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1. Introduction
Let G be a finite p-group. We shall say that G is terminal if it cannot be

extended without upsetting the structure of its lower central series. More
precisely, let G have lower central series

Then G is terminal if, given a p-group U, U/%+i(U) G implies
that .+(U) 1 (i.e. U G.)
Blackburn [1, p. 68] has observed that the p-Sylow subgroup of the Sym-

metric group on p symbols, for p odd, is a maximal p-group of maximal class,
that is, it is a terminal p-group. The investigation presented here began as an
attempt to derive Blackbum’s result by homological methods. That attempt
was successful, and it became clear that the method of attack could yield more
general results. In particular, I was able to show that wreath products of a
certain kind are always terminal. (See Section 5.)
The best known examples of p-groups of the type considered in Section 5 are

Sylow subgroups of Symmetric groups (for odd primes.) Indeed, the latter
groups served as a model class for my main result, Theorem 2. This turned
out to be a fortunate stupidity on my part since it has turned out that Sylow
subgroups of Symmetric groups can be shown to be terminal much more
easily. (See Section 7.) In any event, I have left this application in Section
6 to make clearer the ancestry of my main result.
As one would expect, one can derive many of the results presented here more

easily by direct group theoretical methods. (I am indebted to N. Blackburn
for showing me how to do so.) The case of Sylow-Symmetric groups, in
particular, can be treated almost trivially by means of a simple resul of P.
Hall. Also, Blackburn can derive the other application, Theorem 3, in Sec-
tion 6 by a method close to his first approach. In addition, it is likely that
Theorem 2 can be proved directly. Despite this, I feel that the homological
approach has some merit, and it is one of the purposes of this paper to explore
that approach. In particular, I hope to make clear the homological signifi-
cance of the lower central series.
The homological analysis of the lower central series proceeds as follows.

Given an arbitrary p-group G it my be constructed by a simple procedure"
Choose an abelian p-group K1, and, in H(K, Q/Z), choose a subgroup V1.
Make an appropriate extension to "ldll off" the subgroup V
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(The choice of the extension is severely limited. See Section 4.) In
H(K2, Q/Z) choose a subgroup V,. whose intersection with

Im {H(K1) --+ H(K.)}
is trivial. Again, make an appropriate extension

1---+ A ---+ K --> K --> I

Continue in this way c times, where c is the class of G. If the choices above
have been made properly, we have

G/ KI, G/3 Ks,..., G/’c gc_, G-- g.

If one takes as coefficient group Z/pZ instead of Q/Z, the construction
above may be copied to produce the series

(1) G G > G [G, G]G > G [G, G2]G > ....
Moreover, in this case the extensions at each stage are uniquely determined
so that it is necessary only to specify the subspaces V. (Again, see Sec-
tion 4. )

This machinery is developed more precisely in Sections 3 and 4. It is more
convenient to deal with the dual situation in homology. Section. 2 is devoted
to an outline of facts concerning the spectral sequence of a group extension.
I apologize to readers mainly interested in the application to group theory for
the introduction of this machinery in its cumbersome entirety. I have tried
to state clearly just what is needed from this theory without being too explicit
about the theory itself.
The rest of the paper is concerned with showing that a certain kind of a

p-group is terminal. The homological framework introduced above is a
natural one with which to investigate such questions. Namely, the cokernel
of the inflation homomorphism

H(G/ Q/Z) -, H:(G, Q/Z) (c the class of G)

provides aa upper bouad for the kernel of a central exteasioa not upsetting
the lower central series of G. Hence to show a group is terminal it suffices to
show this inflation is aa epimorphism. It is more coavenieat to proceed
dually uad show that the coiaflation H(G, Z) --> H.(G/,),, Z) is a mono-
morphism. Finally, by replaciag Z by Z/pZ we may also investigate the
property conaected with the series (1) analogous to being terminal.
We consider only the case of odd p; iadeed, the corresponding result for

p 2 is false. (The simplest possible example is the dihedral group of order
8 which may be exteaded to the quaternioa group or dihedral group of order
16 without upsetting the lower central structure. )

I should like to thaak M. E. Mahowald aad N. Blackburn for helpful sug-
gestions concerning cruciul points ia my arguments.
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2. The Lyndon-Hochschild-Serre spectral sequence
We shall need to use the spectral sequences associated with a group exten-

sion
1---. A -- G-- K-- I.

