
A CHARACTERIZATION OF THE SUZUKI GROUPS
BY

GEORGE GLAUBERMAN

1. Introduction and Notation

Let G be a finite group. Suppose p is a prime and P is a Sylow p-subgroup
of G. We say that G is p-core-free if G has no normal p’-subgroup except the
identity subgroup. Consider the following conditions:

(a) Two elements of P are conjugate in G if and only if they are conjugate
in he normalizer of P.

(b) The centralizer of every element of order p in P has a normal p. zomple-
ment.

(c) Every pair of elements of order p in G generates a p-solvable subgroup
of G.

d) P is not an elementary Abelian 2-group whose non-identity elements are
all conjugate in G.

The object of this paper is to obtain the following characterization of
Suzuki’s simple groups"

MAN THEOREM. Let p be a prime, and let P be a Sylow p-subgroup of a

finite p-core-free group G. Suppose P is not a normal subgroup of G. Then
G satisfies (), (b), (c), and (d) if and only if p 2 and G is a Suzuki group.

The consequences of this result are different for p 2 and for p odd. Sup-
pose, first, that p 2. Then every finite group G satisfies (c). If P is
an Abelian group with two generators but is not elementary Abelian, then G
satisfies (a), (b), and (d) (Lemma 2.1(ii) ). Thus we obtain a theorem of
Brauer [3, pages 317-320], which asserts that P is normal if G is 2-core-free.
Brauer’s proof uses his method of "colunms"; we shall require Brauer’s
method and also Feit’s construction [5] of exceptional characters and Suzuki’s
characterization [11], [12] of certain doubly transitive permutation groups.

Suppose p 2, G is 2-core-flee, and G satisfies (a) and (b) but not (d).
Assume that G does not have a normal Sylow 2-subgroup.In this case the
main theorem gives no information. However, the possible groups have been
determined. By a theorem of Gorensteia [7] thut uses several receat deep
results, G must be a group of one of the following types"

(i) a subgroup of PFL(2, q) that contains PSL(2, q) as a subgroup of odd
index, for some odd prime power q such that q :t:3, mod 8;

(ii) PSL(2, 2), for some integer n 2.
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Conversely, the groups of types (i) and (ii) all satisfy (a) and (b) but not (d).
Unfortunately, when p is odd, it seems impossible to verify (c) in most

situations. However, we obtain the following result:

COROLLARY. Let p be a prime and let G be a finite group with a cyclic Sylow
p-sub-group. Then G is a p-solvable group if and only if every pair of elements of
order p in G generates a p-solvable group.

These results originated in a problem proposed by J. Thompson. We are
indebted to E. Shult for permission to quote his results before publication.
We also thank the National Science Foundation for its partial support during
the preparation of this paper.
Most of our notation is stundurd. All groups considered in this paper are

finite. Suppose G is a finite group. Denote the order of G by G I. The
exponent of G is the smallest positive integer r such that x" 1 for all x e G.
If H is a subset of G, we write H

_
G (respectively, H G) to indicate that

H is a subgroup (respectively, a proper subgroup) of G. Denote the identity
element and identity subgroup of G by 1. If G is isomorphic to group G,
we write G -- G.Suppose H G. We sy that H is an elementary Abelian group if H is
Abelian and the exponent of H is either one or some prime. In this case G is
said to act irreducibly on H if H is u minimal normal subgroup of G.
Suppose H, K G. Let H be the set of all non-identity elements of H.

The normalizer and the centralizer of H in K are denoted by N(H) ad
C(H). When there is no danger of confusion, we will also write N(H) and
C(H) for Na(H) and Ca(H). If H is generated by a single element x, let
C:(x) C(H) and C(x) C(H). Let [H, K] be the subgroup of G
generated by the commututors h-I-hk, where h e H and k e K. For x, y e G,
let y x-yx and K x-Kx. We say that K is weakly closed ia H with
respect to G if K H and if K K whenever x e G and K

_
H.

Let Z(G) be the center of G and let G’ be [G, .G], the commutator subgroup
of G. Suppose H is normal subgroup of G. We say that G is a Frobenius
group with Frobenius kernel H if i H G and if C(x)

___
H for every x e H.

In this case, a subgroup Q of G that sutisfies HQ G and H a Q i is culled
a complement of H in G. It is well known that Q must exist [6, (25.2),page
50].
Suppose p is a prime. Then G is called a p’-group if p does not divide G I.

We say that G is p-solvable if every composition factor of G is a p-group or a
p’-group. If H

___
G and H is a p’-group, then H is said to be a p’-subgroup

of G. It is easy to see that the product of any number of normal p’-subgroups
of G is itself a normal p’-subgroup of G. Hence G has a unique maximal nor-
mal p’-subgroup K(G), called the p-regular core of G. Note that G is p-core-
free if K(G) 1.
An element x of G is called a p’-element if p does not divide the order ofx.

Suppose x e G. Then there exist unique elements y, z e G such that yz zy x,
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z is a p’-element, and the order of y is either one or a positive power of p. We
call y the p-part of x. If G/K(G) is a p-group, G is said to have a normal
p-complemen (namely, K(G) ). Clearly, this occurs if.and only if the p’-ele-
ments.of G form a subgroup of G.
Let q be a power of a prime. Let S be the set of elements of the Galois field

GF(q) of order q, together with the symbol . We let PFL(2, q) be the
group of permutations of S described by

(2.1) x (ax + b)/(cx + d) (x e S),
where a, b, c,, d GF( q) and r is an automorphism of GF( q) and ad bc O.
Let PSL(2, q) be the subgroup of PFL(2, q) that consists of those per.muta-
tions of the form (2.1) for which r is the identity automorphism and ad bc 1.
If q 22n+1 for some positive integer n, let G(q) be the group defined on page
133 of [12]. The groups G(q) are called the Suzulci groups.

2. Some Consequences of (a), (b), and (c)
LEMMA 2.1. Let P be a Sylow p-subgroup of a finite group G. Suppose W is

a subgroup of Z(P) that is weakly closed in P with respect to G.

