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1. Introduction

Let $ be a star-domain, symmetric about 0. A set of points 5) is said to
provide a packing for $ if the domains/S - 5)}, where P e 5), have the property
that no domain $ -t- P0 contains the center of another in its interior. We also
say that 5 is an S-admissible point set. A packing 5) is said to be regular if 5)

is an S-admissible lattice; it is said to be semi-regular if it is the union of a
lattice 2 and a translate of 2; it is said to be irregular if it is not necessarily a
lattice or a union of lattices.
The domain of action method developed by M. Rahman has been em-

ployed by Sister M. R. VonWolff to determine that the densest irregular pack-
ing of the star-domain $1 xy <-- I has the density of an $1-critical lattice.

It is the purpose of this paper to exhibit further the strength of the domain
of action method in the determination of the best possible irregular packing of
non-convex regions. The method is applied to the star-domain $3 y(3x
Y) - 1 which is equivalent to the region

:1 2xy <=
for which L. J. Mordell [3] has determined the critical lattices. R.P. Bambah
[1] gave another proof of this result by determining the critical determinant
and the two critical lattices of the region $2.

Consider the square xi < t, Yl < Let A(t) denote the number of
points of a set 5) in the square; then the density of 5), denoted (5)), is defined
as lim sup A (t)/4t.
From the definition it follows that for any two-dimensional lattice 2 the

density (2) is the reciprocal of its mesh.
A norm-distance, [2, p. 103], is a real-valued function n(X) n(OX),

defined on the plane, such that n(X) is

(2)
(3)

nonnegative; i.e., n(X) >- 0;
continuous;
homogeneous; i.e., n(tX) tin(X), where is any real number.

A convex distance function or Minkowski distance, m, is a norm-distance
with the additional properties:

(1)
(2)

m(PQ) 0 implies P Q.
m(pQ) <- m(eR) + m(RQ).
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IRREGULAR PCKING OF NONoCONVEX REGIONS

Let (P be a point set in the plane and let m be a Minkowski distance. The
domain of action [4, p. 16] D(P) D(P, m, (P) of a point P, relative to m
and (P, is the set of all points X in the plane for which

m(PX)

_
m(QX) where Q e (P, Q P,

when this set is the closure of the set of all points in the plane which are closer
to P than any other point of (P.

An exception to this definition occurs when there is a straight line segment
in the boundary of the convex body which determines m and when P and Q
lie on a line parallel to that line segment. In this case the intersection of
D(P) and D(Q) contains interior points and the definition must be adiusted
to apportion points in the common region to D(P) and to D(Q) equally in
some consistent manner [6, p. 500]. In the following application we avoid this
exceptional case by choice of the convex body defining m.

Let D(P) denote the area of D(P). If M is the greatest lower bound of
D(P) I} for P e (P, then it follows that the density (P) of the point set

( is less than or equal to 1/M.
Subsequent discussion will pertain to the star-domain $. Henceforth we

shall refer to and mean always $ $ y(3x y) -< 1.

2. The domain of action of $

The norm-distance n determined by $ is

n(P) y(3x y) / where P (x, y).

Let the Minkowski distance m be defined by the hexagon inscribed in $

described by the lines

/lxl + lyl 2, [yl-<- /lxl,
lyl , lyl => v’3 Ixi.

Then
m(P,Q) 1/2(/31 xl + lyl ), lyl /3 Ixl

--iyl, ly]->- /3 [xl.

Thus, if ( is S-admissible,

m(PQ) >-n(PQ) >= 1

for any two distinct points P and Q of (.