We outline some basic facts for the convenience of the reader (see [2], [7]
and [9] for details). We treat the case of homology; cohomology is dual.
(Notation: I’f M is a G-module, we write Ma for H0(G, M) M/[M, G].)
Let M be a riglit G-module. Choose a G-projective resolution X of Z and

a K-projective resolution Y of Z. Then the double complex (M @ a X) (R) K Y
has total homology H.(G, M), and its "first" spectral sequence with E-term
H.(K, H.(A, M)) converges to that total homology. The spectral sequence
--from E2 on--is independent of the resolutions used and is a functor on
triples (G, A, M ). Thus, given G --. G’ with (A _< A’ andf M
b-semilinear, there are induced maps of the corresponding spectral sequences
which on the E-level and in the limit are the usual homomorphisms. In
particular, the edge homomorphisms

H(A, M)K -- H(G, M ) co-restriction )
and

Hv(G, M) ---, H,(K, M.) (co-inflation)

are those induced by the group homomorphisms A --* G and G -- K. (Ac-
tually the first homomorphism is a factor of the co-restriction

H(A, M) H(G, M).)

What the spectral sequence yields is a filtration of H,,(G, M) for
each n for which the factors are subgroups of factor groups of the terms
Hv(K, H(A, M)) with p + q n. The particular subfactor groups are
determined by computing kernels and images of differentials in the spectral
sequence. In particular, we have the following filtrations for n 1 and 2.

n 1: HI(G,M) FIH>_ FoH
where

where

F H/Fo HI Im {H(G, M) H(K, M,)}
H(K, M.),

F0 H1 Im {HI(A, M) ---+ H(G, M)}
coker {d],0 H.(K, M.) ---, HI(A, M)}.

n 2" H.(G,M) FH.>_ FH>_ FoH

FH/FH Im H.(G, M ) --* H.(K, M)}
Ker d.0" H(K, M --, H(A, M)}

F H/FoH Coker {d.0 H3(K, M.) ---. g(g, HI(A, M))}
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where

and

Fo H Im {H(A, M) H(G, M)}

El.0 Ker d.o" Ha(K, M) -- H,(K, H(A, M )}

E. Coker {d, H.(K, H(A, M)) H(A, M)}.

Hence the filtration in these dimensions is determined once the differentials
d,o, d,0 d, and d,0 are known. (Often part of this information is sum-
marized in the so-called exact fundamental sequence H(G, M) ---,

H(K, M.) ---. H,(A, M):---. H(G, M) --- H(k, M.) .--- 0.)
Suppose A acts trivially on M, i.e., Ma M. Then the homomorphisms

d.q can be described quite explicitly. (See Charlap and Vasquez [3] for the
dual case.) We shall need to know d,o in detail.

Let H(K, A/A’) be the characteristic class of the induced extension

1 ---. A/A’ ---. G/A’ -- K 1.

We have H(A, M) M (R) A/A’. Let M -- Hom (A/A’, H(A, M)
be defined by (b)(h) b (R) h. Then there is defined a homomorphism

H.(K, M) ----> Hom (H(K, A/A’), Ho(K, H(A, M))

[2, Chap X1, Sec. 7] which yields a pairing

f’l H(K, M) (R) H(K, A/A’) ---+ Ho(K, H(A, M)

called the cap product (induced by b.) Then, dual to Hochschild-Serre [6],
we have

(2) d,o(Z) -X n e., Z eH(K, M).

We shall be particularly interested in the case in which the sequence

1---. A ---. G ---. K ---.1

splits. Suppose also, as above, that A acts trivially on M. Then K appears
as a subgroup of G complementing A. Co-restricting from this subgroup splits
the homomorphism H(G, M) H(K, M) so that, in particular, it is an
epimorphism. It follows that the homomorphisms d.0 and d,0 must be
trivial. Thus, we have the additional information

FoH H(A, M)

_
H(G, M),

(3)
F. H/FH H(K, M ),

F H./Fo H. H(K, H(A, M ),

dFoH Coker . H(K, H(A, M)) -- H(A, M):}.
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3. Some characteristic series
Let ]c Z/qZ where q is a natural number, possibly zero. If G is a group,

let G act trivially on k and write H(G, k) H,(G). Define the series of
normal subgroups

G1 G, G+I Ker {G, --* HI(G)},
that is,

G=(G) if /= Z,
G_]G_ if Z/qZ.