(i) Assume that whenever two elements of P are conjugate in G, they are
conjugate in P. Then G has a normal p-complement.

(ii) Two elements of P are conjugate in G if and only if they are conjugate
n N(W).

(iii) If G satisfies (b) and W 1, then G satisfies (a).

Proof. (i) This is a theorem of Frobenius that was generalized by Brauer
in Theorem 3 of [1].

(ii) Let x, yeP and geG. Suppose xg y. Then W C(y) and
W C(x) C(y). Let Q be a Sylow p-subgroup of C(y) that contains W,
and take h eC(y) such that (W)h Q. Take keg such that Q P.
Then

W QP and (Wh)QP.
Since Wisweakly closed inP, W W W . ThusgheN(W) and
xg (x) y y.

(iii) Suppose G satisfies (b) and W 1. Since W is weakly closed in P,
N(P)

_
N(W). Suppose x, y e P and x and y are conjugate in G. By (ii),

there exists g e N(W) such that x y. Since P is a Sylow p-subgroup of
C(W) and since C(W) C(W), there exists h e C(W) such that (P)h P.
By (b), C(W) has a normal p-complement. Take j eP and teK(C(W))
such that/cj h. Then

pg= (p)- p’ P.
Thus gk e N(P). Since

y-x y-lxt’ 1 rood Kv(C(W)),
y-x y.e P n K(C(W) 1 Thus xg



CHARACTERIZATION OF THE SUZUKI GROUPS 9

LEMMA 2.2. Let P be a Sylow p-subgroup of a finite group G. Assume G
satisfies (a) and (b). Let N N(P). Suppose x e P. Then

C(x) Cp(x)K(C(x)) and CN(x) Ce(x)K(N).

Proof. Let Q be an arbitrary Sylow p-subgroup of C(x). Take g e G such
that Qg P. Then xge Q P. By (a), there exists n e N such that
x (.x) x. Now, Q is a Sylow p-subgroup of C(xg), that is, of C(x).
Since Q P, Q’ Cp(x). As some power of x has order p, C(x) has a
normal p-complement by (b). Therefore, C(x) Ce(x)K( C( x) ).

Let M CN(x) and K K(M). Since M C(x), M has a normal
p-complement. Now

[P, K(N)] P n K(N) 1,

so K(N) K. Conversely, since K normalizes C(x) and P,
[K, Z(P)] [K, C(x)nP] K n (C(x)n P) 1.

Thus K
_

C(Z(P)), so that by (b),
g K(C(Z(P))) K(N(Z(P))).

Thus
g K(N(Z(P))) N K(N).

This completes the proof of Lemma 2.2.

LEMMA 2.3. Let H be a Frobenius group with Frobenius ]ernel K. Suppose
Q is a complement of K in H and M is a normal subgroup of H. Let q Q I.
Then

(i) if lH/K[is even, then K is Abelian;
(ii) M

_
K or K M;

(iii) if 1 c M K, then MQ and HIM are Frobenius groups, so q divides

IMI land IK/MI 1.

Proof. Part (i) is a well-known result of Burnside [Theorem 25.9, page
156, 6]. Parts (ii) and (iii) follow from Theorem 25.3, page 152 of [6].

PROPOSITION 2.1. Let p be a prime and let P be a Sylow p-subgroup of a
p-core-free finite group G. Assume that G satisfies (a) and (b) and that P is
not a normal subgroup of G. Let N N(P). Then

(i) N/K(N) is a Frobenius group with Frobeniuskernel PK(N)/K(N);
(ii) G possesses a unique minimal normal subgroup M, and M is a simple

group that contains P and satisfies a) and b ).

Proof. (i) Let K K(N). Since P is not a normal subgroup of G,
P 1. Suppose N PK. By Lemma 2.2, K C(x) for every x e P. Hence
N PC(P). By (a), two elements of P are coniugate in G if and only if they
are conjugate in P. By Lemma 2.1(i), G has a normal p-complement. Since
G is p-core-free, G P, contrary to hypothesis. Thus N PK.
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Suppose x . N, y P, and the cosets of x and y in N/K commute with each
other. Then

X
-1 --lx X

-1 --X --yy yeK and y y (x-yx) .P.

Hence xy yx. By Lemma 2.2, x C(y PK. Thus N/K is a Frobenius
group with Frobenius kernel PK/K.

(ii) We prove this part by induction on G I. Let M be a minimal normal
subgroup of G. Since G is p-core-free, p divides M I. Thus M P, which is
a Sylow p-subgroup of M, is a non-identity normal subgroup of P. By awell
known result of P. Hall [15, page 144], M Z(P) 1. Let W M Z(P).
Clearly, W is a normal subgroup of N so N N(W). By (a), W is a weakly
closed subgroup of P with respect to G. Therefore, W is a weakly closed sub-
group of P with respect to M. Since M obviously satisfies (b), M satisfies (a)
by Lemma 2.1 (iii).
Let g e N(W). Since P is a Sylow p-subgroup of C(W) and C(W) is a nor-

mal subgroup of N(W), there exists c C(W) such that (P) P. Thus
g (gc)c-NC(W). Since g is arbitrary, N(W) NC(W). By (b),
C(W) PK,( C( W) ), so

(2.1) N(W) NK,(C(W) ).

Suppose M is a p-group. Then W M P. Since N normalizes W, G
normalizes W, by (a). Therefore, K(C(W)) K(G) 1. By (2.1),
G N, contrary to hypothesis. Thus M is not a p-group. Since M is a
minimal normal subgroup of G, M P is not a normal subgroup of M.

Suppose P M. Obviously, MP satisfies (b). As above with M, we see
that MP satisfies (a). Since M P is not normal in M, M does not normalize
Po Moreover,

K,(MR K,(M) K(G) 1,

because MP/M is a p-group. By induction hypothesis, MP G.
In this case, since N M is a normal subgroup of N, (N r M)K/K is a

normal subgroup of N/K. By (i) and Lemma 2.3,

PK/K (N r M)K/K or (N r M)K/K PK/K.

