THE TOPOLOGY OF CONTACT RIEMANNIAN MANIFOLDS

BY
SuatkIicar TaANNo!

1. Introduction

New development in the study of contact manifolds was first given by W. M.
Boothby and H. C. Wang [5], and J. W. Gray [8]. J. W. Gray defined
an almost contact manifold by the condition that the structural group
of the tangent bundle is reducible to U(n) X 1. Later S. Sasaki [15]
characterized an almost contact manifold by the existence of three tensor fields
satisfying some relations, and introduced the Riemannian metric which has
the natural property with respect to the almost contact structure. By these
four tensor fields the study of contact manifolds came to the stage where
tensor calculus is a powerful and prominent method. Two special contact
Riemannian manifolds are K-contact Riemannian manifolds and Sasakian
manifolds. A Sasakian manifold can be considered as an odd-dimensional
analogue of a Kihlerian manifold. The second Betti numbers of compact
Kihlerian manifolds were studied by M. Berger [1], R. L. Bishop and S. I.
Goldberg [2] and others. It is natural to do research on these problems in
compact Sasakian manifolds, and in fact, they were studied by S. I. Goldberg
[6], [7], E. M.. Moskal [13], [14], S. Tachibana, [16], S. Tachibana and Y. Ogawa
[17] and S. Tanno [20], ete.

In [20] we have used (m — 1)-homothetic deformations to get results on
the first Betti numbers. We call these deformations D-homothetic deforma-
tions, where D denotes the distribution defined by a contact form 5. To get
results on the second Betti numbers and harmonic forms, we also utilize a
D-homothetic deformation

(1.1) g9 =ag+ (' —a)®n

of the associated Riemannian metric g for a positive constant «. If (¢, &, 1,9
is a Sasakian structure with a contact form », then (¢ = ¢, *t = o ¢,
*n = an, ¥g) is also a Sasakian structure. By studying the relations of har-
monic forms with respect to g and *g, we get

TurorEM. A compact m-dimensional (K-contact Riemannian or) Sasakian
manifold M with sectional curvature >—3/(m — 2) has the first Bette number
(M) =0. Ifm= 3, wealso have by(M) = 0.

A harmonic 2-form w of the hybrid type (pure type, resp.) is defined simi-
larly to the Kéhlerian case.
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The following theorem is originally due to S. Tachibana and Y. Ogawa
[17], and E. M. Moskal [13], [14].

TaEorREM. If m > 5, a compact Sasakian manifold M with sectional
curvature > —3/(m — 2) has no harmonic 2-form of the pure type. And if
the sectional curvature vs >0, then there is mo harmonic 2-form of the hybrid
type. Especially then, we have bo(M ) = 0.

We denote by K(X, Y') the sectional curvature for the 2-plane determined
by X and Y. Asis well known in Kéhlerian manifolds holomorphic pinchings
were studied by several authors. In Sasakian manifolds, we define certain
pinching for ¢-holomorphic sectional curvatures. ILet

H = sup {K(X, ¢X); X eD,, z e M},
L = inf {K(X, ¢X); X eD,, zeM},
and assume that they exist and H # —3. Thep the quantity
p=(L+3)/(H+3)

is an invariant of the D-homothety class of M. u gives the degree of devia-
tion from constancy of ¢-holomorphic sectional curvature. When H 4 3 > 0,
we say that M is u-holomorphically pinched.

TurorEM. If a compact Sasakian manifold M is u-holomorphically pinched
with u > %, then b(M) = 0.

TueorEM. If a Sasakian manifold M is u-holomorphically pinched with
u > 2, then the metric g is D-homothetically deformable to *g so that M is of
stricily positive curvature with respect to *g.

TaroreM. If a Sasakian manifold M s u-holomorphically pinched with
p > 4, then the metric g is D-homothetically deformable to *g so that M s of
Riemannian pinching > L. Thus, furthermore, if M s complete and simply
connected, then M is homeomorphic with a sphere.

From these theorems we can derive applications. For example, we have

TurorEM. If a compact, simply connected Sasakian manifold M s u-holo-
morphically pinched with u > %, and if the scalar curvature is constant, then M <s
globally D-homothetic with the unit sphere.

The author is very grateful to the referee for his valuable suggestions.