Suppose next that 1 A U G 1 is a central extension. We shall
be particularly interested in the case in which A H(A) is an isomorphism.
(If Z, ts is automatic; otherwise it means that the exponent of A diodes
q.) We shall assume below that this is so and identify the two groups.
Suppose n 0, and consider the commutative diagram of group extensions

1 A U G 1

1 AU. U G/G. 1.

(4) induces a corresponding diagram of fundamental exact sequences.

0 0

Ker -- Ker

(5)

H2(U) -- H.(G) b A H(U) ---, H(G) -- 0

H2(U) H2(G/G,,) ---, HI(AU)c ---, H(U) H(G/G,) -- O.

Examination of the diagram shows that (Ker .) Ker . However.
HI(A U,)v AU/U,+ and is the homomorphism induced by inclusion.
Hence, we have

(6) (Ker .) A n U+,
where , H(G) H.(G/G,,) is the co-inflation homomorphism.

Let U --+ G be aa epimorphism. We shall call aa n-covering of G if
Ker U.+I n Z(U)q. (Clearly, the definition depends on q.)

:PROPOSITION 1. Let U ----> G be an epimorphism whose kernel is central
and of exponent dividing q. is an n-covering of G if and only if

Ker b, + Ker b H.(G).

(The notation is the same as above.)
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Proof. According to (6), we have A n Un+l A if and only if
Ker n + Ker H2(G).

(Say two homomorphisms are disjoint if they satisfy this condition.
If and ’ are two n-coverings of G, we shall say they are equivalent if

there is a commutative diagram
U

U’

wigh F an isomorphism. Leg 4 be art -eovering of , and denote as above by
g, H.(G) Ker 4 the co-transgression which is certainly an epimorphism.
Put

A H.(G)/Ker Ker 4.

Ig is clear ghat equivalent coverings yield the same factor group A. In faet,
any covering yielding this factor group A may be replaced by an equivaleng
covering wigh kernel A and for which ghe co-transgression is the canonical
proieetion of H2(G) onto A.

Thus, writing Coy (G) U,> Cov, () for the set of equivalence elasses
of coverings of G, we have defined a function - from Coy (G) go ghe set of
factor groups of H(G). In the next section, we shall see that the function -provides almost a complete classification of coverings of G in he most inter-
esging eases.

In ease G is a p-group ghere are some simplifications. Namely, suppose
Gn > G+I (1). Then, an epimorphism U -. G is an n-covering if
and only if Un+ Ker and Un+: (1). In particular, G has no n-cover-
ings, that is, it is terminal in the sense of Section 1, if and only if H(G) has
no factor groups disjoint from, that is, if and only if Ker Cn

_
prin.(G).

4. The group extension

If G is any group and A a/-module on which G acts trivially, we may de-
fine the homomorphism

a H(G, A -- Hom (H.(G), A )

by a(s)(-) --- n e. Hence, if c is the characteristic class of the central
extension

1 --.A - U--.G-- 1,

then a(c) H(G) -- A is the co-transgression. (See Section 2.)
Moreover, if q 0 or q is prime, then the Universal Coefficient Theorem pro-
vides an exact sequence

0 --* Ext (H(G), A) H(G, A) a Hom (H(G), A) -- O.
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(The homomorphism is quite easy to describe. Namely, given an abelian
extension of Hi(G) by A, pull it back to an extension of G by means of the
homomorphism G HI(G).) We shall suppose in what follows that the
Universal Coefficient Theorem applies. Then, given any factor group A of
H.2(G), it arises from some covering of G; that is, the function v is surjective.
Moreover, it is quite easy to see that the set of equivalence classes of coverings
which yield this factor group A is in one-to-one correspondence with the set
Extk (Hi(G), A ). Thus, if Hi(G) is ]c-free (as it always is if k Z/pZ, p a
prime, ) then there is a one-to-one correspondence between equivalence classes
of coverings of G and factor groups of H.(G, k). If in addition G is a
p-group with G, > G.+I (1), then there is a one-to-one correspondence
between equivalence classes (over G) of p-groups U such that U/U,+ G,
U.+ (1) and factor groups A of H(G). This provides a small simplifica-
tion of the extension problem for p-groups in that a classification of U’s up
to isomorphism requires only the knowledge of how the automorphisms of G
permute the factor groups of H(G).

5. A general class of terminal p-groups
We shall consider a special kind of wreath product. As we shall see in

Section 6, the special hypotheses listed below are just those which arise when
considering the Sylow subgroups of the Symmetric groups.

Let K be a finite p-group (with p odd) and K a proper subgroup of K.
Let q be a power of p and let

A Hom (Z(K), Z/qZ) Z(K) (R) Z/qZ

be the iadicated iaduced K-module. We shall be interested in the semi-
direct produc G K.A.

TEOE 2. With K and A as above, and p odd, assume the following: (A)
The transfer !" K/K’ ---> K/K’ is trivial, (B) (K/KP) 1, and (C) the
last nontrivial term of the lower central series of G K.A is contained in At,
(the subgroup ofA of elements fixed by K ).

Then the semi-direct product K.A is a terminal p-group.

Proof. According to Section 3, it is sufficient to show that

H(G, Z) H.(G/.o(G), Z)

is a monomorphism where c is the last nontrivial term of the lower central
series of G. Hypothesis (C) is designed precisely to make the above homo-
morphism a factor of H(G) --. H(G/A). Hence it suffices to prove that
the latter homomorphism is a monomorphism, and this we proceed to do.

Let B be the K-module A/A:. Then G G/At is the semi-direct product
K.B. Each of the products K.A and K. B yields a spectral sequence and
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there are induced homomorphisms of corresponding Constituents of these
spectral sequences which we must analyze in detail.

Referring to Section 2, we see that in order to show that H.(G) H(G)
is a monomorphism, it suffices to show that the three homomorphisms of
corresponding factors of the filtrations are monomorphisms. Since we are
dealing with split extensions, by (3), we have the following simplifications"

(a) F.H(G)/F H(G) H.(K) --. FH.(G)/F H(G) H(K) is the
identity, certainly a monomorphism.

(b) F H.(G)/Fo H(G) -o F H(G)/FH() is the induced homo-
morphism

(7) HI(K, A ) --- HI(K, B ).

(Here we have used the facts Hi(A, Z) A, Hi(B, Z) B.)
(c) FoH.(G) Coker d, FoH.() Coker 3,1

is induced by the obvious homomorphism

(8) H(A ). H(B)

In order to prove the theorem, we shall show first (I) that both .differentials
d,l area and trivial and next (II), that the homomorphisms (7) and (8)

are monomorphisms.
Before beinning the proof of (I), we discuss some preliminaries. First we

outline some facts about the homology of abelian groups.
Let A (Z/qZ). We have natural isomorphisms

H(A, Z) A, H(A, Z) AA
where the exterior product may be formed either over Z or Z/qZ.
Suppose next q > O. Then Hi(A, Z/qZ) is still naturally isomorphic to A,

and the coefficient sequence

0 Z Z - Z/qZ -. 0

yields a split exact sequence

0 AA H(A, Z/qZ) ---. A ----> O.

The splitting is not natural. However, in case that K is a group acting on A
by permuting the factors, we have an isomorphism

H(A, Z/qZ) AA A
of K-modules.

Secondly, it will be useful to investigate the homomorphism A --* A.
Suppose, as above, that A is induced from the trivial K-module Z/qZ but allow
q 0. Then by Shapiro’s Lemma [2, Chap. X, 7.4], we have a natural iso-
morphism H,(K, A ._ H,(K1, Z/qZ). Moreover, identifying Z/qZ AK,
we know that the homomorphism induced by AK __. A when composed with the
Shapiro isomorphism yields the co- transfer H,(K, Z/qZ ) --. H,(K Z/qZ ).
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(See [2, Chap. XII, Exercises 7-10].) In particular, Hi(K, A.)-- Hi(K, A
is simply the group theoretic transfer and by hypothesis (A) is trivial.

(I) First we show
d, H.(K, A) --. H(A

is trivial.
Let F be the free group on the set of generators K/KI. Let K act oa F by

permuting the generators. Then, the homomorphism p F --+ A defined by

() (R) Z(K) (R), z/qz,

where x e K represents e K/K, is a K-epimorphism. Hence, there is in-
duced a homomorphism K.F -+ K.A of semi-direct products and, also, homo-
morphisms of corresponding spectral sequences. Consider, ia particular, the
case in which the coefficient group is Z/qZ. We have the commutative dia-
gram

H2(K, Hi(F, Z/qZ) -- H2(F, Z/qZ) 0

H.(K, H(A, Z/qZ) -- H.(A, Z/qZ)

Since HI(F, Z/qZ) --+ H(A, Z/qZ) is an isomorphism, it follows that

di. H.(K, H(A, Z/qZ) --. H2(A, Z/qZ)K
is trivial.

Consider next the spectral sequence for coefficient group Z. The homo-
morphism Z --+ Z/qZ allows us to compare it with the spectral sequence above
so that we have the commutative diagram

H(K,H(A,Z))

4H.(K, HI(A, Z/qZ) H(A, Z/qZ)K.

Arrow 4 is trivial, arrow 1 is the identity, and since H(A, Z) A2A is
K-direct summand of H.(A, Z/qZ), arrow 2 is a monomorphism. Hence
arrow 3 is trivial as required.
We next show [l. H(K, B) --+ H(B) is trivial. Let

a Hom (Z(K), Z) Z(K)(R) z
be the K-module induced from the trivial K-module Z. Consider (K

_
Z

as above and put (B (/(K.
Notice that, as above, a consists of the diagonal elements of

and is a Z direct summand of a, but not a K-direct summand. In particular
(B is free abelian.
The following diagram summarizes the relation of these groups to A and B"
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0 0 0

0-- Z q:=; Z Z/qZ -- 0

0-- a q-; a --* A --0

0--* 6 --q B -- B --0.

0 0 0

Consider also the commutative diagram
K.a--- K.A

K.--> K.B
of semi-direct products and the induced homomorphisms of corresponding
spectral sequences. We may construct from this situation the following di-
agmm.

1
H2(K, A H2(A )

2H(K, B H.(B)

H(K, 6 :3 H:(63)K.
I claim that arrow 3 is trivial and that the images of arrow 4 and 5 span

H(K, B). Since we showed above that arrow 1 is trivial, it will follow that
arrow 2 is trivial as required.
To prove that the two images span H2(K, B), consider the following dia-

gram which also arises from the situation described above.

H(K,A) 6 H(K, Or) Ht(g,

H(K, 6) ._5._ H(K, B) I-II(K,

(10) 12
Ho(K,Z)

Ho(K,
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Arrow 7 is multiplication by q. Since Hi(K, a) . Hi(Kl, Z) K/K’
hypothesis (B) tells us that arrow 7 is trivial; hence 6 is an epimorphism.

Again, arrow 1 is the (co-) transfer Ho(K, Z) Z ---, Ho(KI, Z) Z
which is multiplication by the index (K’K), certainly a monomorphism.
By exactness arrow 2 is trivial and arrow 3 is an epimorphism. Given that
arrows 3 and 6 are epimorphisms, it follows immediately from the diagram that
H2(K, B ) is the sum of the images of arrows 4 and 5.

Finally, we show that d. H2(K, ) H2(()K. Since K is finite and
(B is finitely generated, H.(K, ) is finite. Hence it suffices to show that
H.(()K is a free abeliaa group. For this purpose we investigate the induced
homomorphism

H2(() /2(
__
H2() A2.

It is certainly an epimorphism. To determine its kernel, proceed as follows.
Let N generate the subgroup a Z of a. Define the K-homomorphism
a --* Aa by a --. a/ N. Its kernel is clearly a so that there is induced a
monomorphism ( --* Aa. A closer examination shows that

0 -- 6 -- ff( ---* ff(B -- 0

is an exact sequence of K-modules. Thus we get the exact sequence

(11) Ho(K, ) Ho(K, Aa) 2 Ho(K, ff) --* 0.

I claim now that Ho(K, ) is finite and Ho(K, fin) is free. It follows that
arrow 1 is trivial so that 2 is an isomorphism and H.() Ho(K, ff() is
free.
To prove the former contention, consider the exact sequence

Ho(K, Z) 3 4Ho(K, a) Ho(K, () -- O.
As we saw above, arrow 3 is the endomorphism of Z produced by multiplica-

tion by (K:K) so that H0(K, ) is Z/(K" KI)Z and is finite. In order to
prove that Ho(K, Aa) is free, we use the following lemma.

LEMM. Let K be finiS, and let M be a Z-free K-module.
Z-free if and only if H- K, M) (0).

Then MK is

Proof. H-(K, M) MN/[K, M] where MN is the kernel of the norm
homomomorphism. If M [K, M], then H0(K, M) MIMer Im N
which is free since it is a subgroup of M. The converse is clear since
H-I(K, M) is in any event a torsion group and it is a subgroup of Ho(K, M ).

