
ALGEBRAICALLY TRIVIAL DECOMPOSITIONS OF HOMOTOPY
8-SPHERES

BY

Every compact 3-manifold M without boundary possesses a cell-decomposi-
tion that contains iust one vertex, say 0, (see for instance [3, Sec. 5]). From
we may read by a well-known procedure (see [7, 62]) a "corresponding"’

presentation
(,z,) ({, ..., o}, {, ...,

of the fundamental group I(M8) where the generators g, g are in 1-1
correspondence with the (oriented) 1-dimensional elements E, ..., E of
I, and the relators r, r are in 1-1 correspondence with the 2-dimensional
elements E, E of , i.e., r is a word in the g obtained by running
once around the boundary of E. In this way the relators are uniquely de-
fined up to cyclic permutations and inversions, i.e., if we denote by
set of all cyclic permutations of r. and of r: then the (r)’s are uniquely
fined.

In the special case that M is a homotopy 3-sphere, () is a presentation
of the trivial group. However, it isin generalan unsolved problem to
recognize whether or not a given presentation () presents the trivial group;
this problem seems to be extremely difficult and it may be unsolvaable, since
the triviality problem of group theory is unsolvable (see [1], [6]). One might
expect that these group theoretic difficulties are also the reason for the diffi-
culties of the Poincar problem. But the result of this paper shows that this
is not so: We shall prove that every homotopy 3-sphere M possesses a cell-
decomposition such that the corresponding presentation

() ({, ..., o}, , ..., }
is obviously trivial, i.e., such that () can be transformed by simple cancella-
tion operations (without changing the generators g and the number b of rela-
tors) into the "standard trivial presentation"

) ({, ..., }, {, ..., go, 2-=})
where .- means that ) contains b a times the empty relator (i.e., the re-
lations of ) are g 1, ga 1, and b a times the trivial relation
1 1). To make this precise we say that a presentation is obtained from
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Here the equality sign means that both sides of the equation represent the same

group element; but in general, if not stated otherwise, we call two words equal if and
only if they read, letter by letter, in the same way.
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v} by a cancellation operationa presentation ’ ({gl, ga}, {r,1,
of Type 1 or 2, respectively, if the following holds:

Type 1. (Cancelling a syllable g[.g.) For some i, j (i 1, ..., a;
j 1, b) there is a word r" such that g71 g r" e (v.) and " is obtained
by replacing vj. by r". (Note that this operation does not in general allow
cancelling a syllable g g71.)

Type 2. (Cancelling a syllable which is itself a relator.) For some j,
(j, k 1, b;j k) there are words r such that
(r), and " is obtained by replacing v by vrt; the length of v is called the
length of the cancellation operation.

We shall prove the following

THEOREM. IfM is a homotopy 3-sphere then there exists a cell-decomposition
of M3, containing just one vertex O, such that a corresponding presentation

() ({gl ga}, r,1, r,b}

of the fundamental group r(M3) with generators g and relators v can be trans-
formed into the standard trivial presentation

..., go}, ...,
by means of a finite sequence of cancellation operations of Type 1 and a subse-
quent finite sequence of cancellation operations of Type 2 with lengths not exceed-
ing 3.

One might call a cell-decomposition with the above properties "algebrai-
cally trivial". I hope that the above theorem will be useful for deriving a proof
of the Poincar conjecture. However, this remains a difficult problem. A
reason for the difficulty is the lack of correspondence between Tietze trans-
formations of the group presentation () and transformations of the cell-
decomposition 9. If a presentation is derived from (I,) by a Tietze
transformation then we may ask the question: does there exist a cell-decompo-
sition of M such that corresponds to ? Let us call the Tietze transfor-
mation good if the answer to the question is "yes", and bad if the answer is
"no". Unfortunately, most Tietze transformations are bad from this point
of view. The only large class of good and simple Tietze transformations I
know are the eliminations: If ?() ({g, ga}, 11, lb} contains
a relator, say r, such that for some g m- e (r) where m is a word in the
g’s not containing g, and if is obtained from (@) by deleting g and v
and replacing in all relators r (j l) the letter gl by the word m1, then
the Tietze transformation (I,) -- is good. Moreover, I would like to
remark without proof" If it were possible to restrict the lengths of the cancel-
lation operations in our theorem to 2 instead of 3 then the sequence of cancella-
tion operations could be changed into a sequence of good Tietze transform-
ations. This would mean a proof of the Poincarg conjecture since it is easy
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to show that M is a 3-sphere if it possesses a cell-decomposition f such that
the standard trivial presentation corresponds to f.

Proof of the theorem
1. Preliminaries. Let M be a homoopy 3-sphere, i.e., a compact, simply

connected 3-manifold without boundary.
We choose the semilinear standpoint as described in [4, Sec. 3]; i.e., we as-

sume that all point sets, denoted by capital roman letters, are piecewise recii-
linear polyhedral point sets in a euclidean space of sufficiently large dimen-
sion n, etc. We denote the closure, boundary, and interior of a point set X by
X, "X, X, respectively.

2. The idea of the proof. First we consider (as in [3], [5]) a cell-decomposi-
tion 1 of M into one vertex E, r open arcs E r open disks E, and one open
3-cell, and a singular fan V corresponding to r (i.e., a wedge of r singular disks
V with "V / where the V’s may intersect themselves and each other in
double arcs; for details see [3, Sec. 5, 6]). Let T be a small neighborhood of
"V in M. Now we consider the "middle parts," A, of the double arcs
A (j 1, s) of V that lie outside of T (see Fig. 1) and the ’middle
part" V* of V obtained from V by removing its boundary "V and the open
annuli that lie in the V a T’s between "V and V "T. Since T is a
tIeegaard-handlebody in M we can "project" the A,’s into "T (in the same
way we projected the arcs B in [5, Sec. 3]) so that we obtain a projection cylin-
der K for each arc A,. Now we "thicken" V, and we obtain by this a 3-
dimensional polyhedron V where V, -b T is obviously a handlebody with s
handles corresponding to the A,’s. Moreover, one can show that V, -b T
is a Heegaard-handlebody in M, and that those parts, sayK (h 1, b),
of the projection cylindersK that lie outside of (V W T) contain a complete
system of meridian disks of M (V, -b Ta).
Now one may expect to obtain an especially simple tIeegaard-diagram of

M (and a corresponding cell-decomposition @; compare [5, Sec. 8]) from the
handlebody V W T and the outer meridian disks K. It remains to select
inner meridian disksX (j 1, s) of V q- T in a suitable way. This
can be done as indicated in Fig. 1" The polyehdronX in Fig. 1 consists of two
disks in T3, parallel to the disk V,,. V, n T3, and one arc outside of T
joining these disks in V (encircling A, and the disk V, V -b T). If
V is thickened to V then the joining arc of X may be thickened to a disk
which (together with the two disks in T) yieldsa meridian diskX of V -b T.