Since M P is a proper subgroup of P and is a Sylow p-subgroup of M,
P (N M)K. Therefore,

NaM (NrM)K PK.

Since G/M is a p-group, N/(N r M) is a p-group. Hence

N P(NrM) PPK PK.

But this violates (i). Therefore, P M. If G has a minimal normal sub-
group M different from M, we obtain similarly P M. But then
P M aM 1, a contradiction.
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Since M is a minimal normal subgroup of G, M is a direct product of iso-
morphic simple groups [8, page 131], say, M $1 X S X S. As p
divides MI and M is not a p-group, $1, S., and S are not p-solvable.
Let x be an element of order p in S. By (b), C(x) is p-solvable. Therefore,
n 1. This completes the proof of Proposition 2.1.

PROPOSITION 2.2. Let p be a prime, and let P be a Sylow p-subgroup of a

finite group G that satisfies a and c ). Suppose x, y G, P0 is a normal sub-
group of N(P) contained in P, and x and y are conjugate to elements of Po.
Assume that x is conjugate to an element of Z(P). Let H be the subgroup of G
generated by x and y, and let H, be a Sylow p-subgroup of H. Then

(i)
(ii)
(iii)
(iv)

H HvK(H);
H is an Abelian group and is conjugate to a subgroup of Po;
H nP Po ; and
if xy-1 is a p’-element, x is conjugate to y.

Proof. Let K K(H). Clearly, we may assume that x e Hr. Take
g e G such that (H)g P. By (a), x is conjugate in N(P) to an element of
Z(P). Consequently, xg

e Z(P). Hence x e Z((H)g), and x e Z(Hv). Let
M/K be the largest normal p-subgroup of H/K. Then M nH is a Sylow
p-subgroup of M. Therefore, M (M nH,)K, so

(2.2) xz zx modulo K,
for all z e M. By Lemma 1.2.3 of Hall and Higman [9], x e M. Thus H is
generated by M and y, and HIM is a p-group. By the definition of M,
H M. Thus H HK. This proves (i). Since H is generated by x and y,
H/K is Abelian by (2.2).
Take h e H such that yhe H. Since H is Abeiian and H HK, x and

yh generate Hv, and

(2.3) y y modulo K.

Therefore, xg and yg generate (H)g. Since P0 is a normal subgroup of N(P),
xg and yg lie in P0, by (a). Therefore, (Hv)g P0. This completes the
proof of (ii).
Take ] e H such that (H n P)k Hr. Then (H n P)k P0, and

H n P (Po)"-- n P.
By (a), H n P Po.

Finally, suppose xy- is a p’-element. Then xy- K. By (2.3),
x(y)-i yh.e K aH 1. Thus x This completes the proof of Propo-
sition 2.2.

PROPOSITION 2.3. Let p be a prime, and let P be a Sylow p-subgroup of a finite
group G that satisfies a) and c). Assume that P is not an elementary Abelian
group on which N(P acts irreducibly. Then there exists a normal subgroup Po
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of N(P such that Po Z(P and 1 c Po P. If v e Po and g, h G and the
the p-part of vg(vh)-I lies in P, then the p-part of v (v)-1 lies in P0.

Proof. If P is not an elementary Abelian group let P0 be the set of those
elements of Z(P) that satisfy x 1. If P is an elementary Abelian group
let P0 be any proper non-identity subgroup of P that is normalized by N(P).
By Proposition 2.2(iii), P0 has the desired property.

3. Characters of groups satisfying (a) and (b)
The basic tool for our proof of the main theorem is the theory of group

characters, including the theory of blocks as developed by Brauer [2], [3].
Throughout this section we assume that G is a finite group that satisfies (a)
and (b) for some prime p that divides GI and for some Sylow p-subgroup P
of G. We define a mapping 0 --+ 0a of the generalized characters of P into the
ring of generalized characters of G; this mapping corresponds to the concept
of the "column" of 0 as defined by Brauer (see Remark 3.1). Then we use a
technique of Felt .to define a related mapping that yields "exceptional" charac-
ters of G under certain conditions on P.

Let N N(P) and q IN/PK(N)I. We assume that G does not have a
normal p-complement. By Lemmas 2.1(i) and 2.2, q > 1.

Let 0, 1, be the irreducible complex characters of P. Assume 0 is the
principal character of G and 1 is a one-dimensional character of P. Let
z (1) for i 0, 1, .... Let T be a complete set of coset representatives
of PK(N) in N. We assume that 1 e T. Let x0 be the principal character
of G. For each irreducible complex character x of G, we denote the kernel of
x by Ker x.

Suppose H is a subgroup of G. Let Bo(H) be the principal p-block of H;
we regard Bo(H) as a collection of irreducible complex characters (but not
modular characters) of G. We define

X(H) xx(1) (x Bo(H)).

Let 0 and be generalized characters of H. As usual, we define the inner prod-
uct of 0 and n by

(0, ,), (l/ill l) _,O(h)q(h-)
and the norm of 0 by 0 (0, 0)a. For every subgroup K of H, we denote
the restriction of

Suppose 0 is a generalized character of P. Let 0* be the generalized charac-
ter of G induced by 0 and let 0a be the generalized character of G givea by

Oa(g) xSo(a)(O*, X)ax(g) for g e G.

For n eN, let 0 be the generalized character of P given by O(x) 0(x),
x e P. If n ht for h e PK(N) and e T, then 0 0, by Lemma 2.2.

Remarlc 3.1. Let 0 and v be any generalized characters of P. As is well
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known,
(o, ,) _, (o, x)o(,, x)o,

where x ranges over all the irreducible compl.ex characters of G.
(0a, x) a 0 whenever x e B0(G), we obtain

Since

by the Frobenius reciprocity theorem. Thus (0a, ) coincides with the inner
product of columns (a(O), a(v)) as defined by Brauer [2, pages 165-6].

Remark 3.2. Suppose K(N) 1. Let {p},H N, andD P.
By (a) and Lemma 2.2, G satisfies the conditions of Dade for lifting certain
characters of N ((i) and (ii), page 373, of [14]). Let 0 be a generalized char-
acter of P, and let 0 be the generalized character of N induced by . Suppose
0(1) 0. It can be shown by Lemma 1 and Theorems 6 and 7 of [14] that 0a is
the generalized character of G that corresponds to under Dade’s mapping.
Our first lemma does not require any of the properties of P and G.