To derive the desired result from the lemma, consider the homomorphism

I am indebted to unpublished work of Charlap and Vasquez for this argument. In a
paper which will appear in the future, Charlap and Vasquez prove a much more general
fact about the vanishing of d. Since I need only the special case I have included a
separate proof here of that case.
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defined by x/ y--* x @ y y (R) x where x, y range over a basis of a.
The composite k’ of with the defining epimorphism

: a(R)

is multiplication by 2. Since K is of odd order, it follows that H-(H, fin)
is a direct summand of H-I(K, a @ a) since both groups are finite of odd
order.
However, since a @ a is clearly the Z-module of a permutation representa-

tion of K, it is a direct sum of K-modules, each of which is induced from the
trivial module Z for some subgroup of K. It follows by Shapiro’s Lemma that
H-I(K, a (R) a) is a direct sum of groups of the form H-I(H, Z) with H
ranging over some family of subgroups of K. Thus H-I(K, (Z (R) a) is trivial,
and the desired result follows. (One may show quite easily, but with more
writing, that Aa is a direct sum of induced modules of the desired kind.

(II) (7) and (8) are monomorphisms.
First we consider

(7) H(K, A --- H,(K, B ).

This homomorphism can be fitted into the sequence

HI(K, A:) 1_ HI(K, A) HI(K, B).

As above, arrow 1 is the transfer K/K’ K1/K and is trivial by hypothesis
(A).
To show that

(8) H2(A )K "--* H.(B ):

is a monomorphism, we use the groups a and 6 as above. We have the exact
commutative diagram of K-modules.

0 -+ ---+ A( ---+ ff63 --+ ,0

(12) 0--+ B ---+ ffA -+ fib --+ 0

0 0 0

whose bottom row is constructed as above. (12) induces the exact diagram

(Aa)

BK 3

0 0

(fiB)s:

0
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Since we saw in (I) that arrow 1 is trivial, and since arrow 2 is an epimor-
phism, arrow 3 must also be trivial, and arrow 4 is a monomorphism as re-
quired.

This completes the proof of Theorem 2.
We may extend the notion of being terminal. Say that a p-group G is

p-terminal if it cannot be extended without uspetting the "p-central series"

G G > G= [G, G]G > > G, [G, G,_,]G_, >
More generally, if q’ is a power of p, define the notion of a qr-terminal p-group
in the obvious way.

If we examine the proof of Theorem 2, it is clear what modifications must be
made in order to conclude that G is q’-terminal. We must at each state at-
tempt to replace the coefficient group of Z by Z/q’Z. First, if q’

_
q, then

Hi(B, Z) ---. Hi(B, Z/qZ) is an isomorphism and similarly for A. It follows
from (I) that

d ,1 H.(K, Hi(B, Z/q’Z) ---> H2(B, Z/q’Z)K

is trivial. (Similarly for A.)
If q’ >- q, the remark above shows easily that

Hi(K, Hi(A, Z/q’Z) ) ----> Hi(K, Hi(B, Z/q’Z)

is a moaomorphism.
To investigate

H(A, Z/q’Z)K -- H2(B, Z/q’Z)

examine the diagram

which induces

0 H(A ) ----> H(A, Z/q’Z) ----> A ---> 0

0 ----> H(B) ----) H(B, Z/q’Z) ---, B 0

(A)

H(A ) ---, H(A, Z/q’Z) ----> AK 0
15 25 35

H(B) ---, H(B, Z/q’Z) -- B ---, O.

Arrow 3 will be a monomorphism if aad only if arrow 4 is trivial. However,
the latter homomorphism is the (co-) transfer Ho(K, Z/qZ) ----> Ho(K1, Z/qZ)
which is simply multiplication on Z/qZ by (K" K1). Hence if (K:K1)

_
q,

the proof goes through and we get the following theorem.

THEOREM 2’. Let q’

_
q be powers of the odd prime p. Let K be a p-group,

K1 a subgroup, A the K-module Z(K) (R)1Z/qZ. Suppose
(A) the transfer, K/K K1/K1, is trivial,
(B)



TERMINAL p-GROUPS 695

C the last nontrivial term of the qr-central series is contained in AK, and
(D) (K’K1) >_ q.
Then the semi-direct product K.A is qr-terminal.