2. D-homothetic deformations

Let M be an m-dimensional contact Riemannian manifold, m = 2n + 1,
with the structure tensors ¢, £, 7, and ¢ which satisfy

(2.1) ¢t =0, q(§) =1,
(2.2) X = —X + n(X)§,
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(23) 9(X, &) = n(X),
(24) 9(X, Y) = g(¢X, ¢Y) + 7(X)-n(Y),
(25) dn(X, V) = 29(X, ¢Y) = 2¢'(X, Y)

for any vector fields X and Y on M ([15]). When £ is a Killing vector field
with respect to g, M is said to be a K-contact Riemannian manifold, and we
have

(2.6) (Vaen)(Y) = ¢'(X, Y),
(27) By(X, ) = (m — 1)n(X),
(2.8) g(R(X, §)Y,£) = ¢(X,Y) — 2(X)-n(Y),

where V is the covariant differentiation with respect to g, Ry and R are the
Ricei curvature tensor and Riemannian curvature tensor respectively [9], [18].
A Sasakian manifold is characterized by

[X, Y] + 66X, Y] + ¢[X, Y] — [6X, ¢¥] + {V-n(X) — X-n(¥)} & = 0
and we have

(2.9) Vigi = gt — 10,

(2.10) ni Rint = g — g me -

A Sasakian manifold is necessarily a K-contact Riemannian manifold. By
the equation » = 0 we define the (m — 1)-dimensional distribution D on M,
and we define an (m — 1)-homothetic deformation, that is, a D-homothetic
deformation g — *9, by

(2.11) g = ag + Bnjm

for constant « and g satisfying @ > 0 and & + 8 > 0. The inverse matrix
(*¢") of (*g) is given by

(2.12) Y9 = alg" — a7B(a + B) TR

Denoting by Wiy the difference *I'y, — Tk of Christoffel symbols, we have in
a contact manifold

(213) Wi = —a 'B(¢i me + nidi) + 278(a + B) E(Vim + Viny)

which follows from (4.6) of [19] putting 6 = 0, V;7:£ = 0, ete. From
now on we assume that M is a K-contact Riemannian manifold, then we have

(2.13) Wi = —a '8(é; m + njb)-
Putting this into
*R;.'kl = R;kl + Vl W;k - vk W;l + W:‘l W;k - W:" W;lf
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we have
*Rine = R + o« 'B(205 dur + i bt — 1 bin)
(2.14) + aB(Vidim + Vidini — Vidim — Vigin;)

+ B (81 myme — Ok myma).
Contracting with respect to ¢ and I, we have

(215) "Rp = Rj — 20789 + o B(2ma + mB — B)njme,

where we have used V,¢; = —(m — 1)3;, ete. Contracting the last equa-
tion with (2.12), we get
(2.16) *$ =a'8 — aB(m — 1),

where S is the scalar curvature, and we have used (2.7).

LemMA 2.1. For a contact Riemannian manifold M with structure tensors
®, & n, g, we put *d’ = ¢, *E = a—IE) *77 = an, and *g = og + (a2 —a)n®n
for a positive constant o. Then (¢, *t, *n, *¢) is a contact metric structure too.
If (¢, & n, g) is a K-contact Riemannian structure (Sasakian structure, resp.),
then (*¢, *¢, *n, *g) is also a K-contact Riemannian structure (Sasakian struc-
ture resp. ).

Proof. If £ is a Killing vector field with respect to g, then *¢ is also a
Killing vector field with respect to *g, since £ leaves n invariant. For a Sasa-
kian structure it is clear from the definition.

3. Harmonic 1-forms on a compact K-contact
Riemannian manifold

We study the relations of harmonic 1-forms with respect to g and *g in
this section. We note here that any contact Riemannian manifold is orient-
able.

First we have the following lemmas.

LevMma 3.1 (8. Tanno [20]). For a harmonic 1-form w on a compact K-
contact Riemannian manifold, we have

(3.1) gw; = 0.

LeEmMA 3.2. A harmonic 1-form w with respect to g on a compact K-contact
Riemannian manifold is also harmonic with respect to *g.

Proof. Since dw = 0 and dw = —g“Vw; = 0, we prove *sw = 0. By
definition of *5 we have

*5'10 — __*gza *vj'wi

3.2 "
( ) —* ”(Vj w; — :,- 'w,).

[
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Then by (2.12) and (2.13)’, and Lemma 3.1, we have *sw = 0, since for
example . o L R
EE(Viwi) = Vi(§8w:) — V8w — £V Ew; .

Lemma 3.3 (Cf. K. Yano and 8. Bochner [22]). In a compact orieniable
Riemannian manifold, there exists no harmonic 1-form w which satisfies
f Ryww'ds > 0
M
unless Vw = 0 and then Ry w'w® = 0, where do is the volume element with
respect to g.

Now we have

TueorEM 3.4. On a compact K-contact Riemannian manifold M there exists
no harmonic 1-form w which satisfies

(3.3) Rj ww® + 2g5 wnw* >0

for every point of M and which has at least one point where inequality holds.
Especially, if Ry + 2¢ is positive definite, then the first Betti number of M,
bi(M), is equal to 0.