Let 0 be an arbitrary point of (P and be taken as origin. Then D(0)
[’le D(0, m, P), P e (, P 0.
Figure 1 illustrates $ and D(0) determined by six poiats of an S-admissible

point set.
We will discuss ia detail the domain of action of 0 with respect to a point
P (x, y) with the property 0 y /3’x and /3 y > x > 0.
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D (o)
FIGURE 1

For P in any other sextant the definitions are similar.
The equations of the lines that determine D(P, m, P1) are obtained from

Table 1. The lines are illustrated in Figure 2.
The notation that will be used for lines determining D(0) is L for line j

in the i-th sextant, i 1, 2, 6;j 1, 2, 8.
From Figure 2 we see that the region bounded by the lines LI, LI, L8,

LI, and L16 is contained in D (0, m, P1).
Formulas for vertices of D(0) are illustrated in detail for D(0, m, P) See

Figure 3. Vertices of D(P, m, P) for P in other sextants are found by re-
flecting lines from P in the x or’y axes or by rotation through integral multiples
of r/3.
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TABLE I

$2

4

5

m(X) <- m(P) x y x--x y-y

/x y -< 2(yl- y)

+ + +
+ +

+ +
+ +
+ +

+ +
+
/

+
/

+
+

Conclusions

Does not occur

Does not occur
2/

-_< /xl y

Does not occur
x - /y<_ 2u//Does not occur

Does not occur

-_< /x- y
3y -{- /x

_< (/x +
Does not occur
Does not occur

Trivial
Trivial

Trivial

/x y
-< /x + y

Does not occur
Trivial

Does not occur

2/
<- /3x yl

Define
t(P) (/- Y x I)/2,

If we ignore the influence of points in the neighboring sextants, we see in
Figure 4 that D(0) in each sextant consists of a large triangle OAC formed by
the asymptotes and the line L_2 and of a small triangle K the area of which is
:given in terms of t(P). Then D(0) is seen to depend on the two functions
m(P) m and t(P) t of the points which determine D(0).

Notation. Consider 0 as origin and divide the plane into sextants by lines
y 0, /3x y, and /3x -y. Denote the sextant between the positive
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L11" X= X! -yl Lz" ,/’x +y J’x +y

LI4 ,/’x +2’ 4’’xi Yl

LI7" x ,]’x + y)

FIGURE 2

x-axis and the line /3x y by $1. Proceeding in counterclockwise direction
number the succeeding sextants S, j 2, 3, ..-, 6. The part of St between
the first asymptote and the sextant bisector is denoted S. The part of
between the sextant bisector and the second asymptote is denoted S. Points
on the sextant bisector may be considered as belonging to either
A point P e St is denoted P.
Frequently in reference to a point P we shall speak of the points

P, j 1 +/- 2. This is always understood to mean j is congruent to 1 =t= 2
modulo 6.
When m(P) > m(P+l), then lines L_1.5 and L+1,7 affect the domain of

action in Sextant i. When this occurs we shall refer to each of these lines as
the cutoff from Sextant i +/- 1.
For simplicity and when there is no possibility of confusion D(0) will be

referred to as D and m(OP) will be replaced by re(P), m(P) by ms, and
t(P) by
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0 / c/ A

Ai Li7 I"1 R.IGHT AYMPTOTE

Ci Liz rl LE.FT AYMPTOTF_-

Pi-- Liz rl L+],7

/ -’P_

P--i = Li r]

Pi = Liz rl Lira
Gi Li

FIGURE
Vertices of D(0,

A) o)

FIGURE 4
Formulas for triangles K

** denotes the critical lattice generated by two generators with minimal
-distance A, A in S and S.

D**(0) D** denotes the domain of action of {A}, 1, 2, 6.

* denotes he critical lattice generated by two independent points in {B}
where each B is the reflection in the bisector of & of the point A defined
above. D*(0) D* represents the domain of action of {B}, 1, 2, 6.
m* re(A) re(B), where A is any minimal generator of **, B is any

minimal generator of C*. * (A) (B) for the same points A and B.
AM m(P) rn(B) (P) m*. When the meaning is clear,

zM will be abbreviated . h (P) *.
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FIGURE 5

Let D0(0) {X re(X) -< 1/2}. D(0) always containsD0(0). D0(0)
area of D0(0) /3/2.

