THE DENSEST IRREGULAR PACKING OF THE MORDELL CUBIC
NORM-DISTANCE

BY
MARrY HugHES DAUENHAUER

1. Introduction

Let $ be a star-domain, symmetric about 0. A set of points @® is said to
provide a packing for § if the domains {$ + @}, where P ¢ ®, have the property
that no domain § 4+ P, contains the center of another in its interior. We also
say that @ is an S-admissible point set. A packing @® is said to be regular if ®
is an $-admissible lattice; it is said to be semi-regular if it is the union of a
lattice £ and a translate of £; it is said to be irregular if it is not necessarily a
lattice or a union of lattices.

The domain of action method developed by M. Rahman has been em-
ployed by Sister M. R. Von Wolff to determine that the densest irregular pack-
ing of the star-domain 8, : | zy | = 1 has the density of an 8;-critical lattice.

It is the purpose of this paper to exhibit further the strength of the domain
of action method in the determination of the best possible irregular packing of
non-convex regions. The method is applied to the star-domain 8, : | y(3z" —
¥") | £ 1 which is equivalent to the region

$: ]2 —aly — 22— =1

for which L. J. Mordell [3] has determined the critical lattices. R.P.Bambah
[1] gave another proof of this result by determining the critical determinant
and the two critical lattices of the region 8 .

Consider the square |z | < t, |y| < ¢t Let A(t) denote the number of
points of a set @ in the square; then the density of @, denoted D(®), is defined
as lim sups-« A4 (t) /4.

From the definition it follows that for any two-dimensional lattice £ the
density ©(£) is the reciprocal of its mesh.

A norm-distance, [2, p. 103], is a real-valued function n(X) = n(0X),
defined on the plane, such that n(X) is

(1) nonnegative;i.e., n(X) = 0;
(2) continuous;
(3) homogeneous;i.e., n(tX) = | ¢t|n(X), where ¢ is any real number.

A convex distance function or Minkowski distance, m, is a norm-distance
with the additional properties:

(1) m(PQ) = 0 implies P = Q.

(2) m(PQ) = m(PR) + m(RQ).
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Let @ be a point set in the plane and let m be a Minkowski distance. The
domain of action [4, p. 16] D(P) = D(P, m, ®) of a point P, relative to m
and @, is the set of all points X in the plane for which

m(PX) £ m(QX) where Q € @, Q #= P,

when this set is the closure of the set of all points in the plane which are closer
to P than any other point of ®.

An exception to this definition occurs when there is a straight line segment
in the boundary of the convex body which determines m and when P and @
lie on a line parallel to that line segment. In this case the intersection of
D(P) and D(Q) contains interior points and the definition must be adjusted
to apportion points in the common region to D(P) and to D(Q) equally in
some consistent manner [6, p. 500]. In the following application we avoid this
exceptional case by choice of the convex body defining m.

Let | D(P) | denote the area of D(P). If M is the greatest lower bound of
{ | D(P) |} for P e @, then it follows that the density D(P) of the point set
@ is less than or equal to 1/M.

Subsequent discussion will pertain to the star-domain §;. Henceforth we
shall refer to $ and mean always $ = 8, : | y(32® — ¢*) | < 1.

2. The domain of action of s
The norm-distance n determined by § is

n(P) = | y(3a* — ) |'® where P = (z, y).

Let the Minkowski distance m be defined by the hexagon inscribed in §
described by the lines

V3lz|+ 1yl =2, MERZIEL
lyl =1, lyl = V3=
Then -
=lyl, lyl =z v3|z|
Thus, if @ is $-admissible,
m(PQ) 2 n(PQ) = 1
for any two distinet points P and @Q of .
Let 0 be an arbitrary point of ® and be taken as origin. Then D(0) =
N, D(0, m, P),Pe®, P 5= 0.
Figure 1 illustrates $ and D(0) determined by six points of an §-admissible
point set.

We will discuss in detail the domain of action of 0 with respect to a point
Py = (x1,y:) with the property 0 < y1 < v/3'z;and v/3y; > x > 0.
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S ly B3x*-y?)|£]
D (0) PETERMINED BY SiX POINTS

Fiaure 1

For P in any other sextant the definitions are similar.

The equations of the lines that determine D(P, m, P;) are obtained from
Table 1. The lines are illustrated in Figure 2.

The notation that will be used for lines determining D(0) is Lq; for line j
in the ¢-th sextant, 7 = 1,2, --- ,6;5=1,2,---,8.

From Figure 2 we see that the region bounded by the lines Ly, Lis, Lis,
Ly, and Ly is contained in D(0, m, P;).

