H^{p} is a proper subset of all functions holomorphic on D and satisfying $|f(z)|=o\left\{(1-|z|)^{-1 / p}\right\}$ which is already well known and may be observed by various other examples (i.e. lacunary series).

2. Proofs of Theorems 1 and 2

Proof of Theorem 1. Let n_{1} be an integer such that $\varphi\left(1-1 / 2 n_{1}\right)<1$. Let $r_{1}=1-1 / 2 n_{1}$. Choose n_{2} an integer such that $n_{2}>2 n_{1}$ and $\varphi\left(1-1 / 2 n_{2}\right)$ $<1 / 2$. Let $r_{2}=1-1 / 2 n_{2}$. Continue by induction getting a sequence of integers $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that $2 n_{k}<n_{k+1}$ and $\varphi\left(r_{k}\right)<1 / k$ where $r_{k}=1-1 / 2 n_{k}$.

Let

$$
f(z)=\sum_{k=1}^{\infty} \sum_{n=n_{k}+1}^{2 n_{k}}\left(\varphi\left(r_{k}\right) / \sqrt{ } n_{k}\right) z^{n}
$$

Note that f is holomorphic for $|z|<1$ since each Taylor coefficient, a_{n}, of f is less than $M / \sqrt{ } n$, where M is some constant. Also, we note that

$$
\begin{aligned}
\left|f\left(r_{k}\right)\right|=f\left(r_{k}\right) & \geq \sum_{\substack{2 n_{k} \\
n_{k}+1}}\left(\varphi\left(r_{k}\right) / \sqrt{ } n_{k}\right)\left(r_{k}\right)^{n} \\
& \geq\left(\varphi\left(r_{k}\right) / \sqrt{ } n_{k}\right)\left(1-1 / 2 n_{k}\right)^{2 n_{k}}\left(n_{k}\right) \\
& \geq\left(\sqrt{ } n_{k} / 4\right) \varphi\left(r_{k}\right)=(\sqrt{ } 2 / 8) \varphi\left(r_{k}\right)\left(1-r_{k}\right)^{-1 / 2}
\end{aligned}
$$

for all k.
Finally, we see that $f \epsilon H^{2}$ since

$$
\sum_{k=1}^{\infty} \sum_{n=n_{k}+1}^{2 n_{k}}\left(\varphi\left(r_{k}\right) / \sqrt{ } n_{k}\right)^{2}=\sum_{k=1}^{\infty} \varphi^{2}\left(r_{k}\right)<\sum_{k=1}^{\infty} 1 / k^{2}<\infty
$$

Proof of Theorem 2. (The author would like to thank Professor P. Lappan for the assistance he rendered here.)

We need the following well known lemma.
Lemma 1. Let $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ be holomorphic for $|z|<1$. If there exists a constant C such that $\sum_{n=0}^{N}\left|a_{n}\right| \leq C(N+1)^{\alpha}$ for all N then $\left|f\left(r e^{i \theta}\right)\right|=$ $O\left\{(1-r)^{-\alpha}\right\}$ where $\alpha>0$.

Proof. Fix z such that $|z|<1$; then

$$
\begin{aligned}
(1-|z|)|f(z)| & \leq(1-|z|) \sum_{n=0}^{\infty}\left|a_{n}\right||z|^{n} \\
& \leq C \sum_{n=0}^{\infty}(N+1)^{\alpha}|z|^{n} \\
& \leq K(1-|z|)^{-\alpha+1}
\end{aligned}
$$

since $(1-|z|)^{-\beta} \sim \sum_{n=0}^{\infty}(n+1)^{\beta-1}|z|^{n}$ for $\beta>-1$.
Proof of Theorem 3. Let $r_{1}=\frac{1}{2}, n_{1}=2$ and $P_{1}(z)=n_{1}^{\alpha} z^{n_{1}}$. Noting that for r fixed $(r<1), n^{\alpha} r^{n} \rightarrow 0$ as $n \rightarrow \infty$ and also that $(1-1 / n)^{n} \downarrow e^{-1}(n>$ 2), we choose n_{2} such that $n_{2}^{\alpha}>8\left(n_{1}^{\alpha}-1\right), n_{2}>n_{1}$ and $r_{1}^{n_{2}^{2}}<\frac{1}{2}$. Let $r_{2}=$ $1-1 / n_{2}$; then $\left(1-r_{2}\right)^{-\alpha}=n_{2}^{\alpha}$. Let $P_{2}(z)=P_{1}(z)+n_{2}^{\alpha} z^{n_{2}}$. Note that for $|z|=r_{2}$ we have

$$
\left|P_{2}(z)\right| \geq n_{2}^{\alpha}\left(1-1 / n_{2}\right)^{n_{2}}-n_{1}^{\alpha} \geq\left(n_{2}^{\alpha} / 4\right)-\left(n_{1}^{\alpha} / 8\right)+1 \geq\left(n_{1}^{\alpha} / 8\right)+1
$$

Suppose $n_{1}<n_{2}<\cdots<n_{k-1}$ have been choosen (set $r_{i}=1-1 / n_{i}$ for $i=1, \cdots, k-1)$ satisfying
(i) $n_{i}^{\alpha} r_{j}^{n_{i}} \leq 2^{j-i}$ for $i>j$;
(ii) $n_{i}^{\alpha} \leq 8\left(n_{i-1}^{\alpha}+\cdots+n_{1}^{\alpha}-1\right)$ for $i \leq k-1$; and
(iii) $\left|P_{i}(z)\right| \geq\left(n_{i}^{\alpha} / 8\right)+1$ for $|z|=r_{i}$ where $P_{i}(z)=$ $n_{1}^{\alpha} z_{1}+\cdots+n_{i}^{\alpha} z^{n_{i}}, i \leq k-1$.