5. Some ppliccfiom
It is natural at this point to ask whether the peculiar hypotheses of Theorem

2 do actually occur in interesting cases.
First, we remark that condition (C) will be true provided the intersection

of the coaiugates of K1 ia K is trivial. Ia this case, A is the center of
G K.A and certainly contains the last nontrivial term of the lower central
series of G. (Also, it contains the last noatriival term of the lower q’-central
series for q’ any power of p.
The simplest example in which the hypotheses of Theorem 2 apply is that

in which K is trivial itself.

THEOREM 3. Let K be a nontrivial finite p-group, p an odd prime. Let A
be the group algebra of K over Z/qZ where q is a power of p. The semi-direct
product K.A is a terminal p-group. (Also, it is q’-terminal for each power of p,
q’>_q.)

Remarks. 1. That the hypothesis q’ >_ q is necessary ia theorems of this
kind is clear from the example P[Z/p2Z(P)] (where P is cyclic of order p).
This group is not p-terminal.

2. As was remarked in Section 1, the dihedral group of order 8 falsifies
Theorem 3 for p 2.

The simplest way to construct more terminal p-groups is to form direct
products.

PROPOSITION 4. A direct product of non-abelian terminal p-groups is a
terminal p-group. (Similarly for q-terminal p-groups, q a power of p.) More
generally, if the factors have unequal class, only those with the largest class need
be terminal.

Proof. Let G and G2 be p-groups of class c and c respectively. Suppose
.c >_ c2 for convenience. If cl >_ c, the last nontrivial term of the lower central
,series of G G, X G2 is cl(G,) X (1), otherwise if cl c2 c,
it is /c(G,) /(G). Let , GI/’I (G,) and 2 G2 or G,./’y(G) as re-
quired.
We show that

Ker {H,.(G X G, Z)-+ H2( ,., Z)} _< pS,(G G, Z).
By the Kiinneth Theorem for direct products [2, Chap. VI, Sec. 3], we have

H,.(G1 G, Z) ----- H,.(G) @ H(G) (R) H,(G) @ H(G)
and similarly for 1 X 2. By hypothesis,

Ker {H,.(G) - H(G)} <_ pS(G), i 1, 2.
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Also, H(G) H(G) are isomorphisms for i 1, 2. The contention above
follows easily.

(The proof for the case of q-terminal groups is exactly the same if q is prime.
If q is not prime, the argument becomes a bit more involved since the Kiinneth
formula is harder to apply. Alternately, it is possible to argue by means of
the Lyndon spectral sequence in all cases. )
We come now to the application which motivated Theorem 2.

THEOREM 5. Let p be an odd prime. The p-Sylow subgroups of he Sym-
metric grips Sfor n pare $erminal p-groups.

Proof. The p-Sylow subgroup of the Symmetric group S is the direct
product of subgroups S, each of which is itself the p-Sylow subgroup of the
Symmetric group S for some p n. Also, if n p, then there is at least
one factor S with r 2. See [5, Chap. 5, Sec. 5.9.] We shall show that the
groups Sfor r are terminal p-groups. Since the class of each such
S is strictly greater than 1, it 11 follow by Proposition 4 that the Sylow
subgroup of S is terminal even if it confabs cyclic factors isomorpMc to S.
To prove that S is termil for r 2, we exhibit this group as a semi-direct

product of the type dealt with in Theorem 2. For this purpose we utilize the
cotmction of these groups as iterated wreath products starting wth a cyclic
group P of order p. (’See [5, Chap. 5, Sec. 5.9].)
For convenience in notation consider S+ with r 1. It may be realized

as the semi-direct product S.A where A is a vector space of dimension p
over Z/pg and Sbeing a transitive permutation group of degree pacts
on A by permuting a fixed choice of basis elements. It is clear, then, that A
is the S-module induced from the trivial S-module Z/qZ, where S is the
subgroup of S fixing, say, the first symbol. We must show that S satisfies
hotheses (A), (B), and (C) of Theorem 2 (with q p). Sce the inter-
section of the conjugates of S is the subgroup xg all symbols, it is trivial
and hypothesis (C) follows immediately. We shall establish (A) and (B)
by induction on r.
For tMs purpose, we use the associativity of the wreath product. Namely,

S may be constructed as the semi-direct product P. (S_). Here the p-fold
dect product (S_) is the subgroup of S stabilizing a partition of the p"
symbols into p blocks, each with p- symbols, the first block containg the
first symbol. Also, P is the subgroup of S permutg these blocks cyclicly.
(P acts on S$- in the obvious way.) (See [5]. Clearly, S is the subgroup-
St--1 X (St--1 of (S_ Since Sr-1/S:-I is elementary abelian, and sce
S 1 ), hypothesis (B) follows by induction.

