RISES OF NONNEGATIVE SEMIMARTINGALES¹

BY

LESTER E. DUBINS

A real-valued stochastic process f_0 , f_1 , \cdots has a rise of size y if $\exists i, j$ with i < j such that $f_j - f_i \ge y$. This note obtains sharp upper bounds to the probability of a rise of size y for certain natural classes of stochastic processes.

Let Θ be a class of probability measures on the real line. If, for every n, given any partial history f_0, \dots, f_n , the conditional distribution θ of the increment $f_{n+1} - f_n$ is in Θ , then $\{f_i\}$ is a Θ -process. If, in addition, $f_0 \equiv x$, then $\{f_i\}$ is an (x, Θ) -process. One can think of an (x, Θ) -process as the successive fortunes of a gambler whose initial fortune is x, and who chooses his successive lotteries from Θ .

Let $\rho(x, y) = \rho(x, y, \Theta)$ be the least upper bound over all nonnegative (x, Θ) -processes (including not necessarily countably additive processes) to the probability that the process experiences a rise of size y. The determination of ρ can sometimes be reduced to solving a simpler problem, namely that of determining U, where $U(x, y) = U(x, y, \Theta)$ is the least upper bound over all nonnegative (x, Θ) -processes $\{f_j\}$ to the probability that there is j with $f_j \geq y$.

As will soon be evident, there are interesting Θ for which

(1)
$$U(x - m, y - m) = \frac{U(x, y) - U(m, y)}{1 - U(m, y)},$$

whenever 0 < m < x, and m < y.

Incidentally, for every Θ , the left side of (1) is majorized by the right side. This inequality is quite simple to establish and is analogous to Theorem 4.2.1, p. 64 in [2].

I do not investigate the regularity conditions that U perhaps automatically satisfies once it satisfies (1), but, at least in interesting examples,

(2)
$$U(x, y)$$
 is convex in x for $0 \le x \le y$,
and

(3) U(x, y) is continuously differentiable in x and y for $0 \le x \le y$.

Let

(4)
$$\lambda = \lambda(y) = \frac{\partial U}{\partial x}(0, y).$$

THEOREM 1. If U satisfies (1), (2) and (3), then

 $\rho(x, y) = 1 - e^{-\lambda x}.$

Received April 20, 1967.

¹ This research was supported in part by the Information Systems Branch of the Office of Naval Research.

For an interesting example of a Θ whose ρ can be calculated with the help of Theorem 1, let μ and σ^2 be the mean and variance of θ , let $\alpha > 0$, and let Θ_{α} consist of all θ such that $\mu \leq -\alpha \sigma^2$. Then, as is shown in (Theorem 9.4.1, p. 182 in [2]),

(5)
$$U_{\alpha}(x,y) = \frac{x}{y} \cdot \frac{1}{1+\alpha(y-x)}$$

In view of Theorem 1,

(6)
$$\rho_{\alpha}(x, y) = 1 - e^{-x/y(1+\alpha y)}.$$

The instance of (6) in which $\alpha = 0$ was established in [1]. Interest in evaluating the left side of (6) for general α led me to Theorem 1.

As a second example, for each $\beta > 0$, let Θ_{β} be the set of all θ such that $\int e^{\beta z} d\theta(z) \leq 1$. As in (8.7.8) p. 166 in [2], the U associated with Θ_{β} —there will be no confusion if it is here designated by U_{β} —satisfies

(7)
$$U_{\beta}(x,y) = \frac{e^{-\beta(y-x)} - e^{-\beta y}}{1 - e^{-\beta y}}.$$

Again, the hypotheses of Theorem 1 apply to U_{β} , as is verified by an easy calculation, so

(8)
$$\rho_{\beta}(x, y) = 1 - e^{-\lambda x},$$

where $\lambda = \beta/(e^{\beta y} - 1)$.

For a third example, see Chap. 9, Sec. 3 in [2].

Incidentally, if Θ is a Borel set of probability measures which are countably additive on the Borel subsets of the line, then U and ρ would not change if the suprema were taken over countably additive processes only, as follows from [3].

Since finitely additive stochastic processes or, more precisely, strategies, as defined in [2], are not familiar objects, the essential ideas of the proof of Theorem 1 will be given in a countably additive setting.