First let us discuss the pleasant case that the arcs A, are unknotted and
un]inked over "T, i.e., that there can be found projection cylinders K which
are nonsingular and pairwise disjoint. In this case we obtain a Heegaard-
diagram which is so simple that it is fairly easy to show that M is a 3-sphere"

Here we admit the case that the number of "outer" meridian circles "K,h is greater
than the genus s of the Heegaard-surface "(V, -t- Ts).
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/
/

The "projection arc" K n of A, (see Fig. 2) intersects the meridian
circle"X in a point near the point "A,. n V. it may have further intersec-
tions with the circles "V,, "Vx (/ 1, s) and with "V where the
intersections with the "Vx,’s and "V:.’s lie close to intersections of K with
the Xk s. (In Fig. 2 it is assumed that the projection arc, from left to right,
intersects the circles "V "V, "Vx,z "V "Vx, "Vx, x, x.) Wemay easily
achieve that no connected component of "V, n K is a closed curve but that
all these connected components are open arcs with end points in (’K n "T).
Now, -(K V) contains at least one "inner" component, say KI, that
borders on just one connected component of V n K. (In Fig. 2 the com-
ponents KI andK are inner ones.) This disk KI corresponds to a relator
r of the group presentation corresponding to our Heegaard-diagram (the
generators gk corresponding to the oriented meridian circles "X) where the

By this we mean that the generator g may be represented by an oriented simple
closed curve in "(T - V) that pmrces X in ust one point, in the positive sense, and

-V..2 -.2 ..2s disjoint from x, k-1, kcl, "X’o Each intersection point in "K, "X
=hiecorresponds to a letter g n the word :.



DECOMPOSITIONS OF HOMOTOPY S-SPHERES 137



138 YCOLFGNG HAKEN

length of r is at most 2. Moreover, if K, -(K V,), then there is
another connected component, say K, of-(K V,) that corresponds to a
relator r which contains r as a syllable. That means that we can simplify
3 by a cancellation operation of Type 2 whose length is not greater than 2.
Then, if

K, -}- K -(K V),

we can carry out another cancellation operation of that type, and so on, until
we obtain a relator equal to g. This can be done for all j 1, s, yield-
ing a standard trivial presentation . Now it is not difficult to show that this
sequence of cancellation operations can be replaced by a sequence of good
Tietze transformations since no cancellation operation is of length greater than
2. (A cancellation operation of length 2 can be replaced by an elimination
such that in all relators a certain generator gf is replaced by another generator
gl, and by certain subsequent operations which can be arranged to be good
Tietze transformations; the essential point is that the lengths of the relators
do not increase under these eliminations.) Hence there is a cell-decomposition
90 of M that is obviously a cell-decomposition of a 3-sphere.
Of course, one may try to find F and V so that theA,’s are unknotted and

un]inked over "T. This would prove the Poincar conjecture. But my at-
tempts in this direction failed. (It was possible to achieve the unknotted-
hess but not the un]inkedness.)
Now we are left with the general case, namely that the arcs A, may be

knotted and linked over "T. We may apply a cheap trick" We consider the
double arcs, say C, C, of the projection cylinder K [J’--1 K (com-
pare Fig. 5, Case 2, in Sec. 4) and we add small neighborhoods C, C
of them (in M T) to T, obtaining an expanded handlebody Ta Now
we have enforced that those pieces, say A, of the A,’s that lie outside of
Ta^ are unknotted and un]inked over "Ta where we simply take K Ta^
for the proiection cylinder. Then the connected components of the projec-
tion cylinder (i.e., the projection cylinders of the A s into T’^ yield dia-
grams very similar to Fig. 2. But the essential difference is that the handle-
body V -t- Ta^ has more handles than V -t- T (corresponding to the con-
nected components of the C n V,’s) therefore we need additional meridian
disks in V - T (which we shall construct in detail in Sec. 7). These addi-
tional meridian disks intersect the projection cylinder, with the result that the
"inner disks" correspond to relators which may contain "cancellation sylla-
bles" g71 g and which may remain of length 3 even after the cancellation
syllables are deleted. That is the reason why this attempt yields a proof of
our theorem but not a proof of the Poincar6 conjecture.

3. Projecting the 1-skeleton of a cell-decomposition A of the singular fan
V into the Heegaard-surface "T. We consider a cell-decomposition r of
M that contains just one vertex E, just r elements E, E, E,
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Er, of each dimension 1 and 2 (r 0), and iust one 3-dimensional element
E (see [3, Sec. 5]). Further we consider a singular fan V, defined by a map

V’ -- M, (as in [3, Sec. 6]), such that the only singularities of V are
,:idouble arcs A11, A (s 0) with iaverse images A

as in Fig. 3, and such that "V tJ=/, where V’ consists of disks V
(i 1, r) with just one common vertex E’ in their boundaries and with
’(’V) /. We choose a small neighborhood T of tJ=/ in M (as in
[5, Sec. 2]) which is a Heegaard-handlebody in M.

Notation. (See Fig. 3.) We denote the connected components of
’-1(V2 n T) by V, V,, Vx,, (3 1, s) such that vw, vx,, vx,,

,i V,, ,,1 V,re neighborhoods of V’, "A. n "A n respectively, in V’ Fur-
ther we denote

-( V’ V), -(V V ), -[A.I Vi + V,)],
-[A: V + V,, .)]

y v,, v,, ,, A,,.respectvely. We denote the images under F by omitting
2 t2 tlupper primes, i.e., (Vw ), (V), (A,) (A,), etc., are denoted by

V, Vi,, Ai, etc., respectively. Finally we denote O=l Ai by Ai.
We choose coherent orientation of M nd n orientation v of Vi that

is crried over by from coherent orientation v of V; now, if n oriented
rc 0 intersects Vi in piercing point, not in A, then we cll this intersec-
tion positive or negative ccording to whether the corresponding intersection
number (see [7, 73]) is positive or negative.
We choose cdl-decomposition r of M which is duM to r (compare [5,

Sec. 3]) such that the 1-skeleton G of r is disjoint from T + Ai, such that
the vertex of r does not lie in Vi, nd such that the 1-dimensional elements
of r intersect Vi t most in isolated piercing points. Then we choose
stuN1 neighborhood T of G in M nd we denote the "hndle-shell"
M- (T+ T)byFndVinFbyV.
Now we cn proect V "nicely" into the hndle-suffce "T:
Our min objective is, of course, to nicely project the double rcs A, of

Vi. But the double rcs of the proection cylinders, corresponding to the
overcrossings of Ai, will pierce Vi in points that do not lie in Ai. These
piercing points will correspond to certain hndles of the Heegrd-hndlebody
we shM1 construct. Therefore we shM1 Mso need rcs in Vi which loin the
piercing points to points in "Vi, und we shM1 hve to consider projection
cylinders of these rcs; the dditionl projection cylinders so obtained will
contain dditionM double rcs, yielding dditionl piercing points with
nd so on. For this reson it seems convenient to consider cdl-decomposi-
tion A of V und to demand that M1 its elements project in nice wy"

LEMMi 1. F can be represented as cartesian product "T X I, where

We use the expressions "over"- nd under-crossingpoint "proection cylinder",
etc., as in [5].
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means a unit interval 0 <= xr <-_ 1, such that p X 0 p for all p "T3, and such
that there exists a cell-decomposition A of V with the following properties:
(1) A projects normally into "T, i.e.,

T(la) if N is an element of A and if p then p X It intersects N in at
most one point;

(lb) if N1, N2 are elements of A and if D is the union of all points p "T
such that p X It intersects both and then D is a cell or is empty;

(lc) if in lb) the dimensions ofN N2 are d d2 respectively, and if D is
not empty then the dimension of D is d + d 2

T(ld) if p e then p X It intersects the 1-skeleton of A in at most two
points;

T(le) if p X It (pe intersects two edges N, Nt of A in the points
p X a, p X a., respectively, (0 < a2 al < 1) then N overcrosses N (i.e.,
Nt pierces the projection cylinder ofN in p X a: see [5, Sec. 3]; if a 0 then
N pierces the projection arc of N in "T).
(2) A is suciently fine, i.e.,

(2a) if q is a vertex of A that lies in V At, then q can be joined to a point
qo in "V, "At, by an arc Q1 that lies in the 1-skeleton of A so that OQ1 lies in
V At, ;

(2b) if N is an edge of then N overcrosses At, + "V at most once.
(3) V is not folded and not twisted along A, i.e., there exists a small neighbor-
hood U of A, in F such that the following holds:

if 0 is an oriented interval in U in the x-direction (i.e., an arc in U that
projects into one point in "T and that is oriented in the direction o’ increasing x)
then -l(On V consists of at most two points and all piercings of 01 through
V, At, are positive.

Proof. I. Let be a euclidean 4-space and let us denote one of its co-
ordinates by x and the unit interval of the x-axis by Itv. We choose u
(semilinear) homeomorphism vw of T into the 3-dimensional subspace x 0
of and we denote VT(T) by T . We denote the handle shell "Ta X I.
by F and we associate with any point q e F the coordinates (p, a) so that p
is the projection of q into "T in the x-direction and a is the x-coordinte
of q. We cn extend w to (semiliner) homeomorphism v of T + F onto
TV+F . We denote (V-) by VV2 and v(A) by A. We choosea
rectilinear triangulation AT of "Tv and a corresponding "prismatical" decom-
position A of F" For the elements of A we take W X 0, W X Its, and
W X 1 for all WeAT.

II. We can transform V’ by a "small isotopic deformation" into a poly-
vlhedron V[ suoh hg he rsnsform A, of A, projeos normally into "T

nd is in "norml posiiou" wih respee o A; by his we mer" There exists
self-homeomorphism O of F* whioh is he idenfiW outside of 8 sm11 neigh-

borhood ofA in F* suchh O(’F*) "F*, nd suohhwihheno-
v1tion O(V ) V, O(At) A, the following holds" (II.i) if p "T
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vlthen p X I intersects A, in at most two points; (II.ii) if p e "A then
(II.iii) if I intersects A, in two points(p X I) n A, is empty; p

p al, p X a2 (p e’T8, 0 < a2 < al < 1) then p lies in an open triangle
of Aw and there are small neighborhoods N N, of p X a, p a2, respec-
tively, in A which are straight line segments such that N overcrosses N;

vl vl(II.iv) A, is disjoint rom the 1-skeleton of A, and A, intersects the 2-dimen-
sional elements of A at most in isolated piercing points.

III. We choose a small neighborhood U, of A in F , and we can find a
small neighborhood U of A in U such that (see Fig. 4) the following holds"
(0) if 0 is an interval in U, in the x-direction, then 0 n U is connected
(or empty) and 0 "U consists of at most two points.

vlTo obtain U we may choose a rectilinear triangulation E of A, which
contains ll intersection points of A with 2-elements of A s vertices, but

II

(Cross section)
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does not contain any over- or under-crossing point of A as a vertex. Then
we can find a rectilinear sub-triangulation A* of Aw and a corresponding
prismatical subdivision * of A such that every vertex of lies in a 2-element

vlof A* and such that A*, A, have the properties (II.iii) and (II.iv). We
vldenote the open, rectilinear intervals in which A, intersects the 3-elements

of A* by D, D such that the D’s lie in the order of the enumeration
1in A, and we assume that the neighborhood U is small with respect to A*

further we denote the 3-element of A* that contains D by P. Now we can
find small, cylindrical neighborhoods U, U of/, /, respec-
tively, in U, 15, U, a/5, respectively, that have the property (0)
such that U U_ is either empty (if -D_ and D are "end pieces" of con-
nected components of A,) or is a connected component of U a P and also

U_ a P_ (and such that U a U is emptya connected component of"
whenever i J > 1). Then U [J. U has the demanded properties.
Now we can ’isotopically smooth out" V’ in the neighborhood U of A,

vland "wind it about A, so that it is pierced by the intervals 0 in the de-
manded way. By this we mean: We can find a self-homeomorphism of
F with .(U) U and (P) P (for all i 1, w) which is the
identity on-(F U) and on A such that the image V of V’ under
H has the following properties: (III.i) if U0 is a connected component of U
then Vh a U consists of two disks D, D, piercing each other in A U0
such that every interval 0 U in x-direction intersects each disk D,
D in at most one point; (III.ii) if an interval 0 in x-direction pierces D
or D then the intersection number is positive when 0 is oriented in the
direction of increasing x and D, D, F are oriented according to v,,
respectively, carried over by ; (III.iii) there exists a rectilinear tri-
angulation A0 of V such that no vertex of A0 is an over- or under-crossing
point of A.
To obtainH we first deform V’ U in a suitable way, i.e. we can find

a self-homeomorphism of F with (P[) P which is the identity out-
vlside of a small neighborhood of U in F and on A, such that the conditions

(III.i, ii, iii) hold with U replaced by U and V replaced by
Then we can find, step by step, self-homeomorphisms , of F, and outsidewith (P) P such that is the identity on A, on U_,
of a small neighborhood of U, and such that (III.i, ii, iii) hold with U re-
placed by U U and V replaced by 0 0_ 0(V). Then
we may take 0 0 for 0.
Vh and A fulfill the conditions corresponding to (3) and (la), (lb).

vlMoreover, each connected component of V- A, contains in its boundary
arcs of0 0 (’V ’A). So if A is a regular subdivision of A (obtained
by starring each edge and each triangle of A then each vertex q of/ can
be joined to a vertex in 0 0 (’V "A,) by an edge pathin the 1-skeleton
of/x whose interior lies in V’ A,, i.e., the condition corresponding to
(2a) is fulfilled by V’ and A. We choose A’ so that it fulfills condition
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(III.iii) (i.e., none of the starring points is an over- or under-crossing point
vlof A, ).

IV. Now we can deform VH and AH by a small isotopic deformation,
leaving A, pointwise fixed, into a polyhedron V and a triangulation ZXv of
V, respectively, such that the rectilinearity of the triangulation may be
destroyed, but (IV.i) the conditions (la), (lb), (3) are preserved, and (IV.ii)
the conditions corresponding to (lc, d, e) are also fulfilled. We denote the
corresponding self-homeomorphism of F v8 by H
V. We can subdivide the edges of Air by new vertices in such a way that

the condition corresponding to (2b) is fulfilled and such that all the other con-
ditions are preserved. We call the cell-decomposition so obtained

VI. Now we carry over the product representation of F8 and the de-
composition A from FS to F by means of the homeomorphism
( F)-1-l-zg- FS -- F, denoted by K. In other words, we associate
with each point q e F the coordinates (K(pV), a) where (p, a) are the co-
ordinates of -l(q) in F8; by this we define the product representation
FS= "TS IF of Fs; further we denote by A the cell-decomposition of
V (V2) whose elements are the images under
Then all conditions of Lemma 1 are fulfilled (where we choose for UsA a small
neighborhood of A, in ( US) ). This proves Lemma 1.

4. Expanding the handlebody T into Ts^. By A(VF) we mean the set of
those elements of A that lie in VF. We consider the set {pl, p} of
all points that are either vertices of A(V) or undercrossing points of the
1-skeleton of A(V). Let C,..., C be the projection intervals of
pl, ..., p, respectively (i.e., the arcs in F8, in xF-direction, joining the
p’s to points in "TS). Then we choose small, pairwise disjoint neighborhoods
C ,.--, C of Cx, C respectively, in F (see Fig. 5 which shows the
two most complicated cases) and we denote the handlebody T+ t3. C
by Ts^. We choose the C’s so that each interval p X I with p e "C n "T
intersects -(’C- "TS) in just one point (which is a piercing point if
p e (’C n "TS)).

Notation. (See Fig. 6.) We choose an orientation 0x of A such that the
arc A, (j 1, s) is oriented from its boundary point in "Vx, to its
boundary point in "Vx,. We arrange the enumeration of the points
p,...,p so that p,...,p lie in A, and that p+l,...,p do
not lie in A moreover, if a point p runs through Ax, A** in the order
of the enumeration and in the direction of 0x then we assume that p meets
the points p, p in the order of the enumeration. For convenience we
denote the points p, p also by
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12

(compare V’in F

(for detail
see below) (R)

(R) A.

VZm{U<m-<_v
I1

3

_FIG.6 The arrows correspond to ,;
the arcs and intervals map into the l-skeleton of Z;

u o/,,tthe points o map into : eV;
-’(U_lC:v;) i iniate b atcing,

-’(T; nV.) by double hatching.
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so that pjl, pjtj lie in A, in the order of the second index, between
.VVx, and x (uA =1 t.). We denote the points in U--1 C n V. by

p+, p. The inverse images -(p) of (j 1, s,, P] ,,
1, t) re denoted by p nd p so that p A, nd p e A,

the point f-(p)(m u + 1,-.., v) is denoted by p. Further we
denote that connected component of f-( U, C a V) that is u neighborhood
of p, p,, p, respectively, (j 1,..., s; k 1,..., t;
m u + 1,...,v)" " " ’Dy v,, vv-, vz, respectively; and we denote

t2( V,), ’ ’Vz) by Vv,, Vv, V, respectively. Finallyt(v,), (
we denote the connected components of Ak U= "C by A}, At+

’s in the order of the index k (in the sense of theso that the A lie in A
orientation ); and we denote the connected components of f-(A,) by
A and A# so that A c A, and c ,.

5. Trees in V. Theintersections Vz (l uA W 1, v) of Uh=l C with
V correspond to certain handles of the handlebody H composed of T3^ and
a polyhedron V obtained from V by thickening. We shall need disks in
M with boundaries in "H that correspond to these handles in the following
way" The boundary of the first disk, say KA+I, runs iust once over the handle
corresponding to Vz+ (under proper notation) and over no other handles
that correspond to Vzs. The boundary of the (m- ux) th disk
(u < m <__ v), K, runs just once over the handle corresponding to Vz
but not over handles that correspond to Vz s with > m. We can find such
disks K in a convenient way in the projection cylinder of some polyhedron
j1 (see Fig. 7) in the 1-skeleton of A that contains all the points p+l, p
and that consists of trees each of which contains iust one point in’V "A,.
LEMMA 2. In the 1-skeleton of A there exists a 1-dimensional polyhedron j1

with the following properties:
(i) every connected component of j1 is a tree (i.e., simply connected) that

contains just one point in "V, "A,, the so-called base point, and otherwise
lies in V A, ;

(ii) j1 contains all the points pA+l p, ;
(iii) if p is an end point of J (i.e., a point in "J "V from which just one

edge of J originates) then p is one of the points pA+l p

Proof. Let p be an arbitrary point with u < -< u. Then, because of
property (2a) of A (in Lemma 1), there is an arc, say Q, that lies in the
1-skeleton of A so that Q V A, and ’q p + q where q is
point in "V "A,.
Now we consider the following sequence J), J(_) of 1-dimensional

polyhedm Jl) Q+. Ifp/h+leJ) (1 -< h <u- u then we take
J+l) J). If pu++l J) then Q+h+l contains an arc, say Q such
that Q- p++l -F q- where q~ e J) or q~ q++ (in which case

Q++I) andsuch thatQ J) 0; then we take J(h+l) J() + Q-
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(compare F=g. 6)

/
/

I1

ll

FIG.7 The heavy segments mean -lJ’ + A.)
the dotted segments mean -(V n’K’])
the heavy dotted segments men-’(d).

Each J) has properties (i) and (iii); the last element, J(-), has all three
properties demanded for J which proves Lemma 2.

Notation. We denote the projection cylinder of J - A, by K. (We
,assume that the neighborhoods C of Sec. 4 are small also with respect to K.)
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LEMMA 2i. In-(V r Ks) there exists a 1-dimensional polyhedron J
(see Fig. 7) with the following properties:

(i) every connected component of J is a tree that contains just one point
in the 1-seleton of A, the "base point" (it follows that a base point of J is either
one of the points pl p or lies in "V n "T "A.);

(ii) J contains all the points p+l pv
(iii) if p is an end point of J (p e "J p is not a base point) then p is one

of the points p+ p

Proof. Let pm be an arbitrary point with u < m.-< v. Then pm lies in a
2-dimensional element, say N, of A (see Fig. 8); moreover, p lies under a
point p,() with uA < (m) -< u. Now let J be that connected component
of J that contains p() and let q be its base point. Then q does not lie over
or in N, and hence the projectioncylinderK of J intersects N- in a 1-dimen-
sional polyhedron that contains an arc, say Q, so that Q c N and
"Q pm q where q is a point in "N (see Fig. 8). Now we may con-
tinue as in the second paragraph of the proof of Lemma 2 (replacing by m,
Jh) by J(h), u by v, and uA by u). This proves Lemma 2.

Notation. We arrange the enumeration of the points p+, p so that
for each m ux 1, v J1 - J contains an arc, denoted by J, that
joins p either to a point in (’V n "T "A) -t- A. or to a point px() with
u < ),(m) < m so that J does not contain any point p (l 1, v).

6. A prismatical neighborhood V of V. We "thicken" V. First we
choose a "prismatic neighborhood" V of V, i.e., a polyhedron containing
V (and consisting of r pairwise disjoint 3-cells, disjoint from M) that can be
represented as cartesian product V X I, where Iv means an interval
-1 Xv 1, with p’ 0 p’ for all p’eV. Thenwe extend the
map V to a map "V M such that the following holds"

Notation. V means Y I; V, mean (V), (V), respec-
tively.

(1) V "T is a small neighborhood of V T in M "T.
Notation. (See Fig. 9.) Let K by the projection cylinder of

A(j 1,... ,s; 1,...,tW 1) orofJ(m u% 1,.-.,v),and
let K be that connected component of-(K C) V that contains
A = C) g]or-(J -1 C), respectively; thenwe denote [(K
by K or K, respectively. Further we denote K n "K "K n K by

K Kv,gv, g, respectively, and" "K "K by K, K,
respectively.

It is essential to remark that K is a neighborhood of A or -(J J-C), re-
spectively, in-(K "-C), and that consequently theK s and K’s are disks. This
holds since none of those 2-elements of A that are incident to A or J, respectively,
intersects K [because of (la) in Lamina 1].
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P(m)

1

FIG. 8

(2) T3, T F, "V, V, Kk Kvjk, and K Kvm (j 1,..., s;
k 1,...,t-k 1;m uA 1,...,v) intersect V, prismatically with
respect to Xv ; i.e.,

-(Tn V,) [-(T n V,)] X Iv
and correspondingly for T F, etc.
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(3) The singularities of V re orthogonal with respect lo Xv, ; by this we
mean the following (see Fig. 10)"

(3.1) The set of ll singular points of V with respect to is neighbor-
hood, denoted by A, of A, in M T which is smll with respect to V
nd intersects V prismatically with respect to Xv, .

(3.2) Let A, nd A, (j 1, ..., s) be connected components of
-(A) such that A,] A, nd A, A,, then A,, A, nd

IV2 -(A) re homeomorphisms.
(3.3) Let p be a rbitrry point of A nd let p, p" be the two points

of --l(p), p, p; X a, p" p2" " a2 (p,"’, p" e V; , ae [-1, 1])
denote W(p), W(p2 by p, p2, respectively; now let p p e that point of
-(p), -(p), respectively, that is different from p, p, respectively.
Then there is point q e A with -(q) q’ W q" such that p’ q" X a
ndp q’ a.

(4) If p’ V such that (p) q A, nd if (see Fig. 11) the interval
(p I) is oriented ccordg to increasing v, then the intersection of
(p’ I) nd V is positive (with respect to the orientations v nd M
introduced in Sec. 3).

(5) (SeeFig. ll) LetASs(J= 1,...,;= 1,...,s+l) betht
coected component of -(A = C) that contains As ;then Kvs lies
i"As so that

FIG.II (Cross section)
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Further

-l(Kvj) C V2 X --1.

-I(K) c .-x(j) X =t=l

(for all m uA + 1, v).

Notation. We denote the connected components of -I(-[V n T3^]) by, Vx,,, Vv,

V, ’
correspondingly we denote (V,),..., (V) by V,,..., V, re-
spectively. Let A, A,, A, A be s introduced in (3.1), (3.2), (5),
respectively, nd correspondingly

A (A) n A,, A (A) n A,;
t3 t2 tt t2 t2 A tt2further we denote A, n V,, A n V,, etc., by A,, , etc. FinMly we

t2denote V, X + 1, V, X 1 by Vx, V-x, respectively, nd corre-
T/2 Tyt2spondingly V, X 1, V X 1, etc., by x-, vv,, etc., and

(Vx,), etc., by Vx,, etc.

7. Constructing meridian disks X, Yk, Z in H T + V. We
denote the handlebody T3^ W V. by H. For the following construction see
Fig. 12.
We choose pairwise disjoint, small neighborhoods U: (j 1, ..., s) of
t2 t2 tj t2A," + Vx, + U= V, in V2.
-( U V) is an arc, denoted by Xw, with bounda pots in V.

(We denote Zw X I, (Z), (Zv I) by Xw, Z, X, respec-
tively.)
Then we choose pairwise sjoint disks X, X which are topologically

parallel to Vx,,, Vx,,, respectively, in T, such that

+ "T

and such that the parallelism is with respect to V
[4, Sec. 3]).
Now we denote the disksZ + Z + Z by Z.
Each-( Vv, A) and-(Y A) (j 1,..., s; k 1, ..., t)

consists of two connected components V,u, V, and V,, Vv,,
"V,, Vu intersect V.respectively; we arrange the notation so that

(in one arc each) and that "Vo, "V,o intersect V. (in one arc each).
We choose paiise disjoint arcs Bv,u, , ,

k 1, ..., t;m u + 1, ..., v) in V (A + "T,)that join pots
in "V,, "V respectively, to pots "V such that
the following holds (Fig. 12 shows the verse images of the B’s marked by
upper pmes)
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(1) By,(, and B,), lie in the boundary of a small neighborhood, say
ofUA,.,,

A+ + V,+ + + A

inM (with Ux, U],_ if k > 1)
(2) B,,) lies the boundary of a small neighborhood, say U,, of

A1 + Vy,,il + + Aik_l + Vysck_l + A

in M (with
2, "B is disjoi% from "Ta.(3) B is disjoin% from "K and from the X s;

B tersecs K at most in isolated piercing pots.

We denote (f-(B,() X I) by Br,( ee.
We choose pairwise disjoint meridian disks Tr,(2, T,), T%), T of

T which are disjoint from O=l X such that

(a) T%,( n V "T%,( n ’V "B%,( n "T, a.,
TnV BznTzn V =" .T

(b) T,(, T,), T,,) are topologically parallel to V-x.,
Vx,, respectively, in Ta, with respect to V2, "K2, Ta

., Tzm n(c) 2Tz is disjoin, from the "C’s (i.e "[’T "Taxi) and inter-
sects "K n "T at most in isolated piercing points;

(d) .V2Tz intersec%s in just one point, different from E, and intersects
V in just one arc which is a piercing arc.

U and U ofNow we choose pairwise disjoint, small neighborhoods

and
% + i + Ti,

respectively, in Ma, which intersect V prismatically with respect
Then we denote the disks "Uy n Ha, U n H by Y, Zi, respectively.

.H "ZicOHa;hencethedisksWehave X, Y, Zc and X, Y,
X Y, Z are meridian disks of Ha.

Thickening the meridian disks. Let X Y Z be pairwise disjoint, small
eighbooo of X, Y, Zl, reectiveiy, m H’ wi intese V s-
ma%ically with respect7 %o Xv, ; we can represent them as cartesian products
X X I, Y X I, Zi X I, respectively, where I isaninteal- 1
+ 1, such that the following holds:

(,) v x 0 v fo ]l v, x, r, zl
() the top and bottom disks

X} X 4-1, Y}k X 4-1, Z X 4-1,

This is possible because of the orthogonality condition (3) in Sec. 6.
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denoted by X:, Y:k, Z:m, respectively, are the connected components of

-(’X n Ha), -(’Yk n Ha), -(’Z n

respectively; (these disks are not indicated in Fig. 12, but the xz-direction is
indicated by small arrows);

(,) -(X

_
n V) separates "-(X n V from V, in V,

Y_ n V separates Y n V from V, + V,, in V,
Z_ a V separatesZ V from V in r;

() T V A K intersect Z Y Z psmatically with respect to
Xz

(e) the intersections X n V., Y n V., Z n V. are orthogonal with re-
spect to xz, Xv, , i.e., the following condition is fulfilled which is completely
analogous to (3.3) in Sec. 6 (compare Fig. 10)"

Let p be an arbitrary point of X n V, r n V,, or Z n V, and let p"
be a point in -l(p) where p pl X z al and p" p’ Xv as (we use the sym-
bols X z and Xv to distinguish the product representation of the X, Y,
Z’s from that of V2); denote (p’) by p. now, if p A, let p’ -1 (p),
and if p e A, let p’ be that point in -l(p) that lies in the same connected
component of -I(A) as p". Then there is a point q in Z n V, Y n V,
or Z n V,, respectively, and there is a point q" in i’-l(q) such that p’
q" Xv a. and p qXza.

8. H is a Heegaard-handlebody in M8. We denote the connected com-
ponents of K H by K, K. Note that these are disks (because
of (1) in Lemma 1 ).

LEMMA 3. H is a Heegaard-handlebody in Ma, and more in detail we have:
(a) -[Ha- (U_-IX + i,_ Yk-4- Um=+Z)] is a 3-cell, say W,

i.e., H is a handlebody, the disks X Y Zform a complete system of meridian
disks of H, and the genus a of H is equal to

(b) the connected components of M (H + K) are open 3-cells, i.e.,
M "H is a handlebody, the disks K, ..., K contain a complete system of
meridian disks of M "H, and b a.

Proof of (a). Let T be a handlebody of genus r, disjoint from Ma, such
that

V’ a V? T’2 V V X
such that T’ + V is a 3-cell, denoted by H’a, and such that there is a map

" H’a S of H’a onto H with l Y and with T? a homeomorphism
of T onto T.
The connected components of

-[H, E-1 U=l X -t- ,,-z Y’ 4- U,=u,/l Z)
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are 3-cells; we may denote them by H3, Ha, ,, H,., Hy.., Hz (j 1,
..,s;k 1, ...,t;l 1, ...,t 1;m uT 1, ...,v) such that

1 t3 v2 V3(compare Fig. 12)H n A,y is an arc in A, H, contains V,H
contains V, and Hz contains Vz. The restrictions

H, ’"" ’ ""
is,5+1 v3 v3

3

Is,5+l 3 U
is a 3-cell, say Ho, where

Ho nE V, + V,.
is,t/Now Ho + ,H is a 3-ce11 and is equal to

Ile,tj

Proof of (b). First we prove that the first homology group (H g2) is
trivial" We denote by axe, av, az (j 1, s; k 1, t; m
u 1, v) those elements of (H) wch correspond to piercings of
X, Y, Z, respectively (i.e., ax may be represented by an oriented simple
closed cue H that intersects X in just one prismatical arc with induced
orientation in the direction of increasing Xz, and that is disjoint from X,

3X, andfrom the Y s and Z, s; etc.). The a’sform a basis of
Let a be the inclusion ap H c H 2 and let

,. (H) (H + :)
be duced by a, then the a,(a)’s form u busis o (H 2). OW

2properly oriented boundary K of (Sec. 6) belongs to an, further
2 2belongs o a a_ for all 2, t, and finally K+ be-

longs to ax a (compare the more detailed discussion of the K s m
Sec. 10.1) hence

,(.) .,(.) .,()

where o eans the zero-element of (H ). Similarly, .K2 (m
u 1, -.., v) belongs (compare Fig. 9) either to az, azx(,) (where
u ((m) m, see Sec. 5) or to z b with a,(b) ; hence

,.(,.+) .(,..) o,

i.e., 3C1(H -F K2) is trivial, Q.E.D.
Let KI, K.b be pairwise disjoint, small neighborhoods of KI,
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K.,, respectively, in M H3. Then H W U_-I K. is a 3-manifold with
trivial first homology group (since H - IJl K. collapses to H - K2),
hence (H+ U=i K.) consists of 2-spheres only (see [7, 64]); but these
2-spheres lie in the handlebody M "Ta, and therefore, as a consequence of
the Alexander theorem [2], bound 3-cells in M "Ta. Therefore
M (H + U=i K) consists of open 3-cells, and hence M (H W K)
consists of open 3-cells. This proves (b).

9. Constructing the cell-decomposition ,I, of M3. We take for ,I, a cell-
decomposition of M3, corresponding to the Heegaard-handlebody H with the
two systems

{X, f, Z}, {K}

of meridian disks (compare [5, Sec. 8]):
For the only vertex of ,I, we choose a point 0 in W3. For the 1-dimensional

elements of ,I, we choose pairwise disjoint, open arcs E, E, E*z in H
with common boundary 0 such that H is a neighborhood of the 1-skeleton
G.1 of I,, and such thatE intersects X in just one prismatical arc and is dis-
joint from X, from the Y’s, and from the Z3’s;X.-1, X.+I, X,
etc. For the 2-dimensional elements of ,I, we choose pairwise disjoint, open
disks E’=, E in M G* such that

.E*= G*lE’ n (M H) K,, c

and such that E’ n H is an open annulus, say E* which intersects X,
Zm prismatically with respect to xz so that X, Y, Z are intersected

(at most) in open arcs each of which joins G.1 to "H. For the 3-dimensional
Ui----1elements of ,I, we take the connected components of M .2

We choose a coherent orientation of G*’ so that in E n X,E n Y,
E: n g the direction of E,E,E, respectively, coincides with the di-
rection of creasing xz; then we associate generators gx, gv, gz of
vl(M) with the so oriented 1-spheres Ex-*, Ev-*, E-*z, respectively, (with
base point 0). Now we may read rdators rl, r from the 2-elements
E2, E:2, respectively, and we denote the presentation

of I(M3) by (,I,).

10. Relator-diagrams corresponding to the presentation (I,) of I(M).
We map the disksK, K (j 1, s; k 1, tj ;m uA 1,
v; see Sec. 5 and Fig. 9) onto pairwise disjoint disks R, Rm, respectively,
(see Fig. 13 which corresponds to Fig. 9 if one assumes that m > u, p, pj2,

and t 2, compare Fig. 12), by means of maps
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respectively8, such that"

(i) the restrictions of jk, to the open disks K. (i 1, ..., b) are
homeomorphisms;

(ii) .k, map each connected component of Kk n W3, K n W3, re-
spectively, into a single point;

(iii) if L is a connected component of the intersection of K or K with
X "W, Y "W, or Zq "W, then .k or m respectively, maps L onto
an open arc in such a way that all points with the same xz-coordinate have the
same image point (but points with different Xz-coordinates map always into
different points).

If L as in (iii) then we orientate the image j(L) or m(L), respectively,
according to the direction of increasing Xz, and we associate it with the gener-
ator gx, gY, gzq, respectively.
We consider the cell-decompositions ., of R, R, respectively,

into the connected components of the images of K n K., K. n Wa,
K n (X "W), etc., etc. From each 2-dimensional element of O.k or
(R) we may read the relator r that is associated with the inverse image disk
K. We call the decomposition or , together with the association of
its oriented edges to the generators g and of its 2-elements to the relators r
(see Fig. 13) a relator-diagram corresponding to () and we denote it by
9 or 9, respectively. From the boundary of Rk or R we may read a
word r or r, respectively, in the generators g (where all members o the
cyclic class (r) or (r), respectively, are equivalent). Now the relator-
diagram 9 shows that r 1 is a true relation in the group v(Ma); etc.
Diagrams like these have been used by E. R. Van Kampen and other auth-
ors; see for instance [8].
For the proof of the theorem we shall need some special properties of our

relator-diagrams

(10.1) By inspection of the curves K and K we see that we can write
for allj 1, s; m u - 1, v (compare Fig. 12)"

- (for allk 2, t)

if J joins p to "V
if jl joins p to Vx,
if jl joins p to "V2x,,
if jl joins p top and meets

These maps are not semilinear, but can be ,taken piecewise algebraic
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{Zm m -I
gY’m em if J joins pm to p and meets

Vy.

gz e -gzx() e if J josp to px() (case of Fig.

13),

where the e’s are words in the g’s that are either empty or cancel to the empty
word by repeated deleting of syllables g:g (where the subscript stands
forXc, Ycd, orZe;c= 1,...,s;d= 1,...,t,;e=uxW 1, ...,v).

More in detail" The e’s are products of syllables of

Type a.
--1 --1 --1 --1 --1gx gv gYt gYa gYgv gvaa gva gvag

which occur in e_ (- stands for a pair of ces jk or a single dex m),
corresponding to the intersections K_ n "V,,a (compare Fig. 12) and of

Type b. g:g but not g gx for any c 1, s, which occur
eg, eg corresponng to the intersections K- n "T and K_ n "B (where
Tv, Bv stand for

Tv,( Tv,) T.), Bv,( Bv,) Bv.),

respectively).

We always have

and
j+l gY.itj gY.i gVjl gY#l

gYa’ml {Yiml gYjmkm--1 gYimkm--1

The relions 1 show obviouslyh x(M*) is the ,rivi1 group.

(10.2) I is essential h he dcomposiions O_ re especially sple:
The 1-skele,on of O_ in,ersec,s o in pMrwise disjo open rcs wih bound-
aries in "R (see Fig. 13); we denote these open arcs (in a the "R’s) by
Q, Q the Q s (f 1, w) are the images of the connected com-
ponents of "K n V under x_ (where these components are open arcs, say
P, PL, with boundaries in KT_ such that either

ifA,fe{1, ...,w}). Wedenoe
by q, q, respectively. In defl, we hv he foowing fiv ypes of
words q (corresponding o six ypes of arcs P ;f 1, w)"

-1(Type 1) qf gzz eQf gz
--1(Type 2) " gxi

if P oins’Vz, to’Vz (m # 1)

ifP joins "V, to "V
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-1(Type 3) q1 eQf g zm

-1(Type 4) q/= gYk Q g zm

ifP ioins "V.. to "Vz (for some j 1,

or ifP joins "V to "Vz
ifP joins "Vk to "Vz,(P, P in Fig. 13)

(Type 5) q g:r egxeQg;if Pjoins V,,to Vz,(P ,PinFig. 13)
where cQ and e are products of syllables g:l g which correspond to the inter-
sections of P with Blv. We do not have more than these six types of arcs
i5 since it follows from the property (2b) of zX (Lemma 1, Sec. 3) that at
least one boundary point of P lies in the boundary of a disk Vz. It is
remarkable that the word q cancels down to a word of length either 1 (Type
3), or 2 (Types 1, 2, 4), or 3 (Type 5).

(10.3) If there are two (or three) edges of

_
in "R that do not corre-

spond to parts of e~, e, or e in then (any two of) these edges are not
separated by the "Q’s in "R. Similarly, if two edges in "R correspond to a
syllable gl g. of Type b in e~, e, or e then these edges are not separated
by the 1, "RQrs in

(10.4) Another essential property of the relator-diagrams 9~ is the fol-
lowing: if i is a fixed integer, 1 <- i <- b, then the decompositions , ,
(j 1, s;/ 1, ti W 1; uA 1, u) contain all together
just one 2-dimensional element that is associated with the relator r. How-
ever, the decompositions +1, , may contain some more 2-dimensional
elements associated with r but in this case, if . (where stands for two
fixed indicesj0k0 or for one fixed index l0 withu l0 =< u) and O(u m _-< v)
each contain an element associated with , then (R) is isomorphic to a "part"
of O, i.e., we haveK K and there exists a homeomorphism

--1of R into R such that a K)., wherea carries elements of m
onto elements of (R)., preserving the association of these elements to the g’s
and r’s. Moreover, a(’R) intersects R in just one of the open arcs Q.

11. Conclusion. It remains to show that the presentation () can be
transformed into ({g. }, {g. .-} by cancellation operations as asserted in
the theorem. Guided by the relator-diagrams we first transform () into a
presentation whose relators are derived from the r’s by deleting all the can-
cellation words , e, . The rest is obvious.

Step i. Removing the cancellation syllables of Type a from the r-’s (see tig.

Of course, there may be other 2-elements associated with relators, say r, r
such that r r r (letter by letter), but then i, i, i are pairwise dis-
tinct.
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14). We transform the relator-diagrams 9~ in the following way"
Let P be an open arc in K n V [ stands, as in (10.4), for joko or l0

j0 1, ..., s; k0 1, ..., t. -t- 1; lo u -b 1, ..., u] that joins a point,
say p, in "Vx.. to a point in "Vz,. Then n.(P) is an arc 0 in R, corre-
sPOnding to a word qa eQa g, of Type 3 as considered in (10.2). From

N in that correspond (if ori-n.(p) there originate two arcs, say N, , R.,
ented towards n.(p)) to the same word

--I --I --I

where nn- is a syllable of Type a in e. as discussed in (10.1)). Now we re-
placeR by a disk R* corresponding to an identification of Nk to N[, i.e.,
so that there is a map ft. of R onto R* which is one-to-one on
R (Nk + N[),on Nk, and on N[, which maps Nk and N[ onto the same
arc N, and which maps the elements of. onto elements of a cell-decomposi-
tion ** ofR (where R*. is disjoint from M and from the R2’s) We replace. by the relator-agram (consisting of and the association of its
1- and 2-elements to the g’s and r’s as carried over by ft.). We denote the
open arc o[fl.(Q) + N by Q and fl.(Q) by Q for all Q c R (f 1

w; f d) then to Q there corresponds theword

$2let us call this "of Type 3" ". To R= there corresponds a word r that is
obtained from by deleting a syllable nn-. We remark that is a re-
lator-diagram corresponding to () and that has also the properties
stated for

_
in (10.3).