If {P}, i 1, 2, 6, determines D(0), let re(P) min {m(P)}. Then
the basic hexagon of {P} is formed by lines L_ 2re(X) re(P), X (x, y).

Let {3 P} be a translate of $ with center P. Then H# indicates
the boundary curve of $ in the j-th sextant (Pi considered as origin).

3. Some properties of the domain of action of
( is an g-admissible point set. Our concern is with points 0 in such that

D(0) is small. If, for some 0 e , D(0) < 4($), then at the outset we may
restrict our considerations to points 0 with the following properties.

(i) There is a point of in each S.

For, if there is no point of in some sextant, say S, then triangle ABC of
area /3/36 is in D(0). See Figure 5. Then

D(0) > D0(0) + area ABC //2 -t- //36
.9141 > 4($)
.87656773 ....

(ii) If D (0) is small, then m(P) < 1.04, i 1, 2, 6.

By "small" we mean D(0) such that D(0) -<- D*(0) 4($). The
restriction on the domain of {Pi} follows from the fact that P determines at
least a trapezoid of area

T /3/12 (2X- 1)(5 6X,),
where 2X m(Pi), in addition to the area of D0(0).

Thus, if m(Pi) 1.04, for even one P,
D(0) > ]D0(0) + T /5/2 -t-.0108 > 4($).

Figure 6 illustrates the domain of {Pi} for small D(0). Each P lies in the
closed region defined by arc Ria 1 Rib on H0i and chord Ra Rb, where
m(R,) re(Rib) 1.04. / is that point in Si with m(P) 1.
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FIGURE

(iii) There cannot be two points in the same sextant which have a signifi-
cant influence on a smallD(0).

This follows from (ii) and the admissibility requirement on the P.
(iv) Six and only six points P influence a small D(0).
This follows from (i) and (iii).
(v) The following lemma is due to M. Rahman [4, p. 37]. If 5 is S-admis-

sible and P , i 1, 2, 6, then m(p) >>- m* for at least four values of i.

Define t to be the regions described by chords RR and arcs R/R
on H0, (Figure 6), where m(R) m(R,) r > 1, and r r, 1 _< i <
j_<6.

Consider R and R for any i 1, 2, 6;j i =t= 2 (rood 6). The proof
of (v) depends on the fact that for P , P , n(PP) is maximum
when P A, (or B) while P A (or B).
Yet forP= A,P A(orP= B,P= B)n(PP$) 1. So for
P in an S-admissible point set , P and P. cannot both have m(P) < m*,
k i,j.

4. Statement of the problem
Y(3x Y) -< 1. } is the set of all -admissible point sets. Find

the 1.u.b. of )(P), P e {P}. This will be determined by proving that for P
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in any 8-admissible point set, D(P) -> z(8), which is equivalent to the
assertion

li)((P) -< 1/A($).

THEORWM 1. Let 0 be an element of an 8-admissible point set 6). Then

In(0)

_
THEOREM 2. Let 0 be an element of an S-admissible point set 6. Then
D(0) A(8) iJ and only iJ’ 0 together with the points of 6’ contributing to
D (0) are points of a critical lattice o] 8.

5. Outline of the proof of Theorem 1
Consider the possible situations regarding the m-distance of the six points

P which determine D(0).
There are three cases

(1) m >_- m* for all six values of i.
(2) m < m* for only one value of i.
(3) m < m* for two values of i.

We prove that in each of these cases D (0) -> A ($). Since (1), (2) and
(3) are the only possible situations, Lemmas 2, 3, and 4 will prove Theorem 1.

LEMMA 2. If m(P) >__ m* for all six values of i, then D(O) >= ($).

LEMMA 3. If m(P) < m* for only one value of i, then D (0) >- A ($).

LEMMA 4. If m(P) < m* for two values of i, then D(O) >= A($).