Proof of Theorem 1. The proof that $\rho(x, y) \leq 1 - e^{-\lambda x}$ is basically an application of [2, Theorem 2.12.1] and will use two lemmas.

LEMMA 1. Let u_0 , u_1 , \cdots and α_0 , α_1 , \cdots be two real-valued stochastic processes and \mathfrak{F}_0 , \mathfrak{F}_1 , \cdots be an increasing sequence of sigma fields which satisfy

(i) $u_n = 0 \text{ or } 1;$

(ii) $0 \leq \alpha_n \leq 1;$

(iii) if $u_n = 0$ and $u_{n+1} = 1$, then $\alpha_{n+1} = 1$;

(iv) u_n and α_n are \mathfrak{F}_n -measurable.

Then, if α_0 , α_1 , \cdots is an expectation-decreasing semimartingale relative to \mathfrak{F}_0 , \mathfrak{F}_1 , \cdots , so is $u_n + (1 - u_n)\alpha_n$.

Proof of Lemma 1. Let $Q_n = u_n + (1 - u_n)\alpha_n$. If $Q_n = 1$, then $Q_n \ge E[Q_{n+1} | \mathfrak{F}_n]$, since Q_{n+1} is everywhere majorized by 1.

If $Q_n < 1$, then $u_n = 0$. Verify that whenever $u_n = 0$, $Q_n = \alpha_n$ and $Q_{n+1} = \alpha_{n+1}$. Consequently, on the event $\{u_n = 0\}$,

(9)
$$Q_n = \alpha_n \geq E[\alpha_{n+1} \mid \mathfrak{F}_n] = E[Q_{n+1} \mid \mathfrak{F}_n].$$

The final equality holds because the event $\{u_n = 0\}$ is in \mathfrak{F}_n .

As a preliminary to the next lemma, a definition is needed.

Let α be a (measurable) real-valued function defined on the cartesian product of two sets M and F (endowed with σ -fields), let f_0 , f_1 , \cdots be a stochastic process with values in F, and let γ_n be the conditional distribution of f_{n+1} given f_0 , \cdots , f_n , which is here assumed to exist. If, for all n,

(10)
$$\alpha(m, f_n) \geq \int \alpha(m, z) \, d\gamma_n(z),$$

except possibly for an event of probability zero which does not vary with m, then $\alpha(m, f_0), \alpha(m, f_1), \cdots$ is an expectation-decreasing, semimartingale family.

LEMMA 2. Suppose that $\alpha(m, f_0)$, $\alpha(m, f_1)$, \cdots is an expectation-decreasing semimartingale family and that m_n is measurable with respect to f_0 , \cdots , f_n . Then

(11)
$$\alpha(m_n, f_n) \geq E[\alpha(m_n, f_{n+1}) | f_0, \cdots, f_n].$$

If, in addition, $\alpha(m_n, f_{n+1})$ majorizes $\alpha(m_{n+1}, f_{n+1})$ almost certainly, then $\alpha(m_0, f_0), \alpha(m_1, f_1), \cdots$ is an expectation-decreasing semimartingale.

Proof of Lemma 2. Outside the null event where (10) fails to hold, $\alpha(m_n, f_n)$ majorizes $\int \alpha(m_n, z) d\gamma_n(z)$. Since m_n is measurable with respect to f_0, \dots, f_n , the latter is easily seen to be a version of the right side of (11).

(It is important in Lemma 2 that $\alpha(m, f_n)$ be a semimartingale family; if this assumption is replaced by the weaker one that for each m, $\alpha(m, f_n)$ is an expectation-decreasing semimartingale then (11) can fail to hold.)

Proof that
$$\rho(x, y) \leq 1 - e^{-\lambda x}$$
. Let
(12) $q(f) = q(f, y) = 1 - e^{-\lambda f}$.

As in (12), the functional dependence on y will often not be indicated.

Let U(m, x, y) be the right-hand side of (1), which is meaningful even for 0 < x < m, and define

$$\alpha(m, f) = q(m) + (1 - q(m))U(m, f, m + y).$$

Let f_0, f_1, \cdots be a nonnegative (x, Θ) -process and let m_n be the minimum of (f_0, \cdots, f_n) .