We carry out the above procedure for all those disks K that contain the
open arc P (these disks K lie in K, and m > u). We denote the corre-
sponding maps by " R, and the relator-diagrams and decomposi-
tions so obtained by and O, respectively. If K [_ stands for jk or m as
in Sec. 10] does not contain P then we simply denote the identity map on
R by _, and _, R, O_ by , R, O, respectively; etc. Now the
relator-diagrams * have again the property sated in (10.4)" We obtain the
required homeomorphisms a (m u 1, ..., v) by taking

a= a if KK
fl a =1 if K c K (see Fig. 14),

where we assume that fl has been chosen in such a way that if two points pl,

p2 of "R have the same image point under fl= then al(pl) and -1
aM (p) have

the same image point under f.
We carry out the procedure described in the above two paragraphs for all
P s of the type considered and we obtain in this way relator-diagrams
corresponding to 3(). (We use the notation R2, O Q, va, Om etc.
for the disks, decompositions, etc., of the ’s.) The words v- are still of
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the form ( ), but we have the following essential simplification" all the can-
cellation words e, e, ex are products of syllables g: g of Typeb in such
a way that both edges in "R that correspond to such a syllable lie in the
boundary of the same 2-dhnensional element of (since all syllables of Type
a have been deleted, but (10.3) has been preserved). The ’s have also the
propey (10.2), mottled by admitting q’s of Type 3*, and the properties
(10.3) and (10.4).

Step ii. "Outer" cancellations (see Fig. 15). We consider an arc, say L,
R ( stands again for j0k or lo) that corresponds to a syllable g: g of

Type b e, e, or e. Because of (10.3) all of L lies the boundary of
just one 2-dimensional element of corresponding to a relator, say
(io 1, b). So we may cancel the corresponding syllable g:g in

I$(cancellation operation of Type 1) which yields a new relator, say vo and a
new presentation

where v* v i i0.
Now we replace R by a sk R correspong to shrng L to one

pot, i.e., so that there is a map * of R onto R which is one-to-one on
R L, which maps L into one point, and which maps the elements of
onto elements of a cell-decomposition * of .x*. Now * (consisting of

* and the association of its 1- and 2-elements to the g’s and vX*’s as duced
by *) is a relator-diagram corresponding to * (since by (10.4) vo occurs
just once in ). In the same way we replace all those relator-diagrams
whose decompositions contain a 2-element associated th v0 by relator-
diagrams * (defined by maps* R R that map the arcs (a)-(L
to single points). For the remaining ’s we take * to be the identity on
R, and we take * , etc. Then the x*’s are relator-agrams cor-
responding to * and possess the properties (10.1), (10.2, mottled by ad-
mitting q*’s of Type 3*), (10.3), and (10.4).
We carry out the above procedure for all arcs of the considered type, and

we obtain in this way (by cancellation operations of Type 1) a presentation

and corresponding relator-diagrams xx. (We use the notation Q, r
II
a, etc., in the obvious way.) Now the cancellation words e2, e, e
are empty, except, may be, if stands for m with m > u. Furthermore, the
boundaries of all those open arcs Q that lie in some R are equal to just
one point in "RI2 (compare Fig. 16).

Step iii. "Inner" cancellations. Now we consider those arcs L in the
qIIli that ]ie disks m nd that correspoad to sy]lbles g:g As

IIStep ii we cncel, step by step, II the oorresponding sy11bles ia the v s
(onoelltion operations of Type 1), nd we obtia in this wy presentation

These mups re not semiliner, but tun be tuken pieoewise ulgebrio.
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FIG, 16

Then, again as in Step ii, we construct relator-diagrams and that
correspond to by shrinking arcs to points. (Note that the arcs
(a)-(L) may lie in "R as well as in R(m > u).) The XX’s possess
again the properties (10.1), 10.2, modified), (10.3), (10.4).
The words r read from the "Rr"’s are of the form

’r,+ gxgr
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4-1 --1 --1Ii either gz, or gzx, orzxYm,

orzY orz zk(m)

iiiland the words (f 1, ) read from the w are of the fo

q}n either gz g, or g} g, or g, or gyy g, or gyy gxy g.
Step iv. Deleting Q’s (see ig. 16). Provided that w 0 there exists

disk R that conts t least one of the opea rcs Q}m. Thea there is
least one opea rc, sy Qm that lies R in such wy thatn is the
boundary of 2-ensionl element, sy C, of. There is ust one other

_III
element, sy D, of whose bound contains m. Let vn and
(h i0) be the relators ssocited th C and D, respectively; then qn is
equal to member of (v), nd some member of (-v ) c be written

v0 (where v is some word the g’s). Now we replace v by
(cncetion operation of Type 2 nd of lenh 1, 2, or 3) and we obt
this wy presenttion v from
Then we construct reltor-grms v that correspond to v as follows:

First we ddete from 2 those elemeats that lie QXn, nd we replace the
elements C, D by the open sk C D; ts yields v (where
RX RX2 nd the new 2-dimensional element of v is ssocited with
IV IIIv ). If the relator v is associated with 2-mensionl element, sy D,

m rhea [by (10.4)] m > u, ndof decomposition , fferent from
) contains its tefior (sce othese the closed cue

III]m wod lie a"’n’a ), but wod act be equal to a contm-
(R’’)ctioa to the fct that a is disk). Hence . conts

IIX--I/IIIlx IIIl, DIII1 anda } } wch is one of the w/ , say possesses
element C (an)-(C) that is associated with vn. Then we delete from
Oxx those elements that lie Dm and we replace the elements C and D
by C W Qm W D (wch we associate with r0v). Ts yields v. For
the remaking n’s we takev xxx We write v i
Now the v’s have again the propeies (10.1), (10.2, moed), (10.3),

(10.4), and v , but the number wv of open arcs QW (f 1,
wxv) is smaller than w.

Step v. Deleting all Q’s. We repeat the procedure of Step iv as often
possible and finally obtain this way (after at most w steps) a presentation
v ({g }, r} and correspondg relator-agrams such that each de-
composition possesses just one 2-dimensional element. That means that
each of the v W s words v rJ [see (III )] is at the same te a member
of a class, say (r), where we may assume that the notation is so arranged tha
1 =< i =< v W s; (we do not specy the remaining relators v+,+,
Fuher we may assume that v is a cyclic peutation of vv and not one of
( (this cn be rrnged by proper choice of the direction wch vr is
red when the lst open src Q is removed
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Step vi. Obviously we can transform v by a sequence of cancellation
operations of Type 2 and length 1 (a relator out of (gv -gv_} is replaced
by a relator gv where another relator is equal to gv_, k 2, t
etc.) to a presentation

where x v for i v + s + 1, b. Now we cn trnsfo v by
sequence of cncelltion operations of Type 2 nd length 1 ( reltor gv- is
replaced by V’ where nother reltor is equal to g) into the presentation
({g}, {g, ,-+)} ). This ishes the proof of the theorem.
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