Formulas for vertices of D(0) are illustrated in detail for D(0, m, P,) See
Figure 3. Vertices of D(P, m, P;) for P; in other sextants are found by re-
flecting lines from P; in the « or'y axes or by rotation through integral multiples
of =/3.
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TABLE 1
S; m(X) £ m(Ps) z y | z—z1| y—m Conclusions
Si Viz+y + -+ + -+ Does not ocecur
SVBle—am|+ly—u|
+ + + - Does not occur
+ |+ | = | + |2vE
= V3z, — Y1
+ |+ | - | - |2VBz 4y
_ = 3z + g
Vetys2|ly—ul + + + Does not occur
+ | + - | =+ V3y B
< 2y1/V3
Ss 2 B + + + Does not occur
= Iy—y1l+\/3|x—x1
+ + - Does not occur
+ | = |+ |yv+ Ve
= \/::1931 - Y1
+ | = | = |3 + V3
< (V3 + Y1)
y=ly—wnl + + Does not occur
+ - Does not oceur
S | VB |al+ly]l — | + | = | + | Trivial
sV8lz—ml+ly—wl| — | + | = | — Trivial
Ss -4/ §a:_— y - - - - Trivial
£VB8@— )+ (1 — v
Ss |2yl - - - | VB —y_
Sly—wnl++V3lz—a| = V3 4+ y
- + - Does not occur
lylsly—ul - — | Trivial
Se | V3r—y + - + - Does not occur
S —Y+V3 |z — ]| )
+ - - — | 24/3z
_ = Vit oy
V3 —y = 201 — y) + | - - | V3 +y=2,

Define _
t(Pt)=('\/3|y"|—lxtl)/2, 1=1,3,4,6.
=|x¢[, 1:=2,5.

If we ignore the influence of points in the neighboring sextants, we see in
Figure 4 that D(0) in each sextant consists of a large triangle OAC formed by
the asymptotes and the line L;  and of a small triangle K the area of which is
given in terms of {(P). Then D(0) is seen to depend on the two functions
m(P;) = m; and ¢(P;) = t; of the points which determine D(0).

Notation. Consider 0 as origin and divide the plane into sextants by lines
y = 0,43z = y,and /3z = —y. Denote the sextant between the positive
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Ly-4 Ly
L5
P=(Xy,y1)
Lyz
o
Lyz
L1-g,
Bxy =~y JBX; +Yq
Ly x=2271_J1 3 =TT ST
n: X e Liz: [Bx+y =

. = z .

hist X+ I3 ='7)3,l' Lig : SBx+y = [Bxy =y
, 3 ) -

Lis: x+/By =220 |2 Ex-y = [Bxg +yi

: 3 .
L17'x=fj%;§ﬁ- Lig : Bx+y = 2y

FiGURE 2

z-axis and the line /32 = y by S;. Proceeding in counterclockwise direction
number the succeeding sextants S;,j = 2,3, -+, 6. The part of S; between
the first asymptote and the sextant bisector is denoted Si; . The part of S;
between the sextant bisector and the second asymptote is denoted Si3 .  Points
on the sextant bisector may be considered as belonging to either S;, or S .

A point P € 8; is denoted P; .

Frequently in reference to a point P; we shall speak of the points
P;,j =1+ 2. Thisis always understood to mean j is congruent to 1 = 2
modulo 6.

When m(P;) > m(Pis1), then lines L; 15 and Liy.,7 affect the domain of
action in Sextant 2. When this occurs we shall refer to each of these lines as
the cutoff from Sextant 7 & 1.

For simplicity and when there is no possibility of confusion D(0) will be
referred to as D and m(OP) will be replaced by m(P), m(P;) by m;, and
t(P:) by t; .
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A1
S A\ 0,
1
! F |,,G'l
\B1 1 N<Ey
! I
/ =7
o C?, Aq C(;/, lA1\
/
Ay = Ljy N RIGHT ASYMPTOTE Ej = Ljg N Liy
Bi =Lz N Li-,s Fi =Lliz N Lis
Ci = Ljz N LEFT ASYMPTOTE Gj = Lijz N Lj-1,5
Di = Liz N Li+1,7

i=1,2,...,86

F1gURE 3
Vertices of D(0, m, P;)

Ez
Cz /
Cy = 2
S;
s P\, E1
o A'|| o
Ay =(/Bmy/3,0) Az =(/Bmz /e, mz/2)

E1 =(/3m/3,[3t/3) Ez =(/Bmy/6tz/2,my [2+[3t2/6)
F'l =‘(-/-5"""‘1/5't'l/2/ 3"1/2) Fz =(Bmz/6’tz,mz/2)
AREA Ky =(/3/12) ti?

Figure 4
Formulas for triangles K; = A4;E;F;

£** denotes the critical lattice generated by two generators with minimal
m-distance A, , Az in Sy, and Sy .

D**(0) = D** denotes the domain of action of {4},7 = 1,2, ---, 6.

£* denotes the critical lattice generated by two independent points in {Bg}
where each B; is the reflection in the bisector of S; of the point A; defined
above. D*(0) = D* represents the domain of action of {By, 7= 1,2, --- , 6.

m* = m(A) = m(B), where A is any minimal generator of £**, B is any
minimal generator of £*. * = #(4) = ¢(B) for the same points 4 and B.

AM; = m(P;) — m(B) = m(P;) — m*. When the meaning is clear,
AM ; will be abbreviated A; . At; = t(P;) — t*.
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C
B }' A
o
F1GURE 5

Let Do(0) = {X | m(X) = 4}. D(0) always contains Do(0). | Do(0) | =
area of Do(0) = /3/2.

If{P},i=1,2, - 6, determines D(0), let m(P) = min {m(P;)}. Then
the basic hexagon of { P} is formed by lines L;_5 : 2m(X) = m(P), X = (x,y).

Let 8; = {8 4+ Pi} be a translate of 8 with center P;. Then H;; indicates
the boundary curve of §; in the j-th sextant (P; considered as origin).

3. Some properties of the domain of action of §

@ is an S-admissible point set. Our concern is with points 0 in ® such that
D(0) issmall. If, for some 0 ¢ @, | D(0) | < A(S), then at the outset we may
restrict our considerations to points 0 with the following properties.

(i) There is a point of @ in each S;.

For, if there is no point of @ in some sextant, say Sz, then triangle 4 BC of
area v/3/36 isin D(0). See Figure 5. Then
| D(0) | > | Do(0) | + area ABC = /3/2 + /3/36
= 9141 --- > A(S)
= 87656773 - --.
(ii) If D(0)is small, then m(P;) < 1.04,¢=1,2, --- , 6.
By “small” we mean D(0) such that | D(0) | < | D*(0) | = A(8). The

restriction on the domain of {P;} follows from the fact that P; determines at
least a trapezoid of area

T: = +/3/12 (2X: — 1)(5 — 6X.),
where 2X; = m(P;), in addition to the area of Dy(0).
Thus, if m(P:) = 1.04, for even one P;,
| D(0) | > | Do(0) | + T: = +/3/2 + 0108 > A(S).

Figure 6 illustrates the domain of {P;} for small D(0). Each P; lies in the
closed region defined by arc Ri P;Rip on Hy and chord Ri Ris, where
m(Ris) = m(Rs) = 1.04.  P;is that point in S; with m(P;) = 1.
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pomain of {Pi},1=1,2,...,6

F1cure 6

(iii) There cannot be two points in the same sextant which have a signifi-
cant influence on a small D (0).

This follows from (ii) and the admissibility requirement on the P; .
(iv) Six and only six points P; influence a small D(0).
This follows from (i) and (iii).

(v) The following lemma is due to M. Rahman [4, p. 37]. If @ is $-admis-
sibleand P; e ®,4 = 1,2, - -+ , 6, thenm(p;) = m* for at least four values of <.

Define ®; to be the regions described by chords Ri, R and arcs Ris Pi Riy
on Hy; , (Figure 6), where m(Ri) = m(Rw) =r: > Liandr;=7;,1 <1 <
j<6.

Consider ®; and ®;foranys=1,2,---,6;5= 17+ 2 (mod6). The proof
of (v) depends on the fact that for P; e ®R:, P; e ®;, n(P:P;) is maximum
when P; = A; ) (or Bi) while Pj = A,‘ (OI‘ Bj).

Yet for P; = A;, P; = A; (or P; = B;, P; = B;) n(P:P;) = 1. So for
P; in an $-admissible point set ®, P; and P; cannot both have m(P:) < m*,
k=747

4, Statement of the problem

$:|y(8z" — ) | £ 1. {6} is the set of all S-admissible point sets. Find
the Lu.b. of D(®), ® e {®}. This will be determined by proving that for P
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in any $-admissible point set, | D(P) | = A(S8), which is equivalent to the
assertion

D(P) = 1/A(8).
THEOREM 1. Let 0 be an element of an $-admisstble point set ®. Then
| D(0) | 2 A(S).