Then choose n_{k} such that $n_{k}>n_{k-1}, n_{k}^{\alpha} r_{i}^{n_{k}} \leq 2^{i-k}$ for $i<k$ and

$$
n_{k}^{\alpha}>8\left(n_{k-1}^{\alpha}+\cdots+n_{1}^{\alpha}-1\right)
$$

Let $P_{k}(z)=P_{k-1}(z)+n_{k}^{\alpha} z^{n k}$ and $r_{k}=1-1 / n_{k}$. Note that for $|z|=r_{k}$,

$$
\begin{aligned}
\left|P_{k}(z)\right| & \geq n_{k}^{\alpha} r_{k}^{n_{k}}-\left|P_{k-1}(z)\right| \\
& \geq\left(n_{k}^{\alpha} / 4\right)-\left(n_{k-1}^{\alpha}+\cdots+n_{1}^{\alpha}-1\right) \\
& \geq\left(n_{k}^{\alpha} / 8\right)+1
\end{aligned}
$$

Let $f(z)=\sum_{k=1}^{\infty} n_{k}^{\alpha} z^{n_{k}}$. We have that $f(z)$ is holomorphic for $|z|<1$ since $\lim \sup \left(n_{k}^{\alpha}\right)^{1 / n_{k}}=1$. For $|z|=r_{i}$, we have

$$
\begin{aligned}
|f(z)| & \geq n_{i}^{\alpha} r_{i}^{\alpha}-\sum_{j=1}^{i-1} n_{j}^{\alpha}-\sum_{j=i+1}^{\infty} n_{j}^{\alpha} r^{n_{j}} \\
& \geq\left(n_{i}^{\alpha} / 4\right)-\left(n_{i}^{\alpha} / 8\right)+1-\sum_{j=i+1}^{\infty} 2^{i-j}=\left(n_{i}^{\alpha} / 8\right)
\end{aligned}
$$

Thus $f\left|\left(r_{k} e^{i \theta}\right)\right| \geq\left(\frac{1}{8}\right)\left(1-r_{k}\right)^{-\alpha}$ for each k. Also we note that $r_{k} \uparrow 1$, showing that condition (iii) is satisfied.

To obtain (ii) let n be a positive integer and choose n_{p} such that $n_{p} \leq n<$ n_{p+1}. Then

$$
\begin{aligned}
& \sum_{i=0}^{n}\left|a_{i}\right|=\sum_{k=1}^{p}\left|a_{n_{k}}\right|=n_{p}^{\alpha}+\left(n_{1}^{\alpha}+\cdots+n_{p-1}^{\alpha}\right) \\
& \leq\left(\frac{9}{8}\right) n_{p}^{\alpha} \leq\left(\frac{9}{8}\right)(n+1)^{\alpha}
\end{aligned}
$$

Thus $\left|f\left(r e^{i \theta}\right)\right|=O\left\{(1-r)^{-\alpha}\right\}$ by Lemma 1.

3. Concluding remarks

In this section we conclude the paper with two observations. The first concerns Theorem 1.

Theorem 1'. Theorem 1 is true for p such $0<p<\infty$. (Replace $\frac{1}{2}$ by $1 / p$ in all appropriate places.)

Proof. Suppose $\varphi(r)>0$ for $0 \leq r<1$ and $\varphi(r) \rightarrow 0$ as $r \rightarrow 1^{-}$then $\psi(r)=\varphi^{p / 2}(r)$ has the same properties. Letting F be the outer part of the $f \in H^{2}$ with the property that

$$
\left|f\left(r_{n}\right)\right| \geq C \psi\left(r_{n}\right)\left(1-r_{n}\right)^{-1 / 2}
$$

we have that $G(z)=F^{2 / p}(z) \in H^{p}$ and

$$
\left|G\left(r_{n}\right)\right|=\left|F\left(r_{n}\right)\right|^{2 / p} \geq C^{\prime} \varphi\left(r_{n}\right)\left(1-r_{n}\right)^{-1 / p}
$$

on the sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ where $C^{\prime}=C^{2 / p}$.
The second observation is that the result on the growth condition for H^{p} also holds for $0<p<1$ since the factorization theory of H^{p} is also valid for $0<p<1$ [4; Pg. 338].

References

1. G. H. Hardy and J. E. Littlewood, A convergence criterion for Fourier series, Math. Zeitschr., vol. 28 (1928), pp. 612-634.
2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, New Jersey, 1962.
3. E. Landau, Darstellung und Begrundung einiger neuerer Ergebnisse der Funktionentheorie, Springer, Berlin, 1929.
4. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.

Michigan State University
East Lansing, Michigan

