
CYCLIC HOMOTOPIES

BY

T.

1. Let X be a topological space with base-point .. We say that a homotopy
h" X -, X is cyclic if h0 hi 1, the identity map of X, and the loop ,
given by (t) h,(.), is called the trace of h [5]. The elements of the funda-
mental group of X which may be represented by traces of cyclic homotopies
form a subgroup G(X) of rl(X) and, if X is a CW-complex, the property of a
loop to be the trace of a cyclic homotopy depends only on the element in
rl(X) represented by [5; Th. 1.2 and Th. 1.1]. Let P(X) denote the
subgroup of rl(X) consisting of all elements which operate trivially on every
homotopy group rn(X), n

_
1, and let Z(G) stand for the centre of any

group G. It is shown in [5; Th. 1.4] that

G(X) c P(X) c Z(r(X) ),

and it is asked whether a space X with G(X) P(X) exists [5; 4]; the
question is motivated by the fact that

G(Pn+) r(P:+) and 0 P(P:)
if P denotes the real projective n-space [5; Th. II.5 and Cot. 1.6]. Now, for
any elements , e rl(X) and a e r(X) with n >_ 1, one has .a [a, /] -b a,
where the dot denotes the operation of u(X) on rn(X) and the bracket
stands for the classical Whitehead product [7; p. 139]; also, it is well known
(see e.g. [1; Th. 4.6]) that all Whitehead products vanish in a space whose
loop space is homotopy commutative. Therefore, P(X) u(X) if X has
such a loop space, and the affirmative answer to the above question is given by

THEOREM 1.1. There exists a CW-complex X whose loop space is homotopy
commutative and for which r(X) Z and G(X) O.

Proof. Let B be an Eilenberg-MacLane CW-complex of type (Z, 3)
and let v e H3(B, Z2) be its fundamental class. Introduce the diagram

iX1 pX0FXS ES BX *

E
where E has the homotopy type of an Eilenberg-MacLane CW-complex
of type (Z, 1) with fundamental class u .HI(E, Z.), and p is a fibre map
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with homotopy class uniquely determined by requiring that p*(v) u3,
the cup-cube in mod 2 cohomology; F p-l(.) is the fibre of p, i is the in-
clusion map, S is the circle, and the top row is the Cartesian product of the
bottom row with the fibration S --+ S --* .. Thus, r.(F) 0 for n >- 3,
r2(F) Z2, and rl(F) Z with generator represented by some loop-- F. Suppose G(F) ’(F). As a consequence, since F has the
homotopy type of a CW-complex, there results [5; Remark I, p. 842] a map
whose restriction to the axes of the Cartesian product is homotopic to the
map F /S - F defined by the identity map of F and . Let

o(1 ion),

where " E E -- E is the multiplication in the H-space E. Then, i o

and o (i X 1) are homotopic when restricted to F /S and, since the in-
clusion map E /S -- F X S is 1-connected whereas r(E) 0 for n >_ 2,
the left hand square, itself, in (1) homotopy commutes (tel. base-point since
E is an H-space). Let j" E X S -- Q denote the inclusion map into the
space obtained by erecting a cone over the subset F X S of E X S, and
let r" Q -- B X extend p 0 by mapping the cone to the base-point;
also, let ]" Q -+ B be the map induced by , e, and any based homotopy
connecting i o with o (i X 1) so that k oj p o . By the Serre theorem
(see e.g. [4; 2.1]), r is 4-connected and, since .(B) 0 for n >- 4, a standard
obstruction argument yields a map f such that o r ]. There are only
two homotopy classes of maps B -- B so that, since u 0, --- 1 and
p 0 p o e. Therefore, by the definition of ,

u8(R) 1 (p X0)*(v) *op*(v) u(R) s-l-u(R) 1,

where s generates HI(S, Z). Since u (R) s 0, we have reached a con-
tradiction which reveals that G(F) 0. Finally, since E has the homotopy
type of the 0-sphere, ZE 2;2E has the homotopy type of a 2-dimensional
toms and diagram (3) below homotopy commutes with 0, the constant
map. The homotopy commutativity of the loop space of F follows then by
the first part of 2.1 below, and the required CW-complex X is provided by
the singular polytope of F.

Remark 1.2. The simply connected covering space C of X is an Eilen-
berg-MacLane CW-complex of type (Z, 2). Hence, there are only two
homotopy classes of maps C --. C and each homeomorphism of C onto itself
is homotopie to the identity map. Therefore, the subgroup C(X) of those
covering transformations which are homotopic to the identity map of C
satisfies G(X) (X) r(X). This answers a question raised ia [5; 3]
where examples with G C are given.

Remark 1.3. A stronger property than that of having a homotopy com-
mutative loop space is that of being an H-space; then, G(X) vl(X) ac-
cording to [5; Th. 1.8].
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2. Let 12 and 2 denote the loop and reduced suspension functors, respec-
tively, and let r 2X --, X be given by r(t, o) (t). Recall [9] that a
CW-complex X has a homotopy commutative loop space if and only if there
is a map

(2) M:2;X22X--.X with MoJ--_Vo(r/r),

where J" 2;2X / 22X --* 2X 22X is the inclusion of the axes in the
Cartesian product and V X /X -. X is the folding map given by V(x, .)
V(., x) x. Let X be a CW-complex with a single nontrivial Abelian
homotopy group in some dimension n >- 1. Then X is an H-space with
multiplication X X --* X uniquely determined up to homotopy, and a
standard obstruction argument reveals that M t (r X r) yields the
unique homotopy class of maps fulfilling (2). Next, let

ff F i pE B
be a fibration of spaces having the homotopy type of CW-complexes, and
consider the diagram

22E 2tE 2p X 2ftp ZtB X 2XtB

(3) [M
E P B

where MB satisfies (2) so that E has a homotopy commutative loop space.

THEOREM 2.1. If there is a map yielding homotopy commutativity in
(3), then F is homotopy commutative. Conversely, if F is homotopy com-
mutative, and if both E and B have a single non-trivial homotopy group in dimen-
sions n and m - 1, respectively, with m > n 1, then (3) homotopy commutes
with M
We omit the proof since it is, essentially, dual to that given ia [2; 3.3 and

3.4] and follows the general pattern described in [8]. The result is similar to
the known fact [3] that a two-stage Postnikov system is an H-space if and
only if its Eilenberg-MacLane invariant is primitive. In fact, let Y be a
CW-complex with only two nomtrivial homotopy groups in dimensions n
and m with m > n > 1, and let , L, R X X X --+ X denote the multiplica-
tion and the two projections ia the CW-complex X of type (v(Y), n) which
results by killing off m(Y). Then

COROLLARY 2.2. Y is homotopy commutative if and only if
(r >< r)*o (* L* R*)(k) O,

where k is the Eilenberg-MacLane invariant of Y.

As is well known [10], r* followed by a natural identification Hm+I(2XtX)
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H’(X) coincides with the cohomology suspension H’+I(X) ----> H’(X)
for any coefficient group.

Remar 2.3. As before, let 2E in (3) be homotopy commutative. Then
it is shown in [6] that F is homotopy commutative if p is homotopic to a
composite

where n >_ 3 and Q is the identification map which collapses to a point the
subset T of- Y1 Y consisting of all points that have at least one
coordinate at the base-point. This is an immediate consequence of
2.1" 22E Z2E has (reduced) Lusternik-Schnirelmann category _< 2 so
that, by [10], any map 22E X Z2E --* Y X Y may be compressed
into T, and (3) homotopy commutes with 4 0. In turn, the result in
[6, Remark 2.16(c)] immediately yields the homotopy commutativity of
in 1.1.
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