6. A method for proving a function positive in a given domain

In the proof of the result of Theorem 1 it will be necessary to demonstrate
that a function is positive in a neighborhood of critical lattice points. Lemma 1
establishes the method that is central to the proof.

LEMMA 1. Given a twice differentiable function f(x) on the interval [a, b]
of the real line with the properties

(1) f(a) >-_ 0
(2) J’(a) > 0
(3) f’(x) <- M for some M and all x e [a, b]
(4) <-_ f"(x) for some and all x [a, b],

(a) then there exists a point a’ in [a, b] such that f(x) > 0 for x(a, a’] and
further,
(b) if there exist n + 1 equidistant points xo xl x,, satisfying

(i) a-_< a’ =xo<xl< <x= b
(ii) f(x) > O, i 0,1, n
(iii) f(x) > (i(b a’)/2n C, i O, 1,..., n,

then f(x) > 0 for x [a’, b].
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Proof of (a). Case 1. /z -> 0. /z _-> 0. Thena’ b. Forf’(x) >= 0
implies that f’(x) is non-decreasing and, since f’(a) > 0, it follows that
f’(x) > 0 in [a, b].
Case 2. / < 0. Choose e > 0 such that f’(a) > e. I/zi -e. Consider

x e [a, a’] where a’ a -F e. Then by the mean value theorem

f’(x) ]’(a) f"(x*)(x a)

_
lz.e for all x e [a, a’] and some x* e (a, a’).

Then f’(x) >= f’(a) -F tt. e > 0 for all x [a, a’]. Thus f’(x) is positive in
[a, a’] and so f(x) > 0 in (a, a’].

Proof of (b). For any point x e [a’, b] it follows from the mean value
theorem that

If(z) f(x) f’(x*) Ix xl < (M(b a’))/2n C

where x is the partition point neurest to x and x*(x, x) or x* e (x, x) as
the case may be. Then

-c < f(z) -/(,) < c.
So f(x) f(x) f(x) > -C -t- C 0 for all x in [a’, b].
The aim of the remaining lemmas is to compare D(0) for 0 in a critical

lattice with a D(0) determined by points in a neighborhood of a critical
lattice. Proposition 4 shows that the battle is waged in two alternate sex-
tants at a time and the outcome depends largely on property (v) of the do-
main of action stated above.

7. Proof of Lemma 2
LMMA 2. Ifm(P) >- m*, i 1, 2,..., 6, then ID(0)[-> A($).

Proof. Compare D(0) with D**(0). If D(0) contains D**(0), then the
lemma is proved, since in this case

D(0) - D**(0) I.
Even if in eeh sextant S we hve

() D(0) n S, >- D**(0) n , l,
then the result follows, since

_
D n S ->- ’-- D** n S, A($).

Suppose condition (1) fails to be satisfied for at least one i. Say P e S.
ThenJDnS] < ]D**nSI. By hypothesis m _-> m*. Then t must be
less thun t*.

It is sufficient to prove that whenever t, is less than t* it follows that the
minimum gain in S+ is greate than the maximum loss in S. By applying
this inequality to hree alternate sextants it follows that the total loss due to
t < t* for one or more values of i is compensated by the total gain in three
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I.P...LATIVE POITION OF P:z. ANP Pz

HAPEI7 AIC,EA IN -’4- NITICATE:, AITMIILE
I.F_.G IO IN FOI, P4- .,U..H THAT’

alternate sextants. Applying this result to two sets of alternate sextants
completes the proof of Lemma 2.