Finally, we prove hypothesis (A), the triviality of the transfer

HI(S)HI(S).
Since transfer is transitive it suffices to prove that the intermediate transfer

H(S,_ - H(S* X S,-- )
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is trivial. However, transfer behaves simply with respect to direct products.
Namely, let G1

_
H1, G. >_ H2 be a pair of groups with subgroups. Put

mi (G:H). We have

H1(G X G.) H1(G) H2(G2);

similarly for H X H. Also, denoting by

H(G) ---+ H(H), i 1, 2
and

!B" HI(G X G.)-- H(H X H.)

the appropriate transfers, we have

(13) m -t-m !..

St-l)

_
p and sinceH(Sr_) is elementary abelian,Letr_2. Since(S_ *

formula (13) establishes the usual induction hypothesis, and we descend to the
case r 1. In that case S is generated by a cycle of length p and S’ is
trivial so that hypothesis (A) is established for r >_ 1. This completes the
proof.

Remark. To prove these groups are q-terminal for q a power of p, one may
repeat the (valid) mod q argument paralleling the argument given above.
Alternately, since the factors of the lower central series are elementary abelian,
it is possible to show that all the notions of terminality are the same.

7. Epilogue
As was mentioned in the introduction, the applications in Section 6 may be

obtained more easily by direct group theoretical methods. In this section I
shall show how to prove Theorem 5 more easily by homological methods.
In particular, I shall prove still another generalization which was suggested by
N. Blackburn. In what follows below, consider only p-groups.

Let 1 -- A -- U -* G --, 1 be a central extension with Aq 1. Let V be
a normal subgroup of U containing A, and put L VIA As in Section 3,
denote the co-transgression by b H.(G, Z/qZ) .- A. Then, as in formula
(6), we have

(14) (Ker {H(G, Z/qg) H.(G/L, Z/qg)} ([U, V]Vq) n A.

In particular, let L ’(G) be the center of G and put q 0. As in Section
3, we have

POPOSITION 6. Ker {H2(G) H2(G/(G))}

_
prin.(G)if and only if

whenever U/A .. G with A central, then (U)/A
_

(G).

(If this condition is satisfied, say that G is unicentral.)

Remarks. 1. If (G) is cyclic of prime order, the G is unicentral if and only
if it is is terminal. In particular, the groups S are terminal since Theorem 7
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below applies to them. (This proof is still too hard from aa absolute point of
view.

2. If G is uuicetral, it can ever be true that G U/(U), that is, G
canIot be the group of ianer automorphisms of another group.

3. Examinatio of the proof of Theorem 4 shows that we are really showing
that the groups under consideration are unicentral.

THEOnEM 7 (Blackburn). Let K be a finite group. Suppose H is unicen-
tral and also (H)

_
[H, HI. Then the standard wreath product K.H,

]c K I, is unicentral.

Proof. Let/ H/(H). Since (K.H) < (H), it suffices to prove
that

Ker IH(K.H) -- H:(K./)} _
pH(K.H).

Since H(H) Z(K) (R) H(H) is cohomologically trivial for K, the spectral
sequence yields natural decompositiom

H(KH) H(K) H.(H):
and similarly for K/. Heuce, we need only prove that

Ker IH(H)-- H(/)} --+ pH(H):.
Since H is uniceutral and since (H

_
[H, H], the proof of Proposition 4 shows

that H is unicentral. Hence, the fundamental exact sequence for

1 - ’(H) --. H --/ -- 1

yields the exact sequence

0 Q -- H(H) -- H(I:I --> (H) --, O,

where Q

_
pH(H). Since the right hand end is isomorphic with

Z(K) (R) (H) ad, thus, is a cohomologically trivial K-module, we have the
exuct sequence

Q -- H.(H) -- H.(I:I).
The desired iaclusion follows.

COROLLARY 8. Let Q be a generalized quaternion group, and let K be any
finite group. Then the standard wreath product K.Q is unicentral (and termi-
nal.)
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