TaEOREM 2. Let 0 be an element of an $-admissible point set ®. Then
| D(0) | = A(8) if and only if O together with the points of @ contributing to
D(0) are points of a critical lattice of S.

5. Outline of the proof of Theorem 1

Consider the possible situations regarding the m-distance of the six points
P; which determine D(0).
There are three cases

(1) m; = m* for all six values of 3.
(2) mi < m* for only one value of .
(3) m; < m* for two values of 3.

We prove that in each of these cases | D(0) | = A(8). Since (1), (2) and
(3) are the only possible situations, Lemmas 2, 3, and 4 will prove Theorem 1.

LemMa 2. If m(P:) = m* for all six values of 4, then | D(0) | = A(S).
LemMma 3. If m(P;) < m* for only one value of i, then | D(0) | = A(S).
LemMA 4. If m(P:) < m™ for two values of 1, then | D(0) | = A(S).

6. A method for proving a function positive in a given domain

In the proof of the result of Theorem 1 it will be necessary to demonstrate
that a function is positive in a neighborhood of critical lattice points. Lemma 1
establishes the method that is central to the proof.

Lemma 1. Given a twice differentiable function f(x) on the interval [a, b]
of the real line with the properties

(1) f(a) 20

(2) f(a) >0

(8) |f'(x)| £ M for some M and all x ¢ [a, b]

(4) p = f"(z) for some u and all x ¢ [a, b),
(a) then there exists a point a’ in [a, b] such that f(z) > 0 for z(a, '] and
further,
(b) if there exist n + 1 equidistant points o , 1, ** - , &n , Satisfying

(i) afd =2 <m<- - <Tu=b

(11) f(x1) > 0:7: = 0’ 17 M (4

@) flz)) > Mb—-a)/2n=0C,1=0,1,---,n,
then f(z) > 0 for z ¢ [d/, b].
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Proof of (a). Casel. w=0. u = 0. Thena =b. For f/(z) = 0
implies that f'(z) is non-decreasing and, since f’(a) > 0, it follows that
f'(x) > 0in [a, bl.

Case 2. p < 0. Choose ¢ > 0 such that f/(a) > &-|u| = —e&-u Consider
z ¢ [a, @'l where @’ = a + . Then by the mean value theorem
'(x) — f'(a) = f"(*)(x — a) = p-¢ forall z e[a, a’) and some z* ¢ (a, a’).
Then f'(z) = f'(a) + w-e¢ > 0 for all z € [a, a’]. Thus f/(z) is positive in
[a, @'} and so f(x) > O in (a, o'].

Proof of (b). For any point = € [@/, b] it follows from the mean value
theorem that
[f(z) = f&;) | = |f(&) ||z — 2| < (M — a))/2n = C
where z; is the partition point nearest to x and z*(z, z;) or z* ¢ (z;, 2) as
the case may be. Then
—C < f(z) — f(z:) < C.

So f(z) = f(zx) — f(x:) > —C + C = 0 for all z in [a’, b].

The aim of the remaining lemmas is to compare D(0) for 0 in a critical
lattice with a D(0) determined by points in a neighborhood of a eritical
lattice. Proposition 4 shows that the battle is waged in two alternate sex-
tants at a time and the outcome depends largely on property (v) of the do-
main of action stated above.

7. Proof of Lemma 2
LemMa 2. Ifm(P;) =2 m*i=1,2,---,6,then |D(0)| = A(S).
Proof. Compare D(0) with D**(0). If D(0) contains D**(0), then the
lemma, is proved, since in this case
|D(0) | = | D*(0) |.
Even if in each sextant S; we have
(1) |D(0) n 8i| Z | D*(0) n 8:],
then the result follows, since
D S| = 2 i | D™ 8:| = A(S).

Suppose condition (1) fails to be satisfied for at least one <. Say P; ¢ Sy, .
Then | D n 8;| < | D** n 8;|. By hypothesis m; = m*. Then t; must be
less than t*.

It is sufficient to prove that whenever ¢; is less than t* it follows that the
minimum gain in Si;. is greater than the maximum loss in S;. By applying
this inequality to three alternate sextants it follows that the total loss due to
t; < t* for one or more values of 7 is compensated by the total gain in three
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Sz

Pz

]

Az

Pz
RELATIVE POSITIONS OF P, AND Pz'.

SHADED AREA IN S4 INDICATES ADMISSIBLE
REGION FOR P4 SUCH THAT m (P4) 1S SMALL

Figure 7

alternate sextants. Applying this result to two sets of alternate sextants
completes the proof of Lemma 2.