LEMMA 3.1. Let 0 be a character of a subgroup L of G. Suppose H is a
normal subgroup of L, L PH, and P n H 1. Suppose (0 I’, o), 0,
and (xy O(x for all x e P and y H. Then H is contained in the kernel
ore.

Proof. Let01e c. Then Co 0, ci >= 0foralli >= 1, and

(3.1) e(1) ciz.

For i 0, 1, 2,..., let ’o be the irreducible character of L given by
.’(o(xy) ’(x) for x e P and y ell. Since (01p, o)e 0, (0, oo) 0.
Hence for each i,

(o, o) (o, o.) z,(O, oo) (o, o
(1/[ L [) ,. O(xy)( - -’0(y z )--z)

(IHI/[L[) .O(z)((z-) z)

(xeP, y

(xP)

(o ], zo) c zco c:.

Therefore, c0 -t- , where , 0 or is character of L. By (3.1),
(1) 0. Consequently, 0. This completes the proof of Lemma 3.1.

By Proposition 1, page 310, of [3], every subgroup H of G that has a normal
p-complement satisfies k(H) [H/K(H) I. Let x e P. By Lemma 2.2
C(x) Cp(x)K(C(x)) and Cn(x) Ce(x)K(N). Therefore,

x(c(x)) c()l(3.2)

and

(3.3)
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Assume 0 and are generalized characters of P. Since v is a class function on
P and since PK,(N) PC(P),

(3.4) ,,r (, ’) PK,(N)[, (, ),.

By (3.3), (3.4), and a result of Brauer (Lemma 3, page 315, of [3]), we obtain:

LEMMA 3.2. Let and be generalized characters of P such that 0(1) O.
Then

(3.5) (#a, ,a)o _’,r (0,

By Lemma 2.2, PK,(N) P X K,(N). As in the proof of Proposition
2.1, we see that N/K,(N) is a Frobenius group with Frobenius kernel
PK(N)/K,(N). Consequently, Lemma 2.2 of [5] yields:

LMX 3.3. Let be an irreducible complex character of P. Let T.
Then if and only if 1 or i O.

Let $ be a set of non-principal irreducible complex characters of P with the
following property" for every non-principal irreducible complex character " of
P, there exists one and only one element of 8 such that () for some
e T. We assume that ’ e . Let #() be the set of all integral linear com-

binations of elements of $, and let 0(8) be the set of all O e a(8) such that
0(1) 0.

By Lemm 3.3,

(3.6) (0, n’)e 0 if teT, t 1, and

Hence by (3.5),

(3.7) (Oo, n)o (O, n)" if 0, n e0($).

If 0 e a0(8), then O*(x) 0 for every p’-element x in G. By theorem of
Briner nd Nesbitt [14, Lemm 1], 0(x) 0 for every p’-element x in G. In
prtieulr,

(3.8) 0a(1) 0 if 0,0(8).

By (3.7), the mpping given by O --. 0a is a (liner) isometry of a0(8) into
the ring of generalized characters of G. We sy that $ is coherent if 0($) 0}
ad if there exists linear isometry r of ($) into the ring of generalized char-
acters of G with the property that 0 0 for 11 e #0(8). Using method
introduced by Feit in [5], we obtain the following four lemms-

LEMMA 3.4. Let q N/PK,(N) I. Suppose that P is Abelian and
IF] > q q- 1 or that P is a non-Abelian and iP/P’ > 4. Then 8 is coherent.

Proof. Let y, y be the distinct degrees of the elements of 8, r-
rnged in strictly scending order. Then y 1. For i 1, k, let 8 be
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the elements of degree y in $, and let n be the number of elements of St.
Lemma 3.3,

P/P’ 1 -4- nl q.

By

By our hypothesis, nl > 2. By Theorem 31.2, page 183, of [6], g is coherent
unless there exists an integer m such that 1 < m < / and

(3.9) Z,m==’-I n(y,)2

_
2y,.

Assume m exists. Since m > 1, P is not Abelian. By Lemma 2.1 of [5] and
by (3.9) and Lemma 3.3,

(ym)

_
1 + q ’= n,(y)

_
1 -t- 2qy,.

Therefore, ym(y 2q) _< 1. Since y > 1, y

_
2q. By Lemma 2.3(iii),

q divides P/P’I 1. Since y is a power of p and q > 1, we have ym < 2q.
But by (3.9),

ym >_./l(y)2-- - (1/2q)(IP/P’ 1)

> (1/2q)4q= 2q.

This contradiction completes the proof of Lemma 3.4.

LEMMA 3.5. Suppose x P and y is a p’-element of G. Then

x(x)x(x-1) C,(x)l and x(x)x(y-1) 0,

where x ranges over all the elements of Bo( G).
By Proposition 2, page 310, of [3],

Thus the first equation follows from (3.2). The second equation is a special
case of equation (85.21), page 609, of [4].
Let I be the set of subscripts i such that e $. Suppose $ is coherent and

i e I. Then II i’ II 11 1. Thus there exists e +/-1 such that e .
is an irreducible character of G. Let x e We call the characters x,
i e I, the exceptional characters of G. Let v e. Define

’ t. for all i I.
Denote the character of the regular representation of P by p.

IEMMA 3.6. Suppose $ is coherent. Then e and x Bo( G) for all id.
Moreover,
(3.10) z
for all i, j e I. There exist integers a and c such that

(3.11) x [ -4- z @o -4- z ap for all i I.

Bo( G) must contain at least one non-principal, non-exceptional character. If
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X is a non-exceptional character in Bo( G) there exist integers at and c such that

(3.12) X I c o + a p.

Proof. Leti, jeI. Thenz(1) --z(1) 0. Hence

z
(z

By (3.8)
0 e z x(1) e z x(1).