Prove that the minimum gain in S+ is greater than the maximum loss in
S. There is no loss of generality in assuming that P is in S. By a
symmetric argument the result for P in Sb follows.
P e Sa. Define P to be the point Q in Sa such that t(Q) t(P) and

re(Q) m*.
Define AK area (K* K) where triangle K is determined by P and

triangle K is determined by A.
K represents the maxi-mum area loss in S. Since m(P) >- m*, there

is no area loss in the sextants adjacent to S,. Hence AK is greater than or
equal to the loss in S and S1 due to t < t*.
Determine the minimum area gain in Sj. There is no loss of generality

in letting i 2, j 4. See Figure 7.
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For Q4 $4 such that re(Q4) is small we have re(Q4) >- m(P4) where

P4 H04 fl H4
and H4 has center P.

Further, if P H04 n S4, where H4 has center P’
m(Pi) > m(P) > m*.

Let
AM4 m(Q,) -m* 8nd AM m(P) m*.

Then AM4 > AM > 0.
The gain D S,! D** n S,I is 8t lesst equs1 to the 8re8 of trspeoid

C*F*FD,. Denote this 8re8 T,.
T is 8n incressing function of m(P,) so T, > T] > 0, where T, denotes

the 8re8 determined by 8rbitmry 8dmissible Q4 in S, nd T] denotes the 8tea

determined by P Then T’
We now prove thst T is grester thsn AK.
Suppose i 2. Let g(x,, y, x,,
For P. S, t(P,) < t* only when x, e [0, x*) [0, .063717 ).
The 8ira is to show that g(x, y,, x,, y,)> 0 in [0, x**).
Consider P and P4 as defined above. (x2, y). P (X4, Y4).P
The points 0, P’, and P are related by the conditions

(a) m(P) m*
(2) (b) n(OP)--- 1

PP 1() n(’’
Then g(x, y, x4, y4) may be considered as a function of one independent

variable, say x.. Then g(x, y, x4, y4) f(x).
We know that f(x) 0 at x*. A (x*, y). If we can prove that f

is a decreasing function of x in [0, x*], then it will follow that f is positive
in [0, x2 ).

where A Of/Oz and Z dz/dzl and zl x2 z2 y2 za z Z4 Y4

f(x2) T- AK2 1/2AM.W- (/12)(x- x)

where W m*-2x 1.034...; and

A -3x2 ;A 0; Aa -[3W; A -W.
From conditions (3) define

g m(P) m*
g n(OP) 1

ga n(PP) 1.
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Then equations

(3)
dzl =. Oz-- dz--- ..1

Z O, i 1, 2, 3

give a system which we can solve for the Z since the determinant of the
coefficients is not zero.

Let X Og/Ox Y Og/Oy X Oga/Ox Y Oga/Oy. Then
from (3) we have

Z= 1

Z 0

XZ + YZ 0

XZ W YZ XZa YZ 0

from which we obtain

Za=XY/D and Z= -XX/D
where D X Y YX.

f’(x) A + Aa Z + AZ 3x- 3W.Za- W.Z.
To prove that f’(x) is negative in [0, x]; i.e., that

-AaZ > A AZ
or

(4) Aa.(Y/X).Z > AZ + A,.

It is not difficult to show that Z and X are both negative in [0, x]. Thus
(4) is equivalent to

(5) Aa Y > AX + A(X/Z)

Computer estimates verify that the left side of (5) is greater than
3/4.W.(1.8) .8059 while the right side of (5) is less than. W. (2.42) + .0476 .6892.
Then (4) is satisfied and thus f’(x) < 0 and therefore f is a decreasing

function in [0, x]. f(x) 0 and f decreasing imply that f is positive in
[0, z).
Then T AK > 0 which proves the claim that the area gain in S is

greater than the area loss in S. So

(6) t < t* T_ > aK.
Consider three alternate sextants S, S+, S_. If t < t* in two or

three sextants, the corresponding inequalities hold:

T+ >
(7) T > aK_

T_ > 5K+.
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Adding the inequalities (7) it follows that

(8) , T; > , AK l= i, i - 2, i-- 2.

Applying (8) to both sets of alternate sextants the proof of Lemma 2 is com-
plete.