Prove that the minimum gain in S, is greater than the maximum loss in
S;. There is no loss of generality in assuming that P; is in S;;. By a
symmetric argument the result for P; in S follows.

Pi ¢ Si.. Define P: to be the point Q in Si, such that ¢(Q) = ¢(P:) and
m(Q) = m*,

Define AK; = area (K.* — K;) where triangle K is determined by P; and
triangle K7 is determined by A4, .

K. represents the maximum area loss in S;. Since m(P;) = m*, there
is no area loss in the sextants adjacent to S;. Hence AK; is greater than or
equal to the loss in S; and Siy: due to t; < t*.

Determine the minimum area gain in S;. There is no loss of generality
in letting ¢ = 2,5 = 4. See Figure 7.
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For @, ¢ 8, such that m(Q,) is small we have m(Qs) = m(P,) where
= HM n H24

and Hy has cen:ner P,. , ,
Further, if Ps = Ho n Hi , where Has has center P3|

m(P) > m(Pi) > m*.

Let
AM, = m(Q) — m* and AMj = m(P;) — m*.

Then AM, > AM; > 0.

The gain | D n S;| — | D** n 84| is at least equal to the area of trapezoid
C*F*FD,. Denote this area T} .

T, is an increasing function of m(P,) so Ty > T: > 0, Where T4 denotes
the area determmed by arbltrary admissible Q; in S, and T denotes the area
determined by P:. Then T; is less than or equal to the area gain in S; .

We now prove that Tj is greater than AK; .

Suppose 7 = 2. Let g(xz s Y2y Loy Ya) = T: — AK, .

For Py € S , ¢(P2) < t* only when 23 ¢ [0, z2) = [0, 063717 ).

The aim is to show that g(x2, ¥2, @4, y4) > 0in [0, z*).

Consider P; and Pi as deﬁned above. = (22, 92). Pi= (2,7

The points 0, P3, and P; are related by the conditions

(a) m(Pz) = m*
(2) (b) n(0P4) =
(e) "(P2P4) =

Then g(«2, 2, 21, y4) may be considered as a function of one independent
variable, say 2. Then g(Z2, Y2, T4, Y1) = f(2).

We know that f(2:) = O at 25 . A, = (23 ,y2). If we can prove that f
is a decl;easing function of z» in [0, 23], then it will follow that f is positive
in [0, Xo ).

df/dxy = df/dey = 2 i A Z:,
where A; = 9f/dz;iand Z; = dz;/dziand 2, = %3 ;22 = Yo ;2 = 24 ;24 = Ys .
f() = Ti — AKy = 3AML-W — (+/3/12) (27" — a3)
where W = $v/3m* — 225 = 1.034 .-+ ; and
Ar = 3B ; Ay = 0; 43 = —3VBW; Ay = —3W.
From conditions (3) define
g = m(P;) — m*
g2 = n(OP;) — 1
gs = n(PyPi) — 1.
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Then equations

3 % = ARt S J = -
( ) dZI ];1 aZj dz1 E ad] Z-’ 0! ? 1’ 27 3

give a system which we can solve for the Z; since the determinant of the
coefficients is not zero.

Let Xy = 9gs/0xs 5 Yi = 892/0ys ; Xou = 0g3/0%2 ; Y24 = 8gs/dy2. Then
from (3) we have

Z, =1
Zy=0
XiZy+ YsZ, =0
XowZo+ YuZo — XouZy — YouZy = 0
from which we obtain
=XuYyD and Z, = —XuX,/D
where D = X Vs — Yu X, .
F(@e) = Ay + A3 Zy + AsZy = 3322 — 3VBW -2y — YW -Z,.
To prove that f(zz) is negative in [0, z3]; i.e., that

—AsZy > A+ A Z,
or
(4) As'(Y4/X4)‘Z4 > A4 Z4 + Al .

It is not difficult to show that Z,; and X, are both negative in [0, z3]. Thus
(4) is equivalent to

(5) A Yy > A Xy + AW X/ Zy)
Computer estimates verify that the left side of (5) is greater than
V3/4-W-(1.8) = .8059 while the right side of (5) is less than

1.W-(242) + 0476 = .6892.
Then (4) is satlsﬁed and thus f/(z;) < 0 and therefore f is a decrea,smg

func'mon in [0, 7). f(22) = O and f decreasing imply that f is positive in
[0 132)

Then T: — AK, > 0 which proves the claim that the area gain in §; is
greater than the area lossin S;. So

(6) ti < t*= Ti_y > AK;.