Proof. Assume that there is a harmonic 1-form w for which (3.3) holds,
then we have

(34) fM [Ry(w, w) + 2g(w, w)] de > 0.

As M is compact g(w, w) is bounded and we have some positive number ¢
such that

fM [Ri(w, w) + (2 — &)g(w, w)] do > 0.

On the other hand by Lemma 3.1, (2.12) and (2.15) we have
*Rjk ' *wt = o7 *Ry wiu®

(3.5) s ik - i

=a  (Bpww — 2a Bgpww).

Since a8 = a — 1 = —1 as a — 0, we can choose a so that —2a78> 2 — ¢,

that is 2a < &. Then we have

f*Rl(w, w) d*e = o2 f *Ry(w, w) do > 0,
where we have used the relation d*s = a™’? do which is seen from (10.1)

in [19]. The last inequality contradicts the fact that w is a harmonic 1-form
with respect to g and hence *g.
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TueoreM 3.5. Let M be a compact K-contact Riemannian manifold with
sectional curvature >—3/(m — 2). Then we have by(M) = 0. If m = 38,
we also have by(M) = 0.

Proof. We take an orthonormal basis (£, e, ---, ex) for which R; is
diagonal. If sectional curvature > —K for some positive constant K, we
have

Ri;>1— (m—2)K fore =1, ..., 2n.
Then we have Ri(w, w) + 2g(w, w) > (3 — (m — 2)K)g(w, w) for any
harmonic 1-form w, completing the proof.
4. Harmonic 1-forms on compact Sasakian manifolds
In a contact Riemannian manifold, an orthonormal frame
(& ex, e = d00), A=1,---,m,
is called a ¢-basis. By K(X, Y) we mean the sectional curvature for the

2-plane determined by X and Y.
In a Sasakian manifold we have (for example [16])

(4.1) Ri¢; = —Rj o7 .

This relation implies that for an eigen-vector X of R, , ¢X is also an eigen-
vector. Thus we have a ¢-basis for which only Ry = Ri(%, £) = m — 1,
Ry, Raxo+ may be non-vanishing components of R;. Now we put

Ko = K(E, 6)‘), Kop» = K(Er e)n‘)) K)\M = K(e)w ell) = R)\l‘ll)\a A My Ka =
Ky = 0, ete.; then we have

Ko = Ko+ =1, A=1,--,m,
(4.2) Ba =14 2, (Ka + Kun),
(4.3) Rios = 14+ 204 (Kas + Kune).
On the other hand we know that (see [17])
(4.4) Kaws = Ky  Kyr = Kywy

Therefore if we assume that Ky, + Ky > —(2 — &)K for some positive
constant K, then we get

(4.5) Ri(w, w) + 29(w, w) > (3 — (2n — 1)K )g(w, w)
for any harmonic 1-form w. By Theorem 3.4 we have

TaroREM 4.1. Let M be a compact Sasakian manifold. If the sectional
curvatures satisfy
Ky + K > =3(2 — )/ (m — 2)

(or especially  D_p (Kn + Kaue) > —3),
then by(M) = 0.
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Remark. As a corollary of this theorem we have the result corresponding
to Theorem 3.5 in a Sasakian manifold.
5. Harmonic 2-forms on compact Sasakian manifolds
To begin with we state the following

ProrosimioN 5.1. If a compact Sasakian manifold M is of dimension 3
and if the sectional curvature 18 > —3, then we have bo(M ) = 0.

This is contained in Theorem 3.5.
From now on in this section we assume that m > 5.

LemMma 5.2 (S. Tachibana [16]). For a harmonic p-form w, p < n, on a
compact Sasakian manifold we have

(5.1) EWiigeoiy = 0,
(5.2) ¢”wi,~,-3...,-p = 0.

Lemma 5.3. If w vs a harmonic p-form with respect to g on a compact Sasa-
kian manifold, then it is also harmonic with respect to *g.

Proof. First we assume that w is a harmonic p-form with p < n. Since
dw = 0and éw = 0, we show *sw = 0. By definition we have

* i) % — ¥ ij ” S
g V,-wiiz...ip = g (V,-w,;iz...ip h W,'j’wriz...,'p - ‘)__, iajwiiz...,...;p).

By (2.12), (2.13)’ and Lemma 5.2, we have *sw = 0. The difference between
proofs of Lemma 3.2 and Lemma 5.3 is the use of the relation (5.2). If the
degree of w is greater than n, we take its adjoint with respect to ¢ and *g.
It is verified that one differs from the other by a constant factor which is a
rational power of a.