Takingj 1, weseethate ex e. Hencee e eforalli, jeI.
Thus we obtain (3.10). Clearly, x e B0(G) for M1 i e I.

Since x is a class function on G,

(x,) (x],) for all ieI and tT"

Therefore, there exist integers Co and c, i e I, such that

(3.13) x, e Co o + E, c.
Take i e I different from 1. Then

c z c

(x,(, z,)*), (x,( z))
Therefore, by (3.10),

(3.14) c z c
Leta c-- eandc Co- a. By(3.13) nd(3.14),

Take j e I different from 1. Let . be an irreducible complex character of P.
By (3.10),

(x [ z x , ) (x z x, *)

Hence, by (3.5),

(3.1) (x ], z x , ) ( z, ).
Since x and x are class functions on G, there exist integers do and d, i e I,
such that

By (3.16), do 0 nd d 0 if i e I uad i 1, j. Mso, d -sz and d s.
Thus

(3..17)
By (3.15) and (3.17), we obtain (3.11).
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Assume for the moment that x0 is the only non-exceptional character in
B0(G). Take x e P. Equation (3.11) yields

x(1) eqz + zc + zal P zx(1) for i e I.

By Lemma 3.5,

o 1 + :,, x,()x,(1) 1 + x(1) : z,x,().

Since all the quantities in the above equation are algebraic integers, xx(1) 1.
Thus G’ Ker xx. Since q > 1, P N’ by Lemma 2.3. Therefore xx Ir 0.
If I contains more than one subscript, (3.11) yields a e 0, which is
false. Therefore, I {1}. By Lemma 3.5,

0 1 + x(z)x(1) 1 -t- 1,

contradiction. Thus x0 is not the only non-exceptional character in B0(G).
Let x be non-exceptional character in Bo(G). There exist integers Co

nd c, j e I, such that

For j e I,

c" z" Cl

(x I, z) (x, ( z)) (, x zx) O.

Therefore

Thus we obtain (3.12).

LEMMA 3.7. Suppose is coherent. Assume P is not an elementary Abelian
group which N(P) acts irreducibly. Then there exists a n-negative integer a
such that

(3.18) x [e et + z ap for all i e I.

Proof. By our hypothesis, there exists a normal subgroup P of N such
that i P P. By Lemma 2.3 (iii), q divides [P[ 1 and [P/P 1.
Therefore,

(3.19) [P[ (q + 1)2= + 2q + 1.

By Lena 3.6, there exist integers a and c such that

(3.11) x [e e + z Co + z ap for all i e I.

Let - 0. ByLemma3.2,

(3.20)

( 0, ; a0) 1 + q.
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Take i e I. Then

(, ,) (, x, !) (r, x, I) (r0, x, I).
Hence by (3.11),

(a, xl)a c and (, x)a -cz, ifieIandi 1.

Moreover,

(3.21) (, xo)a (,u, xo[,). (’1 ’o, ’o), --1.

Therefore, (3.20) yields

c 2 2c W c ,lz.1 -t- q >_ (--1) + ( c) - ,z,By Lemma 3.3, ,z (i/q)([ P 1). Consequently, by (3.19),

1 - q >_ 2 2c W (c/q)([Pl 1) >_ 2 2c -t- (q -t- 2)c

> 2 + c(q + 2) 21el 2 + Icl(Icl(q + 2) 2).

Since c is an integer, c must be zero. Thus (3.18) coincides with (3.11).
Sincea (xle, 0)e,a _> 0.

LMM 3.8. Suppose x G and x e Bo( G). Let be the p-part of x. Then
x(x) x(r) if r 1.

Proof. This is Corollary 5, page 159, of [2].

4. A commutator condition
Suppose that G satisfies (a), (b), and (c) and that P is no an elementary

Abelian group on which N(P) acts irreducibly. By Proposition 2.3, G
satisfies the following condition"

(c’) P contains a non-identity element v and a proper subgroup Po with the
property that whenever g, h G and the p-part of v(va)- lies in P, the p-part
of v (v)- lies in Po.
Note that if P is Abelian, then P > 1 W q.

This section and the next one are devoted to the proof of the following
result"

THEOREM 4.1. Let p be a prime, and let P be a Sylow p-subgroup of a finite
p-core-free group G. Suppose that G satisfies (a), (b), and (c’) and that P is
not a normal subgroup of G. Let N N(P) and q N/PK(N) !.

(i)
(ii)
(iii)
(v)
(v)

Then:

P normalizes no p’-subgroup of G except 1;
P is a non-Abelian group and [P/P’[ < 4q;
q > landqisodd;
Z(P is not a cyclic group;
the centralizer of every non-identity element of P is contained in P;
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and
(vi) every pair of distinct Sylow p-subgroups of G intersects in the identity

group.

In this section we use the results of Section 3 to prove (i) and (ii).
Throughout this section we assume that G satisfies the hypothesis of Theorem
4.1, and thus that G does not have a normal p-complement. We also assume
that Po is a maximal subgroup of P. By Sylow’s Theorem, Po is a normal
subgroup of P. Therefore, ]P/Pol P. We assume that P0 Ker
Let 1 0. Then(x) 0forallxeP0. By a result of Brauer

(Lena 4, page 316, of [3], with an obvious change in the statement and
proof), condition (c) yields:

LEMM 4.1. Let X range over the characters of Bo( G). Then

(, x)l x(v) I/x() o.
By Lemm8 3.5,

(4.1) Ix(v) 2 C(v) P
Since xo e Bo(G), the Frobenius reciprocity theorem yields

(a, xo)a (, o) (f, o, 0) -1.

Thus, by Lemma 4.1 and (4.1),

(4.2) (a, x)o[ x(v)]=/x(1) 1

and

(4.3) [x(v) ] [P 1,

where in both equations we sum over the non-principal characters in B0(G).
Therefore, there exists non-principal character in B0(G) such that

(4.4) (a,)o 1 and (1)/(a,)a ]P 1.

Lete c0o + ,,c. By (3.20) and (a.7),

(.5) 1 + q

and, if i e I and i 1,

Thus

c zv ( zr, ) ( z?, ) -z.
Hence

(4.6)

(x e B0(G) ).