Consider three alternate sextants Si, Siyz, Sia. If ¢; < t* in two or
three sextants, the corresponding inequalities hold:

T€+2 > AKi
(7N Ti > AKis
Tis > AKiys .
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Adding the inequalities (7) it follows that
(8) 2T > 2 AKy, l=14,1i+ 24— 2.

Applying (8) to both sets of alternate sextants the proof of Lemma 2 is com-
plete.

8. Further properties of 8

In the proofs of Lemmas 3 and 4 we shall need some inequalities, properties
of 8 which we now state and prove as propositions.

(a) PROPOSITION 1. Suppose P: € Si and m(P;) £ m*. Then 2AM;, =
— £ for 0 = t(Ps) <
*

Suppose P; ¢ Sip and m(P-) < m*. Then 2AM s = £ — & for 0 =
t(P:) <t

This proposition provides a relation between Am(P;) and At(Ps),
j =14 2 (mod 6).

Proof. Assume that P; € Sis. By a symmetric argument the result for
P; e Si will follow.

Let ¢ = 2. By hypothesis m(P;) < m*

Let P; be that point in Szg, such that t(Pz) = {(P;) and m(Pz) = m"*.

Let Pe = Hosn Hys and Ps = Hog n Has where Has and Hzs have centers Py
and P; respectively. See Figure 8.

Clearly Has intersects Hos below Hzs. Then m(Ps) = m(P;)

Any point i in Se. has m-distance greater than m(Ps) hence greater than or
equal to m(Ps) which is minimum When Ps = Ag, a minimal generator of
£**. Then AMs = AMg = 0 while t(Pz) t(Pz)

Therefore, if we prove the result for P, and P , it will be true for P, and
arbltrary points P € S .

Let P; = (&2, 2) and Pe = (xe , Ye)-

Then we assume that Pz and Pg are related by the conditions

(1) m(PQ = m*
(1) (i) n(OP;) =
(ili) n(PsPs) = 1.

Let g(22, ys, @, ¥s) = 2AMg — t** + t;. The function g may be con-
sidered to be a function of a smgle variable, say @z . Theng(z:, y2 2 s, Ys) =
flxs). P2e 8z and m(Ps) < 'rn imply 3 € [0, x3) where A = (z3 , ¥z ).

Prove that f(x;) > 0in [0, 5). We know that f(z2) = 0. If f'(x) <O
in [0, z3), then it will follow that f decreases to 0 and is, therefore, positive
in [0, 27).

df/dzy = df/dz, = D im1 AiZs

where A; = 0f/dz; and Z; = dzi/deiand 21 = 25 ;20 = Y2 ;2 = Ts ;2 = Ys .
A, = 2172;1‘12 = O;As = '\/3;A4 = —1.
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Sz

Pz

RELATIVE POSITIONS OF Pz AND Pz'.

SHADED AREA INDICATES

ADMISSIBLE REGION OF Sg.
Fiaure 8

From conditions (1) define
g = m(P3) — m*
g2 = n(OPs) — 1

gs = n(P; Pf;) - 1.
Then equations
dey  j=idz;dezy im0z

give a system which we can solve for Z;, since the determinant of the coeffi-
cients is not zero. Let

X = 9gy/0s ; Yo = 9g2/0ys ; Xos = 9g3/02: ; Yo = 9gs/0y: -

2;=0,i=123
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Then from (2) we have
Z, = 1; Zy = 0;
XosZi+ YosZo — XosZs — Y Zy = 0
XiZs+ YiZ, =0
from which we obtain
X6

Y

Zy= — 2%
X%‘}TZ-_ YZG

Zy = —(Ye/Xe)Z,s .
Now

f’(x2) = A1+ AsZy + Ay Zy = 2x; — \/§(Y3/X0)Z4 —Z,.
Prove that f/(2;) < 01in [0, 7], i.e., that
(3) 2z, — /3(Ye/X6)Zs < Zy .

Since it can easily be shown that in [0, 23], Z, is positive, it is possible to
determine a lower bound for Z, in this domain.

Zy = 1_’—3 X 5 IX”l
Xuxg — Yu leell |+ | Yo |
> (17 1285) = 79009232.
(7.94) oox- ‘©28) + 5.83
Since Z; > 0, (3) is equivalent to
(4) 222/Zs + V/3(Ye/| Xs|) < 1

then
212/ Zs + V3(Ye/| X |) < .128/.79 + (1.733)(1.174/2.8

= .89194202.

Then (4)i is satisfied and thus f’(2;) < 0. So fis a decreasing functlon in
[0, 27]. f(x3) = 0 and f decreasing imply that f is positive in [0, z3 ).