LemMa 5.4 (K. Yano and S. Bochner [22]). In a compact Riemannian
manifold, there exists no harmonic p-form w which satisfies
Fyp(w) 20,
unless Vw = 0 and then Fy(w) = 0, where
(53) Fp(w) = Rijw™ wl,...i; + 27(p — 1)Rim w20, .., .
By (2.12) and (2.14), we have
(5.4) *Riji = aRijur + B(20:; 1 + bin djt — dirdin) + [*],

where [%] is the term which contains 4. Thus by (2.12), (2.15), (5.4) and
Lemma 5.2, we have for a harmonie form w
*Fp(w) - (Rij _ 2a—1ﬁgij)a—(p+l)wii2...ip,wiizmip
+ 27H(p — DlaRim + B(2¢i; b1 + dix bt
(5.5) — Pi bk )]a_(pw)’wiﬁ“'"i”wklia...ip
= " F () — a_(p“)B[Qwi""i”wil...i,,

- (p—1) o1 & wklismipwiiia---ip]-
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Let w be a harmonic 2-form with respect to g; we decompose w as follows
[13], [17]:

(5.6) w=w + v

where
w'(X,Y) = 27w(X, Y) + w(¢X, ¢Y)],

w'(X,Y) = 27 w(X,Y) — w(¢X, ¢Y)].
Then w' and w” are harmonic and
(5.7) w'(¢X, ¢Y) = w'(X, V),
(5.8) w(¢X, ¢Y) = —w'(X, V).

A harmonic form w is said to be of the hybrid type if it satisfies (5.7) and of
the pure type if it satisfies (5.8) respectively.
First we consider a harmonic 2-form w of the hybrid type.

Lemma 5.5 (S. Tachibana and Y. Ogawa [17]). Let M be a Sasakian
manifold and w be a harmonic 2-form of the hybrid type with respect to g. Then
there is a ¢-basis for which only wa+ may be non-zero components of w and

(5.9) Fy(w) = Zx# (K + Ky ) (wnrs — wﬁm‘)2 -2 E ('w)\)\')z-

Since the condition (5.2) is written as > wae = 0, we have
(5.10) Do (Wane — W )® = 20 D (wane)’-
We denote by (w, w) the (local) inner product:

(w, w) = (1/pDw™ 2w,y .

LeMMA 5.6. Assume that Ky, + K > 2 K, N # u, for some positive
constant K; then we have

(5.11) *Fa(w) > 227%(2n K — a)(w, w).

Proof. We take a ¢-basis stated in Lemma 5.5. Then by (5.5), (5.7)
and (5.10) we have

"Fa(w) = & T2 (K + Kowe) (wme — wue)’ = 2 22 (wnne)]
— o 'Bl4 22 ()’ — 2 20 (wne)]
> 207K 2 (wae — W)’ — 2(a” B 4 07°) 20 (wne)’
> [4nKa™ — 227 (a8 + 1)] 20 (wme)’.
Thus we have (5.11).
TaEOREM 5.7. A compact Sasakian manifold M, m > 5, which satisfies

Ky + K > 2K, NFE
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for some positive constant K has no harmonic 2-form of the hybrid type. Es-
pecially if the sectional curvature is strictly positive, then M has no harmonic
2-form of the hybrid type.

Proof. If we take a positive constant « so that a < 2n K, then we have
*Fy(w) > 0 for any harmonic 2-form of the hybrid type by Lemma 5.6.
Therefore we have *Fo(w) = 0 and by (5.11) we get w = 0.

Next we consider a harmonic 2-form of the pure type.

Lemma 5.8 (E. M. Moskal [13]). For a ¢-basis for which Ry, Ry and
Ry« may be only non-vanishing components of Ry , a harmonic 2-form w of the
pure type satisfies

Fa(w) = 2au (200 (Knw + Knw))(wna)”

(5.12) 2 2 2
+ (wnee)” + (wam)” + (waes)].

Lemma 5.9. Assume that
Ky + Ky > —(2 — 0u)K’
for some positive constant K'; then a harmonic 2-form w of the pure type satisfies
(5.13)  *Fy(w) > 20— 3078 — (2n — 1K (w, w).
Proof. First we have
(5.14) Su(Bn + Knpe) > — (20 — 1)K
Putting (5.12) and (5.14) into (5.5) we have
*Fa(w) = o "Fa(w) — o Bl4(w, w) + 2(w, )]
> —2(2n — 1)a K/ (w, w) — 6o *8(w, w).
TareoreM 5.10. A compact Sasakian manifold M, m > 5, which satisfies
Ky + Ky > —3(2 — 6)/(m — 2)
(especially 3 (Ko + Knur) > —3)

has no harmonic 2-form of the pure type. In particular if the sectional curva-
ture > —3/(m — 2), then there s no harmonic 2-form of the pure type.