>_ Co - qcl - qi(cl z zi)z Co -t- q -t- (c 1)q,rz
Co -t- q - (c 1)(IPl 1).
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Suppose co >_ 1. Since

c (r, i). (r, r0, !) + (r0, I.), (, I) + co
>- (,, I) + (,, ) + 1,

(4.6) yields
(1) > (o, )o(I P 1),

contrary to (4.4). Thus

(4.7) (r0, I,) co o.
We claim that G satisfies (i). Let H be a p’-subgroup of G that is normalized

by P. We wish to show that H 1.
Let L PH. Take x e P and y e H, and let r be the p-part of xy. Then r

is conjugate in L to an element of P. Since L PH HP, there exists
heHsuchthatrheP. Thenx-ePandx--- r---- moduloH. Hence
x-1 h 1. Therefore, () (x). By Lemma 3.8, (xy) (-).
Thus

(4.8) b(xy) (x) for x e P and y e H.

Since co 0, P Ker . As Ker b is a normal subgroup of G, Ker 1
by Proposition 2.1. Let 0 h !. By Lemma 3.1, H Ker 0 1. This
completes the proof of part (i) of Theorem 4.1.
In the remainder of this section, we will assume that G violates (ii) and

will aim for a contradiction. Let P1 be the subgroup of P generated by
those elements of P that occur as the p-part of the commutator vg(v)-1
for some g, h e G. Since

(vg(vh)-l)= v(v)- for all g, h, x.G,

P1 is a normal subgroup of N. Clearly, P1

_
P0 c P. Since N/Kv(N) is

a Frobenius group,

(4.9) P # 1.

By Lemma 2.3 (iii), N/PI K(N) is a Frobenius group with Frobenius kernel
P/P1K,(N). But v --- v mod P1, for all g e N. Thus

(4.10) v e P.

From (3.19), P -> (q + 1) > q + 1. Since G violates (ii), g is coherent
by Lemma 3.4. By Lemma 3.7, there exist e 1 and an integer a such
that

(4.11) Xle ef + azo for all ieI.

Therefore,

(4.12)
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and, if e and 1,

(.3) (, x I) o.
By (4.2)

(4.14) 1 elX*()i=/x*(1) + (, x)l X()I/X(1),
where x ranges over the non-principal, non-exceptional characters in B0(G).
By (4.10),

v eP (P) (P0) Ker (i’) for every e T.

Hence v e Ker . By (4.11),

(4.15) x(v) eq 0.

Since 1P > q -t- 1,I contains atleast two subscripts. By (4.11),P Kerx.
By Proposition 2.1, Ker x 1. Since v e Ker i’, a >_ 1. Thus, by (4.11)
and (4.12),

(4.16) either -1 or x(1) >_ q-t-IPi > IP]- 1.

By (4.14), (4.15), (4.16), aad (4.3), there exists a non-principal, non-
exceptional character b in B0(G) that satisfies the equation

(4.17) (#a, )a >_ 1 and (1)/(a, b)a < IPl 1.

By Lemma 3.6, there exist integers d and e such that b ] do - ep.
By (4.17),

< (,, ) (,, i) (, I) (0, I) -d.

Since d - e (’0, h le) -> 0, we obtain

b(1) d + elF >_ d diP (-d)(IP 1) (a,)a(ipi 1),

contrary to (4.17). This contradiction completes the proof of statement
(ii) of Theorem 4.1.

5. Proof of Theorem 4.1
:LEMMA 5.1. Let p be a prime, and let X and Y be subgroups of a finite

group. Suppose X is a non-cyclic group of exponent p, Y is a p-group, X
normalizes Y, and Cr( x) i for all x X. Then Y 1.

Proof. This is a theorem of Burnside, generalized by Wielandt in (3.3),
page 149, of [13].

Let G be a finite group that satisfies the hypothesis of Theorem 4.1.
By the previous section, G satisfies the following conditions"

(i) P normalizes no p’-subgroup of G except 1; and
(ii) P is a non-Abelian group and P/P’i < 4q.
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By Proposition 2.1 and Lemma 2.3 (i), q > 1 and q is odd. Thus G satisfies
(iii).
Suppose that G violates (iv), i.e., that Z(P) is cyclic. Let Z be the sub-

group of order p in Z(P). By Lemma 2.3 (iii), q divides p 1. Con-
sequently, p is odd. Since q is odd, 2q divides p 1. Let P/P’I p’.
Then

(1 -t- 2q) <_ p’ PIP’I< 4q.
Thus n 1. Therefore, p/pt is cyclic. By the Burnside Basis Theorem
[8, page 176], P is generated by one element. But this contradicts (ii).
Hence Z(P) is not cyclic.
Take x e Z(P). Then P C(x) and, by (b), C(x) has a normal p-com-

plement. By (ii), this compiement is the identity group. Thus

(5.1) C(x) P for z Z(P).
Since Z(P) is a non-cyclic Abelian p-group, Z(P) contains an elementary

Abelian subgroup X of order p. Let y e Pa. Then X C,(y). By (5.1)
and Lemma 5.1, K,(C(y)) 1. Lemma 2.2 yields C(y)

_
P.

Let R be a Sylow p-subgroup of G such that P n R 1. Take y e (P n R).
Then Z(R)

_
C(y) P. Since Z(R) is conjugate to Z(P) in G,

Z(R) Z(P) by (a). Hence
R

_
C(Z(R)) C(Z(P)) P.

Thus R P. This completes the proof of Theorem 4.1.

COROLLARY 5.1o Let P be a Sylow 2-subgroup of a finite 2-core-free group G.
Suppose that G satisfies a) and (b) and that P is not an elementary Abelian
group on which N(P) acts irreducibly. Assume that P is not a normal sub-
group of G. Then G is a Suzuki group.

Conversely, every Suzuki group satisfies the above conditions.

Proof. Assume that G satisfies the above conditions. Since every pair of
elements of order two generates a dihedral group, G satisfies (c). By Propo-
sition 2.3, G satisfies (c’). By Theorem 4.1, G satisfies the following con-
ditions"

(CIT) The centralizer of every element of order 2 is a 2-group.