(b) ProrosiTioN 2. Ifm(P;) < m* then 6AM; > 5| AM;|,j = ¢ & 2.

Proof. (a) Leti = 1. P;e¢Swi. By symmetry, what is true of P, e Sip
will be true of P; ¢ Sis .

By hypothesis m(P;) < m*. Hence AM; < 0. Recall that
AM, = m(P,) — m*,
From property (v) we know that m(P;) = m
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A. Py € S1p - RELATIVE POSITIONS OF P, P;', AND P3'.

b. P, € S,4. RELATIVE POSITIONS OF Py, P;', AND P3'.
F1cure 9
Prove that 6AM; > 5| AM,|. , , , )
See Figure 9a. P3; = Hyn Hy ; Py = Hy n Hj, where Hj, has center Ps .

P; is the point in the admissible region of S; with minimum m-distance
from 0. So

(1) AM; = AM;.
m(P{) < m(Py) since m(P,) is an increasing function of z; on H 3. Then
(2) | AM1| > | AM, |
Then it suffices to prove that
(3) 6AM; > 5| AM; |.

Let g(@1, y1, 23 ,,ya) = GAMI; — 5| AM;| = 6AM; + 5AM;. Prove that
g is positive for P € Sy , m(P1) < m*.
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The points 0, P , and Pj are related by the conditions
(i) n(OP;) =1
(4) (i) n(PiP;) =1
(iii) n(OP;) = 1.

Then g(x:, y1, %5, ys) may be considered as a function of one independent
variable, say x:. Let g(21, y1, %2, y3) = f(a1).

Prove that f(x,) > 0in (a, b] = (.83768249 - - - , .86602543 - - - ], i.e. when
P; lies on Hy, between B, and Py = (+/3/2, 1/2).

(@) = 2t AiZs,

where A; = 3f/0z;and Z; = dz;/dzyand 2, = @1 ;20 = Y1 ;2 = X3 ;2 = Y3 .
If we let ,
g1 = n(0Py) — 1

ge = n(Pj P;) -1

gs = n(OP;) — 1,
then equations

dey {502 den 15 92
give a system which we can solve for Z;, since the determinant of the coeffi-
cients is not zero.

We use the derivative argument described above (Lemma 1). Letn = 1.
We know that f” and f” are rational functions of the variablesz;,7 = 1, 2, 3, 4.
Constraints (4) enable us to determine the domain of the variables whenever
21 € [a, b].

An IBM 1620 computer was employed to find that u = —33.0 and M = 1.7.
The computer also verified that C = 0.3 is a lower bound for {f(a’), f(b)}.

Then we know that f(x;) > 0 and hence f is increasing in

[a, a'] = [.83768249 - - - , .84068249 - - - ],

since ¢ is found to be 0.003. Since n is greater than M-(b — a')/2C =
4446/ .6, it follows that f(x) > 0 for z; e[a’, b]. Then we have proved f
positive for z, ¢ (a, b]. Hence, if P; e Si» and m(P;) < m*, then

6AM ;2 > 5 l AM; I.

(b) Leti= 1. PieSi,. By symmetry what is true of P; ¢ S, will be
true of P; ¢ Si, .

See Figure 9b. P; = HunHy. Pi = HunHis. Hig has center Pj .
Since m(P;) = m(P;), AM; = AMj.

Also m(P,) > m(P}), since m(P;) is an increasing function of z; on His .
Thus | AM; | > | AM, |.

4 4
dgs _ 5~ 00: 92 _ 5% p _ ¢ i =1,2,3,
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Prove that 6AM; > 5| AM} |.
The points 0, Py , and Pj are related by conditions

(iv) n(OP;) =1
(5) (v) n(OP3) =1
(vi) n(P3P1) = 1.
Let f(x,) be defined as in part (a) with the difference that now
21 €[b, d] = [.8660 - .-, .9014 ... ].

We have f(d) = 0. Prove that f(z;) > 0in [b, d).

Let n = 1. We know that f’ and f” are rational functions of the four
variables. Conditions (5) enable us to determine the domain of the variables
whenever «; € [b, d]. Constant values were found to be p = —3.3, M = 1.05.
C = 0.3 was verified to be a lower bound for {f(b), f(d’)}. In this case f'(x:)
is negative and hence f is decreasing in

[d', d] = [.88140032 - - - , .90140032 - - - ],

since ¢ is found to be equal to 0.02.

Since n = 1 is greater than M (d’ — b)/2C = .168/.6, it follows that f(x.)
is positive for z, in [b, d’].

The fact that f is positive in [b, d’] and f decreases to zero in [d’, d] give f
positive in [b, d] which proves the proposition in case (b).