Proof. As M is compact there is a positive number ¢ such that
Ky + Ky > —(8 — €)(2 — &)/ (m — 2).

So we can take a positive number « so that (—3a 8 — 3 + &) > 0, and
by (5.13) we have *F»(w) > 0 for any harmonic 2-form of the pure type.
And we have w = 0.

It is well known that a complete Riemannian manifold of Riemannian
pinching > 0 is compact. Therefore by Proposition 5.1, Theorem 5.7 and
Theorem 5.10, we have
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TaeOREM 5.11 (E. M. Moskal [14]). A complete Sasakian manifold M
with Riemannian pinching >0 has the second Betti number by(M) = 0.

Remark. Under the additional condition that £ is regular, Theorem 5.11
was proved by S. I. Goldberg [6]. And in Kéhlerian case the similar fact
was obtained by R. L. Bishop and 8. I. Goldberg [2]. In Sasakian manifolds
without regularity condition, the first result was based on the condition that
the sectional curvature is greater than 1/(m — 1) [17], [13].

6. u-holomorphic pinchings of Sasakian manifolds

In a Kihlerian manifold N with a complex structure J and Hermitian
metric G, if there are two positive constants A and H’ such that for any
X ¢ N,, p ¢ N, the J-holomorphic sectional curvature K(X, JX) satisfies

(6.1) \H' < K(X,JX) < H,

then N is said to be A-holomorphically pinched. After normalization of the
Kihlerian metric @ — G = H'G, we have A < K(X,JX) < 1.

In a Sasakian manifold, analogously to the Kihlerian case, we want to
define certain pinching for ¢-holomorphic sectional curvatures. One of the
standard properties of a K-contact Riemannian manifold is that the sectional
curvature for each 2-plane which contains £ is equal to 1. So by a usual
homothetic deformation of an associated Riemannian metric of a contact
structure 75, the resulting Riemannian metric is not associated with 5 or a

constant multiple of it. This is why we consider a D-homothety (1.1) as a
normalization.

LEMMA 6.1. For a ¢-basis in a Sasakian manifold we have
(6.2) Ko = o 'K,
(6.3) *Kne = o '[Kar + 3(1 — @)y,
(especially *Kws + 3 = o (Kws + 3)).
Proof. TFirst we note that for a ¢-basis (£, e, exs) the related *¢-basis i¢
given by

(*g — a—lg, *3>\ — a-—l/2e)\, *e}“ = a—IIZe)\‘)'

Let X and Y be orthonormal vectors with respect tog in D,. Then by (2.11)
and (2.14), we have

"K(X,Y) = "9("R(X, V)X, Y)/"(X, X)*y(Y, Y)
o K(X,Y) — 3a78(¢/(X, Y))].

On the other hand, since ¢'(er, ¢,) = 0 and ¢'(er, é4+) = —8&,,, we have
(6.2) and (6.3).
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Now assume that H and L defined by
H =sup {K(X,¢9X); XeD,, zeM},
L =inf{K(X,¢X); XeD,, zeM}
exist and that H + 3 > 0; then u defined by
(6.4) w=(L+3)/(H+3)

is an invariance of the D-homothety class of M, as is seen by Lemma 6.1.
And in this case we say that M is u-holomorphically pinched.

Prorosition 6.2. If a Sasakian manifold M is u-holomorphically pinched,
we can find a Riemannian metric *g (D-homothetic to g) so that *H = 1 and
*L = 4y — 3 with respect to (¢, *t, *n, *g).

Proof. Itisenoughtoputa = (H + 3)/4in (1.1).

A meaning of the quantity u is as follows: Let « be an arbitrary point of M
and take a sufficiently small regular neighborhood U of z with respect to £.
Then we have a local fibering

r:U—->V = U/t

Since U is Sasakian, V is Kéhlerian and we denote the structure tensors on
V by J,G. They satisfy

¢’U,* = (JU)*, g = W*G +9® 9,
where u* on U is the horizontal lift of  on V with respect to 7.

ProposiTion 6.3. If a Sasakian manifold M s u-holomorphically pinched,

then V s u-holomorphically pinched with respect to the Kdhlerian structure
J, @).

Proof. The sectional curvatures on U and V are related by
(6'5) K(u*, 7)*) = K(uy v)"’r - 3[¢,(u*’ 1)*)]2

for any u, v € V., . (Cf. (5.8) in [20], or [11], ete.) Then Proposition 6.3
follows from (6.5) easily.