8. Further properties of
In the proofs of Lemmas 3 and 4 we shall need some inequalities, properties

of $ which we now state and prove as propositions.

(a) PROPOSITION 1. Suppose P
t for 0 <- t(P) <= t*.

Suppose P e Sb and m(P) <- m*. Then 2AM+. _>_ t*
t(P) <- t*.

This proposition provides a relation between zm(P) and At(P),
j= i+ 2(mod6).

Proof. Assume that P e Sa. By a symmetric argument the result for
P e S will follow.

Let i 2. By hypothesis m(P) <= m*.

and P respectively. See Figure 8.
Clearly H. intersects H0 below H. Then m(P) >- m(P).
Any point in Sa has m-distance greater than m(P) hence greater than or

equal to m(P) which is minimum when P A, a minimal generator of
**. Then AM >_ AM -> 0 while t(P) t(P).

Therefore, if we prove the result for P and P, it will be true for P and
arbitrary points P
LetP (x,y) andP (x,y).
Then we assume that P and P are related by the conditions

(i) m(P’) m*
(1) (ii) n(OP’)

(iii) n(P P’) 1.

Let g(x, y, x6, y6) 2AM * + t. The function g may be con-
sidered to be a function of a single variable, say x. Then g(x,, y., x, y)
f(x.). Pe S and m(P) <-_ m* imply x.e [0, x’] where A. (x*, y).

Prove that f(x) > 0 in [0, x* ). We know that f(x’) 0. If f’(x) < 0
in [0, x*), then it will follow that f decreases to 0 and is, therefore, positive
in [0, x’).

df/dx df/dz, ’.. AZ
where A Of/Oz and Z dz/dzl and zl x z. y z3 x z4 y6.

A 2x,;A 0;An /3;A4 -1.
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R.ELATIVE POSITION OF Pz ANP Pz

\\

\
HAIEi) AREA INPlCATE

APMI<IILE IEGIOH OF ,,.
From conditions (1) define

g m(P) m*
a,- n(OP;) 1

g, n(P’. P;) 1.
Then equations

dg,_ Og, dz(2)
dz - dz dz - z 0, i 1, 2, 3

give a system which we can solve for Z,, since the determinant of the coeffi-
cients is not zero. Let

X Og/Ox; Y Og/Oy; X Og/Ox,; Y Og,/Oy.
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Then from (2) we have

Z1 1; Z 0;

X. Z + YZl X.Z Y Zt 0

XZ+ YZ=0
from which we obtain

Now
Za Y/X Z,

f’(x) A1 W AaZ8 + A,Z, 2x, V’3(Y6/X6)Z,

Prove that ff(x) < 0 in [0, x*], i.e., that

(3) 2x. #’3 Y6/X6)Z, < Z,.

Since it can easily be shown that in [0, x], Z is positive, it is possible to
determine a lower bound for Z, in this domain.

Z= y. y,
x, N- +

7.25> 79009232.
(1.18)(7.94) (2:8 -t- 5.83

Since Z, > 0, (3) is equivalent to

then

2x./Z4 -t-- /3 Y/ X [.) < 1

2x./Z, + V’-(Y/I X [) < .128/.79 -t- (1.733)(1.174/2.8
.89194202.

Then (4) is satisfied and thus f’(x.) < 0. So f is a decreasing function in
[0, x*]. f(x*) 0 and f decreasing imply that f is positive in [0, x*).

(b) PROPOSITION 2. If m(P) < m* then 6AM > 5 AM I, J i =h 2.