The truth of the proposition for cases (a) and (b) implies its truth for all
i=1,2 ---,6.

Note that by a reflection in the bisector of S; it follows from parts (a) and
(b) above that we have

(6) 6AM,, > 5| AM;| if m(P:;) < m*
9. Proposition 3

Proposition 3 establishes the fact that when m; < m* for one value of 3,
the area of D(0) in three alternate sextants is always greater than

3[D*(0) | = 3A(s).

Notation. Suppose m; #= m*. Denote the change of area in the 4-th sector
from the area of D* n 8; by

If, if P; determines an area gain
I;, if P; determines an area loss.
Also let AM = min {AM 2, AM; 5.
ProposITION 3. Ifm; < m* then It < %;If ,j =i = 2 (mod 6).

Proof. We must first determine the maximum area loss due to m; < m*.
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SHADED REGION IN Sy INDICATES MAXIMUM
AREA LOSS DUE TO my<m¥*: IT.

SHADED REGIONS IN Sz AND Sg INDICATE MINIMUM
AREA GAINS DUE TO my< m¥*: I AND IE.

Figure 10

Let 2 = 1. Assume P, e S;z. I71 denotes area loss in Sextant 1. Figure 10
illustrates I .

In general I; in 8; is determined by the following components: T; = area
of trapezoid A; AY CF C; ;and (Ki — K.).
In all cases

1D I7 < area T; + area (K¥ — K;).

Determine the minimum area gain in S;42. Figure 10 illustrates the case
for ¢ = 1. We see that

(2) The + It = area (D*F*FD).ys + area (C*F*WD)._, .

The minimal case occurs when there is a significant area loss from two cutoffs
from points in adjacent sextants. Property (v) (Section 3) insures that at
most two cutoffs come from points with m-distance less than m*,

We prove that

(3) area T; + area (Ki — K;) < area (D*F*FD):;2 + area (C*F*WD)._, .
Then from (1), (2) and (3) we will have
(4) I S Tha+ I

Area T; + Area (Ki — K)

= 1/2| AM;: | [(V/3/3)mi + (V/3/3)m™] + (\/3/12)[f* — &]
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Area (D*F*FD):ys + Area (C*F*WD);_s

2 (1/2)AMi4[4N/3/3 —(\/3/3)m* — (\/3/3)Miys — t* — tiys]
+ (1/2)AM5[(V/3/2)m* — 2t* + /3/3 —(1/3/3)m:s]
+ (1/2AM:5(\/3/3)

= (1/2)AM[54/3/3 —(/3/6)m* — 3t* — tirs — (\/3/2)mi_s
— (V/3/3)missl + (\/3/6)AM ;s

= (6/5)AM[254/3/36 — (50/3/72)m™* — (5/4)t* — (5/12)ti4s
— (54/3/24)mis — (50/3/36)misal + (A/3/6)AM; .

> (6/5)AM([2¢/3/3 — (v/3/18)m* — (7/4)t"— (7/3/4)mis]
+ (V/3/6)AM .,

> (6/5)AM(.689) 4+ (A/3/6)AM;_,.
But

(6/5)AM (.689) + (v/3/6)AM s > (1/2) | AM:| (24/3/3)m*
+ (V3/12)(* — &)
(6) > (1/2) | AM: | [(V/3/8)m:
+ (Vv/3/3)m*] + (v/3/12)
.(t*z _ t?)
by Propositions 2 and 1.
Equations (5) and (6) establish (3).
Hence I7 < It + I

10. Proofs of Lemmas 3 and 4
Lemma 3. If mi < m™ for only one value of 4, then | D(0) | = A(S).
Proof. The proof follows immediately from Proposition 3.
LemMa 4. If m; < m™ for two values of 3, then | D(0) | = A(S).

Proof. The proof follows upon application of Proposition 3 to both sets of
three alternate sextants.

11. Proof of Theorem 2

TaeorREM 2. The point 0 <s an element of an 8-admissible point set ®. Then
| D(0) | = A(8) if and only if O together with the points of ® contributing to
D(0) are points of a critical lattice of S.

Proof. Suppose 0eg£* or £

Computation of |D(0)| shows
[D(0) | = A(8).
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Now suppose that | D(0) | = A(8). Theorem 1 says that | D(0) | = A(S).
In the proof of Theorem 1 we saw that if P; is not a point of a critical lattice,
then | D(0) | > | D*(0)|. Hence D(0) = D*(0) implies that P; e £* or
£**. Hence 0 and the points of ® contributing to D(0) are points of an
$-critical lattice.
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