LemMa 6.4. In a Sasakian manifold M we have
K(X 4+ Bt Y)=B 4+ (1 - BHYK(X,Y)
for any orthonormal pair (X + B¢, Y)in M, ,x e M, such that X, Y e¢ D, .
Proof. This follows from (2.8) and (2.10).
Note that any 2-plane is determined by a pair of this form.
LemMa 6.5 (E. M. Moskal [13]). Let M be a Sasakian manifold; then
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forany X, Y € D, , we have
g(R(X,Y)X,Y) = (#£)BD(X + ¢Y) + 3D(X — ¢Y)
—D(X+Y)—D(X~—Y)—4D(X) — 4D(Y) — 24P(X, Y))
where D(X) = g(R(X, ¢X)X, ¢X) and
P(X,Y) = [g(X, V) — g(X, X)g(Y, Y) + ¢'(X, V)I".

Especially if X and Y are orthonormal, denoting H(X) = K(X, ¢X) and
9(X, ¢Y) = cos 0, we have

K(X,Y) = ($)B(1 + cos 0)’H(X + ¢¥)
(6.7) +3(1 —cos0)’H(X —¢Y)—H(X+Y)—H(X-7)
— H(X) — H(Y) + 6 sin® 6]

LEmMA 6.6. For an orthonormal pair X, Y ¢ D, in a Sasakian manifold
we have

K(X,Y) + sin® 0K(X, ¢Y) = (})[(1 + cos 0)’H(X + ¢Y)
(68) + (1 —cos0)’H(X —¢Y)+HX +Y)+H(X -Y)— H(X)
— H(Y) + 6 sin® 0.

Proof. Replacing Y by ¢Y in (6.6) and adding the resulting equation to
(6.7), we get (6.8).

(6.6)

Remark. (6.7) and (6.8) are also obtainable from the corresponding
identities in [3] by virtue of (6.5).

7. The first Betti numbers and u-holomorphic pinchings

We assume that a Sasakian manifold M is u-holomorphically pinched.
Then by (6.8) for a *¢-basis in Proposition 6.2 we have

(7.1) 4p — 2 < *Kyy + K £ 4 — 2, N # .
Thus we have
2o CEn + "Eoe) = 2o ("Bnw + *Ke) + *Koe
> 4dnp—2n— 1.
Therefore by Theorem 4.1, we have

(7.2)

TaroreEM 7.1. Let M be a compact Sasakian manifold which is u-holo-
morphically pinched with u > (m — 3)/2(m — 1);thenby(M) = 0.

8. The second Betti numbers and p-holomorphic pinchings
By (7.1) and Theorem 5.7, or 5.10, we have
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ProrosiTion 8.1. If a compact Sasakian manifold M is u-holomorphically
pinched with u > %, then there is no harmonic 2-form of the hybrid type.

ProrosiTiON 8.2. If a compact Sasakian manifold M s u-holomorphically
pinched with p > (m — 3)/2(m — 1), then there is no harmonic 2-form of the
pure type.

By these we have

TuroreM 8.3. If a compact Sasakian manifold M, m > 5, is u-holomor-
phically pinched with u > %, then bo(M ) = 0.

CoroLLARY 8.4. If a compact Sasakian manifold M, m > 5, is u-holo-
morphically pinched with u > % and if the scalar curvature S is constant, then
it is an n-Einstein Sasakian manifold.

Proof. This follows from the above Theorem and Corollary 5.7 in [20].

If m = 3, there is only one ¢-holomorphic plane at each point. Therefore
by Proposition 5.1 we have

TueoreM 8.5. If a compact Sasakian manifold M, m = 3, is u-holomor-
phically pinched with u > 0, then b(M) = 0.

9. The lower bound of K(X, Y) in terms of H and L
By (6.7) for X, Y ¢ D, , we have
(9.1) K(X,Y)> (3)6L — 4H + 6 + 6(L — 1) cos’ 6].

If we calculate many cases, then finally we see that in the sequel we need
only the case 1 < L < H. And we have

ProrosiTioN 9.1. Assumethatl < L < H. Then
(9.2) K(X,Y)>(3+ 3L — 2H)/4
holds for any X, Y, in D, .

The upper bound will be given by Lemma, 12.3.

10. Deformability to a space of positive curvature

TraeoreM 10.1. If a Sasakian manifold M, m > 5, is u-holomorphically
pinched with u > %, then the metric g vs D-homothetically deformable to the metric
*g so that M is of Riemannian *s-pinching with *8 > O with respect to *g.

Proof. It is enough to show that the lower bound is positive. By Propo-
sition 6.2 we can assume that

44—3=L<LHX)ZLH-=1, XeD,.
Take a so that « < % and define g — *g by (1.1). Then
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(10.1) *H = (4 — 3a)/a,

(10.2) *L = (4p — 3a)/a > 1.