Proof. (a) Let i 1. P1 e Slb. By symmetry, what is true of P e Slb
will be true of P e S.
By hypothesis m(P) < m*. Hence AM < 0. Recall that

AMI m(P) m*.
From property (v) we know that m(Pa) >- m*.
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P ’ .S.ib RELATIVE POITION OF P1 )P1 AND P,..3

H7 6

b. P sla. RELATIVE POSITIONS OF P’I,, P1 ANP PS’
FIGURE 9

Prove that 6AM8 > 5 XM1 I.
P’ is the poit i the dmissible rego of

from 0. So
(1 AMa AM’.
m(P) < m(P) since m(P) is an increasing function of xl on H’31. Then

(2) AMi > AM,

Then it suffices to prove that

(3) 6AM’8 > 5 AM’I I.
Let g(xl y xa ,_ya) 6AM3 51AM’, 6zxM + 5AMI
g is positive for P e S, m(P’1) <m*.

Prove that
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The points 0, P’I, and P’ are related by the conditions

(i) n(OP’)= 1

(4) (ii) n(P P’l) 1

(iii) n(OP’)= 1.

Then g(xl, yl, x, y) may be considered as a function of one independent
variable, say xl. Let g(xl,

Prove that f(xl) > 0 ia (a, b] (.83768249 ..., .86602543 ], i.e. when
P lies on H01 between B1 and P, (//2, 1/2).

where A Of/Oz and Z, dz,/dz, and z x, z, y z x z4 y.
If we leg

01 n(OP;) 1

g. n(P’a P;) 1

g, n(OP) 1,
then equations

dg Og dz Og
dzl - Oz dzl - Z O, i 1, 2, 3,

give a system which we can solve for Z, since the determinant of the coeffi-
cients is not zero.
We use the derivative argument described above (Lemma 1). Let n 1.

We know that f’ and f" are rational functions of the variables z, i 1, 2, 3, 4.
Constraints (4) enable us to determine the domain of the variables whenever
xl e [a, hi.
An IBM 1620 computer was employed to find that -33.0 andM 1.7.

The computer also verified that C 0.3 is a lower bound for {f(a’),
Then we know that f(xl) > 0 and hence f is increasing in

[a, a’] [.83768249..., .84068249... ],

since is found to be 0.003. Since n is greater than M.(b a’)/2C
.4446/.6, it follows that f(x) > 0 for x [a’, hi. Then we have proved
positive for Xl e (a, b]. Hence, if P e S and m(P) < m*, then

6AM+ > 5[ AM 1.
(b) Let i 1. P, S,:. By symmetry what is true of P1 e S,: will be

true of P S+:.
See Figure 9b. P Ho n Ha P’ H01 n H. H has center P’.

Since m(Pa) >-m(P), AMa >- AM’.
Also re(P,) > m(P;)| since re(P1) is an increasing function of xl on H’.

Thus [M/I > [AM,
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Prove that 6AM’3 > 5 hM’l i.
The points 0, P’l, and P’3 are related by conditions

(iv) n(OP)--- 1

(5) (v) n(OP)-- 1

(vi) n(el e’
Let f(xl) be defined as in part (a) with the difference that now

x [b, d] [.8660 ..., .9014... ].

We have f(d) O. Prove that f(xl) > 0 in [b, d).
Let n 1. We know that f’ and f" are rational functions of the four

variables. Conditions (5) enable us to determine the domain of the variables
whenever x e [b, d]. Constant values were found to be/ --3.3, M 1.05.
C 0.3 was verified to be a lower bound for {f(b), f(d)}. In this case f’(x)
is negative and hence f is decreasing in

[d’, d] [.88140032 ..., .90140032.-. 1,

since e is found to be equal to 0.02.
Since n 1 is greater than M(d’ b)/2C .168/.6, it follows that f(x)

is positive for x, in [b, d’].
The fact that f is positive in [b, d’] and f decreases to zero in [d’, d] give f

positive in [b, d] which proves the proposition in case (b).
The truth of the proposition for cases (a) and (b) implies its truth for all

i- 1,2, ..., 6.
Note that by a reflection in the bisector of Ss it follows from parts (a) and

(b) above that we have

(6) 6AMs_. > 5IAMs if m(Ps) < m*.