(TI) Every pair of distinct Sylow 2-subgroups of G intersects in the
identity subgroup.

By Theorem 1.5, page 434, of [11], G is a (ZT)-group, in the notation of
Suzuki. However, Suzuki has proved [12] that the only (ZT)-groups are
the Suzuki groups and the groups PSL(2, 2), n >= 2. For n

_
2, the nor-

malizer of a Sylow 2-subgroup of PSL(2, 2) acts irreducibly on the Sylow
2-subgroups. Conversely, every (ZT)-group satisfies (TI) and (CIT), which
imply conditions (a) and (b).
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Remark 5.1. Suppose p is an odd prime. There are many examples of
finite simple groups that satisfy (a) and (b) and do not have elementary
Abelian Sylow p-subgroups. However, we do not know whether there are
any examples in which the Sylow p-subgroups are non-Abelian.

6. The Abelian case

In this section we retain our previous notation and results and work with
the group ring of G over the integers. Suppose C1, Ck are the distinct
conjugate classes of G. For i 1, ..., ], let hi be the number of elements of
C and let K be the class sum of Ci, that is, the sum of the elements of C in the
group ring. For each i, choose a representative g of C. It is well known [8,
page 277] that for each Ki and K. there exist non-negative integers
c’8 (s 1, ..., k) such that

(6.1) Ki K. _-1 ci’, K,

and

(6.2) hihx(gi)x(g)/x(1) -cij, h, x(g,)

for every irreducible character x of G. Moreover, by Lemma 3.5,

(6.3) xx(x)x(x-1) IC(x) and xx(x)x(y-1) 0 (xeB0(G))

if x e P and y is a p’-element of G. We say that an element of G is a p-singu-
lar element if it is not a p -element.

THEOREM 6.1. Let P be a Sylow p-subgroup of a finite simple, non-Abelian
group G that satisfies (a) and (b). Suppose P is Abelian and PI > q 1.
Let x and y be p-singular elements of G. Then there exist g, h G such that
xgyh is a p’-element of G.

Proof. Assume the conclusion is false. Let Ki and Kj be the class sums
of the conjugate classes of x and y respectively. Take ci8 as in (6.1) for
s 1, ..., ]. By hypothesis, c, 0 if g, is a p’-element. Let be any
character in B0(G) such that x is constant on the p-singular elements of G.
Then ci,x(g,) ci8(x) for s 1, ...,/c. By (6.2),

(6.4) hihx(x)/x(1) hihx(x)x(y)/x(1) ’-_cih,x(x).
Substituting x x0 in (6.4), we obtain

(6.5) hi h. =ci’, h,.

The set $ of characters is coherent, by Lemma 3.4. By Lemma 3.6, there
exists a non-principal, non-exceptional character x in B0(G), and is con-
stant on the elements of Pa. From Lemma 3.8, x is constant on the p-singular
elements of G. By (6.4) and (6.5),

(6.6) X(z)/x(1) x(x).
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Since x e B0(G) and p divides G I, x does not have defect zero. Therefore,
x is non-zero on some p-singular element of G. Hence x(x) 0. By
(6.6), x(x) x(1). But then x e Ker x, which is impossible because G is
simple.

THEOREM 6.2. Let p be a prime, and let P be a Sylow p-subgroup of a finite
simple non-Abelian group G that satisfies (a), (b), and (c). Suppose P is a
non-identity elementary Abelian group and all the elements of P are conjugate
in G. Thenp 2.

Proof. Take r e P. Let K be the class sum of the conjugate class of r
in G. Then Ks is the sum of all the elements of order p in G. For
s 1, ...,/c, take c,8 as in (6.1) and let c8 c8 .Unlike the situation in
Theorem 6.1, we may have c 0 when g, is a p’-element. However, since
any two distinct subgroups of order p intersect in the identity group, K Ks
may be written as a sum of products of the form

(x d- x + d- x-l)(y d- y + + y-),
where x and y are elements of order p.

Let I be the set of integers s such that i

_
s _< / and g, is p-singular.

Suppose x and y are elements of order p in G and H is the subgroup of G
that they generate. By Proposition 2.2, HIKe(H) is an Abeliaa p-group.
Therefore, for every power x’ of x, xy is p-singular for at least p-2 values of
j between 1 and p 1. Hence

2chs> P 2

Let h h.
tion yield

(6.7)

Since K is a sum of h elements, (6.1) and the above equa

,.c. h8 >_ h(p 2)/(p 1).

Let
r (1/if) ,ch.

Suppose x Bo(G). By Lemma 3.8 and our hypothesis, x is constant on
the p-singular elements of G. By (6.2),

(6.8) hx(r)/x(1) i<,<k.,,c,h,x(g,) - hrx(r).
Taking x x0 in (6.8), we obtain

(6.9) _,<.<,.ch, (1 r)h.
By (6.7), (6.8), and (6.9),

(6.10) r >_ (p 2)/(p I).

NOW, 7r
-i is conjugate to r in G. Multiply both sides of (6.8) by x()
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and sum over all x e B0(G). By (6.3),

(6.11) h2x(x(r)8/x(1)) h2rxx(r).
By (6.3) (with y 1), there exists xl e B0(G) such that xl(r) < 0. For
every non-principal character x in Bo(G), let f(x) x(r)/x(1). From
(6.11),

(6.12) 1 -t-f(xl)x(r) + xf(x)x(r) r + r(r) -t-rxx(r)2,
where we sum over all x e B0(G) distinct from x0 and x. Since r is coniugate
to all of its non-identity powers, x(r) is a (negative) integer. By (6.12),

(6.13) (f(x) r)x(r) r + rxl(r) 1 f(x)x(r) >_- 2r 1.

Assume p is odd. We shall obtain a contradiction. By (6.10), r >_ 1/2.
Hence by (6.13), there exists x e B0(G) such that

(6.14) x x0 and f(x) >_ r >_ 1/2.