Therefore we can apply Proposition 9.1 and
*K(X,Y)> (3u — 2)/a>0

for any X, Y in D, ; then Lemma 6.4 completes the proof.

Tueorem 10.2. If o Sasakian manifold M, m = 3, is u-holomorphically
pinched with p > 0, then g is D-homothetically deformable to *g so that M is
of positive curvature with respect to *g.

11. Applications of preceding theorems

The following shows that completeness is an invariant of the D-homothety
class.

LemmaA 11.1. If a contact Riemannian manifold M is complete with re-
spect to g, then it is also complete with respect to *g.

Proof. Letl = z(t),0 <t < 1, beany C”-curve in M. We decompose
the tangent vector 9x(t)/9t as

dx(t)/0t = v(t) + u(d)E,

where v(#) € Doy and u(t) is a real number for each ¢. As the length *| |
of I with respect to *g is given by

11 = [ lag(u(), o(6)) + a(u(e) " at

when o > 1, we have
Valll ¥ L alll,
and when « < 1, we have
alll ¥ £ Valll, Q.ED.
The next two results are due to E. M. Moskal:
ProposiTioN 11.2 (E. M. Moskal [13, 14]). Let M be a compact, simply
connected, m-dimensional Einstein-Sasakian manifold. If M 1is of strictly
positive curvature, then M s isometric with the unit sphere S™.

The assumption of strict positiveness of the curvature may be replaced by
Ky + Kaus > 0 for X # p.

ProrosrtioN 11.3 (E. M. Moskal [13, 14]). If a complete, simply con-
nected Sasakian manifold M s of Riemannian pinching >0 and has the constant
scalar curvature S, then M 1is D-homothetic with the unit sphere S™. M 4s
isomelric with 8™ if 8 = m(m — 1).
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Remark 11.4. If we remove the assumption of simple connectedness in
Proposition 11.3, then the conclusion is that M is D-homothetically deforma-
ble to a space of constant curvature.

CoroLLARY 11.5. A 5-dimensional complete Sasakian manifold of Rie-
mannion pinching >0 is a homology sphere over the field of real numbers.

TueoreEM 11.6. Let M be a 5-dimensional, simply connected, complete
Sasakian manifold of Riemannian pinching >0. If the torsion part of the
integral second homology group vanishes, then M is diffeomorphic with a sphere.

Proof. By Corollary 11.5 each free part of the integral homology group
H,(M; Z) or cohomology group H' (M ; Z) vanishes forr = 1, --- , 4. As
M is simply connected Hy(M; Z) = Hy(M; Z) = 0 by the duality for the
torsion part. Thus H.(M; Z) = Oforr = 1, --- , 4 and also the homotopy
groups m(M) = Oforr = 1, -+, 4 by the Hurewicz isomorphism. M is a
homotopy sphere by the Whithead homotopy type theorem. Finally by the
generalized Poincaré conjecture for dim M = 5 (for example [12]), M is
diffeomorphic with a sphere.

Remark. If the contact structure is regular, the condition on the torsion
part is unnecessary. (See Theorem 3 in [7].)

TaeOREM 11.7. Any homogeneous (with respect to g) Sasakian manifold
of positive curvature is of constant curvature with respect to the D-homothetically
deformed metric.

Proof. Since M is homogeneous, M is complete and the scalar curvature
is constant. Hence Theorem 11.7 follows from Proposition 11.3 and Remark
11.4.

As for Corollary 11.5 and Theorem 11.6, by Theorem 7.1 and Theorem
8.3, we have

CoroLLARY 11.8. A 5-dimensional compact Sasakian manifold of u-holo-
morphic pinching >% s a homology sphere over the field of real numbers.

CoROLLARY 11.9. Let M be a 5-dimensional, simply connected, compact
Sasakian manifold of u-holomorphic pinching >%. If the torsion part of the
integral homology group vanishes, then M is diffeomorphic with a sphere.

TaeoreEM 11.10. Assume that a compact Sasakian manifold M, m > 5,
18 u-holomorphically pinched with u > % and the scalar curvature S is constant.
Then

(1) M 1s an n-Einstein manifold.
(ii) By a D-homothety of g, M is of constant curvature with respect to *g.
(iii) In particular, if M is simply connected, it is D-homothetic with S™.

Proof. By Proposition 6.2 we assume that 4y — 3 < H(X) < 1,X eD,.
Weput « = (8 + m — 1)/(m* — 1). Then we see that a is positive
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and that *S = m(m — 1) by (2.16), and hence M is Einstein with respect
to *g.