9. Proposition 3
Proposition 3 establishes the fact that when me < m* for one value of i,

the area of D (0) in three alternate sextants is always greater than

1/21D*(0)
Notation. Suppose m m*. Denote he change of sre in he i4h sector

from he sre of D*n S by

I+, if P deermines n sre gsin

I7, if P determines an area loss.

Also let AM min{AMs+, AM_}.

PaOOSTION 3. If ms < m*, then I7 < I, j i =i= 2 (mod 6).

Proof. We must first determine the maximum area loss due to ms < m*.
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.HADEP IEGION IN S INDICATES MAXIhAU/v

AREA L055 PE TO I <m .
5HADEP REGIONS IN ANP INDICATE MINIMUM,

AREA GAINS DUE TO m < m" AND .
FIGURE 10

Let i 1. Assume P e S. I- denotes area loss in Sextant 1. Figure 10
illustrates I".

In general 17- in S is determined by the following components" T area
of trapezoid A A’ C C and (KS K).

In all cases

(1) /i -<_ area T -t- area (K K).
Determine the minimum area gain in S+.. Figure 10 illustrates the case

fori-- 1. We see that

Ii+ -t- I- >= area (D*F*FD)+ -I- area (C*F*WD)_.(2) + +

The minimal case occurs when there is a significan area loss from two cutoffs
from points in adjacent sextants. Property (v) (Section 3) insures that at
most two cutoffs come from points with m-distance less than m*.
We prove that

(3) area T + area (K K) _-< area (D*F*FD)+ + area (C*F*WD)_.
Then from (1), (2) and (3) we will have

s7 +
Area T + Area (K* K)

1/1 AM [(/’l)m + + (q/l)[W t]



680 I.t HUGHES DAUENH&UER

Area (D*F*FD)+. + Area (C*F*WD)_
=> (1/2) AM,+.[4%/’/3 (/-/3)m* (%//3)m,+ t* t+]

+ (1/2)5M_.[(.V//2)m* 2t* + %//3 --(//3)m_]

+ (1/2M,_.(/’/3)
>-_ (1/2)M[5//3 --(//6)m* 3t*--t+- (%//2)m_

(//3)m,+q + (%//6)AM,_
(6/5)&M[25V/36- (5%//72)m* (5/4)t*- (5/12)t+

(5//24)m_- (5//36)m+] + (/6)AM_
> (6/5)M[2%//3- (’/18)m* (7/4)t*- (V//4)m_]

+ (%/-/6) AM,_

> (6/5)M(.689) + (//6)AM,_.
But

(6)

(6/5)&M(.689) + (//6)AM,_ > (1/2)[ AM, (2V//3)m*

+ (x,//12)(t*- t)
> (1/2) AM [(-r/3)m

+ (//3)m*l + (X//12)
(t* t)

by Propositions 2 and 1.
Equations (5) and (6) establish (3).

+ +Hence 17 <= I+ + L-.

10. Proofs of Lemmas 3 and 4

LEMMA 3. If mi < m* for only one value of i, then D (0) >= A ($).

Proof. The proof follows immediately from Proposition 3.

LEt 4. Ifm < m* for two values of i, then D (0) A($).

Proof. The proof follows upon applicution of Proposition 3 to both sets of
three alternate sextants.

11. Proof of Theorem 2
THEOREM 2. The point 0 is an element of an S-admissible point set (P. Then
D(0) A($) if and only if 0 together with the points of 6 contributing to
D(0) are points of a critical lattice of $.

Proof. Suppose 0e* or **. Computation of ID(0) shows
D(0)
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Now suppose that D(0) A($). Theorem 1 says that D(0)

_
h($).

In the proof of Theorem I we saw that if P is not a point of a critical lattice,

*then [D(0) > D*(0) Hence D(0) D*(0) implies that P or
.C**. Hence 0 and the points of (P contributing to D(0) are points of an
S-critical lattice.
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