Let p be the character of the regular representation of P, and let w
Since x ]e x(r)i’0 is zero on Pa, there exists a real number b such that

(6.15) x IP x(r)0 -t- bp.

Since b (x IP, 0) x(r), b is an integer. Since

(6.16) b >_ 1.

By (6.14) and (6.15),

1/2 <_ f(x) X.(r)/x.(1) (X(1) bw)/x(1).
Thus

(6.17) x(1) _< 2x(r) nd b _< x(1)/2w.

By (6.3), x(’) _< w1’. Thus by (6.17),

b < X(rr)/w <_ w-1 < 1,

which contradicts (6.16). This completes the proof of Theorem 6.2.

7. Proof of main theorem
THEOREM 7.1. Let p be a prime, and let P be a Sylow p-subgroup of a finite

p-core-free group G. Suppose P is not a normal subgroup of G. Then G
satisfies a b (c), and d if and only if p 2 and G is a Suzulci group.

Proof. For p 2, every finite group satisfies (c). By Corollary 5.1,
the Suzuki groups satisfy (a), (b), and (d). Since they have even order
and are simple and non-Abelian, they are 2-core-free and do not have normal
Sylow 2-subgroups.

Conversely, assume G satisfies the hypothesis of the theorem. We claim
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that P is not Abelian. Assume P is Abelian. Then G contains a simple,
non-Abelian subgroup M that contains P and satisfies (a) and (b), by
Proposition 2.1. Clearly, M satisfies (c) and (d). Thus we may assume
that G M. By (d) and Theorem 6.2, the elements of P are not all
conjugate in G. Hence P 1 > q. Take x, y e P# such that x and y are
not conjugate in G. By Theorem 6.1, there exist g, h e G such that xg(y-1)h

is a p’-element. But this contradicts Proposition 2.2(iv).
Thus P is not Abelian. If p 2, then G is a Suzuki group, by Corollary

5.1. Assume p is odd. Since P is non-Abelian, a theorem of Shult (Corollary
1 of [10]) guarantees that the subgroups of order p in P are not all conjugate
in N(P). Let Q be a subgroup of order p in Z(P), and choose R to be a
subgroup of order p in P such that R is not conjugate to Q in N(P). By
(a), Q and R are not conjugate in G.
Take g e G. Let H be the subgroup of G generated by Q and Rg. By

Proposition 2.2, HIKe(H) is an Abelian p-group. Let x and y be generators
of Q and R respectively. Then no non-identity power of x is conjugate to
y. By Proposition 2.2(iv),

x(y)-I K(H), i-- 1,2, ...,p-- 1.

Thus H/K(H) is not cyclic. Since x and yg generate H, H/K(H) is an
elementary Abelian group of order p2. Let H be a Sylow p-subgroup of H.
Then H is isomorphic to H/K(H).

Since P is non-Abelian, G satisfies (cr) by Proposition 2.3. By Theorem
4.1,

C(z)

_
P for all z e P.

Hence C(w) K(H) 1 for all w e (H) a. Since H is elementary Abelian
of order p2, K(H) 1, by Lemmu 5.1. Thus H H. Hence y e C(x).

Since G is simple, the subgroup of G generated by all the elemeats yg,
g e G, coincides with G. By the ubove paragraph, G C(x), that is,
x e Z(G) 1. This contradiction completes the proof of Theorem 7.1.

COROLLARY 7.1. Let P be a Sylow 2-subgroup of a finite 2-core-free group G.
Suppose G satisfies ) and b). Then G satisfies at least one of the following
conditions:

G is a Frobenius group with Frobenius ]cernel P;
(ii) P is an elementary Abelian group whose non-identity elements are all

conjugate in G;
(iii) G is a Suzuki group.

Proof. Every pair of elemeats of order two ia G generates a dihedral
group, so G satisfies (c).

COROLLARY 7.2. Let p be a prime and let G be a finite group with a cyclic
Sylow p-subgroup. Then G is p-solvable if and only if every pair of elements of
order p in G generates a p-solvable group.
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Proof. One part of the conclusion is obvious. For the converse part,
assume that every pair of elements of order p in G generates a p-solvable
group.

Let P be a Sylow p-subgroup of G, M K(G) G/M, and PM/M.
Then ( is a p-core-free group. We may assume that ( 1. Since every
element of order p in P is a coset that contains an element of order p in P,
( satisfies (c). By taking W /5 in Lemma 2.1(ii), we see that ( satisfies
(a). Take x e/5 such that x 1, and let C C(x). Then/5 is a Sylow
p-subgroup of C. Moreover, C, like , satisfies (a).
Now, the identity automorphism is the only p’-element in the automorphism

group of/5 that leaves an element of/5 fixed [15, pages 145-146]. Since
N()/Cc(D) is a p’-group, and since x Z(Nc(/5)),
(7.1) N(P) (P).
As C satisfies (a), C has a normal p-complement, by Lemma 2.1(i). Thus
( satisfies (b).

If p is odd, then/5 is a normal subgroup of ( by Theorem 7.1; therefore,
( and G are p-solvable. Assume p 2. Let x be the unique element of
order two in/5. Then No(/5) C. By (7.1), N0(/5) Co(P). Since
satisfies (a), Lemma 2.1 (i) yields that G has a normal 2-complement. There-
fore, ( /5. Hence G has a normal 2-complement, and G is 2-solvable.

Remark 7.1. Suppose p is an odd prime and P is a cyclic Sylow p-sub-
group of a finite group G that is not p-solvable. As in the above proof,
G/K,(G) satisfies (a) and (b). Assume that the elements of P are not all
conjugate in G. By using Proposition 2.1, and Theorems 4.1 and 6.1, we
obtain the following violations of p-solvability (for a group with a cyclic
Sylow p-subgroup)"

(7.2) There exist two non-conjugate p-elements whose product is a p’-ele-
ment.

(7.3) If PI > p, there exist two elements of order p whose product has
order divisible by P I.

In some recent work which we hope to publish at a later date, we generalize
Corollary 7.2 by showing that G is p-solvable whenever p is odd and G satisfies
(b) and (c).
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