CoroLLARY 11.11. Any compact homogeneous (with respect to g) Sasakian
manifold of u-holomorphic pinching >% s of constant curvature with respect
to the D-homothetically deformed metric.

12. Curvature as an average

For this notion we refer to R. L. Bishop and 8. I. Goldberg [3]. The
terminology for J in a Kihlerian manifold may be used for ¢ in a Sasakian
manifold. By (6.7), if ¢-holomorphic sectional curvature H(X) is constant,
H > —3, then we have

(12.1) K(X,Y)= (3)[H +3+3(H — 1) cos’ 0]

for any X, Y in D,. This implies that by a D-homothety g — *g such that
*H = 1, we have *K(X, Y) = 1, namely *g is of constant curvature.

For a ¢-holomorphic section (X, ¢X ) we have K(X, ¢X) = H, and for an
anti-¢-holomorphie section (X, Y) (i.e. g¢(X, Y) = 0 and g(X, ¢Y) = 0)
we have K(X,Y) = (H 4+ 3)/4 = A. Then (12.1) is

(12.2) K(X,Y)=H — 3Asin’ 6 + 3 sin® 0

for any pair X, Y in D, . Generalizing this, analogously to [3], we obtain
ProrosiTioN 12.1. Let X, Y be an orthonormal pair in D,, x ¢ M. We

define H(X,Y) and A(X, Y) by

(123) H(X,Y) = 1_1r f H(X cosy + Y sinv) dy,
0
1 ks
AX,Y) == K(X cosy
(12:4) 3|

+ Y siny, — ¢X sin v + ¢Y cos v) dy.
Then we have

(12.5) K(X,Y)=H(X,Y) — 34(X, Y) sin’ § + 3 sin®6.
Proof. By calculation we have

(126) H(X,Y)= (DHX)+HX+Y)+HX-Y)+H()),

(12.7) A(X,Y) = (HIK(X, ¢Y) + K(X + Y, — ¢X + ¢Y)].

Substituting (12.6) and (12.7) into the right hand side of (12.5), finally we
see that (12.5) holds.
By (6.7) with cos 8 = 0 we have

Lemma 12.2. If (X, Y) defines an anti-p-holomorphic section we have
(12.8) B3+3L—-2H)/4 <K(X,Y)< (3+4+ 3H — 2L)/4.
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Next by (6.7), (12.5) and (12.6) we get
K(X,Y) £ (3)[2H + 2H cos’ 6 + 6sin® 6] — A(X, Y) sin® 6.
On the other hand by (12.4) and (12.8), we have

AX,Y) > (3+ 3L — 2H)/4.
Therefore

LemMA 12.3. For any orthonormal pair (X, Y) in D, , we have
(12.9) K(X,Y) < H+ (3)(1 — L)sin’e.

13. Riemannian pinchings

It is known as the sphere theorem that

A simply connected complete Riemannian manifold M, m = 2n + 1, with
§-pinching is homeomorphic with a sphere, if & > 1 [10].

In contact Riemannian manifolds the situation is very different from the
usual cases, because we can apply D-homothetic deformations and §-pinching
may be changed to *s-pinching in such a way that & < % turns to *s > 1.

ProrositionN 13.1. If a Sasakian manifold M is u-holomorphically pinched
(>0), then g is D-homothetically deformable to *g so that M is *8-pinched with

(13.1) 52> (3u — 2)/(4 — 3p).

Proof. By Proposition 6.2 we assume that 4y — 3 S H(X) <1, X eD,.
Now we put & = u, and consider a deformation (1.1). Then we have *H =

(4 — 3u)/wand *L = 1 by (10.1) and (10.2). By Lemma 12.3 and Proposi-
tion 9.1 we have

*$ > (3 +3"L — 2*H)/4*H = (3u — 2)/(4 — 3u).

Tueorem 13.2. If a Sasakian manifold M 1is u-holomorphically pinched
with u > 4, then we have a Riemannian metric *g D-homothetic to g so that M is
of Riemannian pinching *s > 1.

Further if M s complete and simply connected, it is homeomorphic with a
sphere.

Example 13.3. If ¢-holomorphic sectional curvature in a Sasakian mani-
fold satisfies

(13.2) 0<HX)<#%

for every X in D, , then g is deformable to *g so that M is of Riemannian
pinching *5 > %.

Remark. Proposition 13.1 and Theorem 13.2 may be also obtained by
local fibering and (6.5) from the corresponding results in [2]. The converse
is also true. A little difference is that in our case equality is contained in

> %
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CoROLLARY 13.4. Let B be a complete Hodge manifold with holomorphic
pinching > $; then it has the homotopy type of complex projective space.
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