The immediate goal is to indicate that the hypotheses, and hence the conclusion, of Lemma 2 are satisfied. That $\alpha(m, f_0), \alpha(m, f_1), \cdots$ is an expectation-decreasing semimartingale family can be verified directly, or with the help of (Theorem 2.14.1, p. 32 in [2]). To check that

$$\alpha(m_n, f_{n+1}) \geq \alpha(m_{n+1}, f_{n+1})$$

651

almost surely, it certainly suffices that $\alpha(m, f) \geq \alpha(m \wedge f, f)$ where $m \wedge f$ is the minimum of m and f. So suppose $m \wedge f = f < m$. To be verified is that $\alpha(m, f) \geq \alpha(f, f)$, or

(13)
$$q(m) + (1 - q(m))U(m, f, m + y) \ge q(f)$$

for $0 \le f \le m$. In this region, the left side of (13) is convex in f, the right side concave in f, and both sides equal at f = m. So for (13), to hold, it suffices that

(14)
$$\frac{\partial U}{\partial f}(m, m, m+y) \leq \frac{\dot{q}(m)}{1-q(m)} = \lambda.$$

In evaluating the left side of (14), it is most convenient to consider the derivative on the right at f = m, and hence to shift attention to the interval $m \leq f$; for there, according to (1),

(15)
$$U(m, f, m + y) = U(f - m, y)$$

Hence the left side of (14) also is λ , according to (4). So the conclusion of Lemma 2 holds.

Now let $u_n = 1$ or 0 according as there is or there is not an i, j with $0 \le i < j \le n$ such that $f_j - f_i \ge y$, and let $Q_n = u_n + (1 - u_n)\alpha_n$. Then

(16)
$$Eu_n \leq EQ_n \leq EQ_0 = E\alpha_0 = \alpha(m_0, f_0) \\ = q(x) = 1 - e^{-\lambda x} \quad \text{for all } n,$$

where the second inequality is justified by Lemma 1. Plainly, $\lim E_{\mu_n}$ is the probability, P, that the process $\{f_n\}$ experience a rise of size y. So in view of (16), $P \leq 1 - e^{-\lambda x}$. Except for the need to attend to processes $\{f_n\}$ that are not countably additive, the proof that $\rho(x, y) \leq 1 - e^{-\lambda x}$ would be complete. But the above proof does apply in the general finitely additive case, which is easily checked with the help of [2, Chap. 2].

That the bound in Theorem 1 cannot be improved does not require hypotheses (1) and (2); only (3) will be used. Consider a gambler who divides his fortune x into N equal parts. He constructs an (x, Θ) -process which gains y before losing x/N with probability U(x/N, y + x/N) + o(1/N). By N repetitions, he constructs an (x, Θ) -process which fails to have a rise of size y with a probability of at most

(17)
$$[1 - U(x/N, y + x/N) + o(1/N)]^N = [(1 - \lambda x/N) + o(1/N)]^N.$$

The equality in (17) holds because

$$\frac{\partial U}{\partial x}(0,y) = \lambda, \qquad \frac{\partial U}{\partial y}(0,y) = 0$$

and U has a differential at (0, y). Take the limit as $N \to \infty$ to see that there is a nonnegative (x, Θ) -process for which the probability of a rise of size y is arbitrarily close to $1 - e^{-\lambda x}$. This completes the proof of Theorem 1.

If the U associated with Θ does not satisfy (1), I do not see how to calculate ρ , nor even interesting lower bounds for ρ . On the other hand, nontrivail upper bounds, perhaps not very sharp, can typically be found with the help of any of the three examples above.

For instance, let w be a fixed positive number less than $\frac{1}{2}$, let θ gain 1 with probability w and lose 1 with probability 1 - w, and let Θ consist of all positive multiples of θ . The U associated with this Θ is essentially the U of the redand-black casino in [2], and certainly does not satisfy (1). But setting α equal to (1 - 2w)/y or even (1 - 2w)/4w(1 - w)y, the right-hand side of (6) majorizes $\rho(x, y)$.

References

- 1. L. E. DUBINS, Rises and upcrossings of nonnegative martingales, Illinois J. Math., vol. 6 (1962), pp. 226-241.
- 2. L. E. DUBINS AND L. J. SAVAGE, How to gamble if you must, McGraw-Hill, New York, 1965.
- 3. STRAUCH, R. E., Measurable gambling houses, Trans. Amer. Math. Soc., vol. 126 (1967), pp. 64-72.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA