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In this paper, the reader will find the following theorem" Let X be a smooth
irreducible algebraic scheme over an algebraically closed field . Assume
dim X >_ 2. Then an imbedding of X into a projective space P over is
uniquely determined by the formal scheme which is obtained by completing P
along X. (See Th.V, 2, for its precise meaning.) We actually prove that
the field of "formal-rational" functions on/ coincides with the field of ra-
tional functions on P. If k C (the complex number field), this result
implies that for any connected open neighborhood U of X in P in the sense of
the usual metric topology, every meromorphic function on U extends to a rational
function on the entire P. (This implication is proven, for instance, by apply-
ing the technique of GAGA, due to J. P. Serre, to the infinitesimal neighbor-
hoods of X in P which are complex-analytic spaces.)
A general problem I have in mind may be posed as follows" Let Z be a regular

irreducible formal scheme over a field ]c, such that if I is a defining ideal sheaf of
Z then the subschemes X of Z defined by y+l are proper over k. Let
A H(Z, 0z) which is a k-algebra. We ask if there exists an A-morphism
f" Z -- T with an integral scheme of finite type (or finite presentation) over A
such that if g Z ---> W is any A-morphism into an A-scheme of finite type (or
finite presentation), then there exists a unique rational map h" T ---. W with
g hr.

In this paper, my interest is confined strictly to the case of ample normal
bundle (e.g. X X0 is smooth and the dual of I/I as a sheaf of 0x-modules is
an ample locally free sheaf on X). We have a satisfactory answer to the
above question only in the case of codimension one, i.e., when I/I is an in-
vertible sheaf on X. (See Theorems I, II, III, 1, and Theorems IV*,
V*, 2.) The case of higher codimensions is still very little understood.
Our result ia this case is done only for a very special kind of imbeddings, i.e.,
imbeddings into a projective space. This seems, however, to throw
some encouraging light onto the general problem of higher codimensions.
(See Theorems IV, V, 2.) For a certain technical reason we assume
dimX >__ 2 throughout this paper. Some novel phenomena as well as gen-
eralizations for the case of dim X 1 will be investigated in a future joint
paper with Matsumura.
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The answer is expected to be affirmative in various interesting cases, but not in

general. For instance, let Z be the completion of a line bundle Z over X along the zero
section, where X is Smooth and projective. The answer is negative if Z is associated
with a non-torsion point of the Picard variety Pic (X).
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The ample imbeddings of codimension one have been well studied at least
in the complex-nlytic framework, notably by Nierenberg-Spencer [4],
Griffiths [1] and Rossi [5]. The results of this paper in that case are not
new beyond their works, except for the uniqueness of "algebraic structure"
in Z. (cf. Th. II, 1.) But here the proofs are purely algebraic and, in a
sense, simpler thn the others.
An essentially new feature of the higher codimensional problem is that

given formal scheme Z of ample normal bundle can admit two different
(i.e., birationally inequivalent) algebraic structures. Such an example can
be constructed as follows" Take any finite morphism of projective schemes
of dimension N, say h Z - Z’. Let d > N/2 and pick generically independ-
ent hypersurfaces H, 1 _< i _< d, in an ambient projective space of Z. Let
X Z n H1 n H. Then h induces a closed imbedding X -- Z’ at
least where h is tale. In particular, if Z is smooth irreducible and h is
tale outside a closed subset of codimension >_N/2, then h induces an iso-
morphism of the completions of Z and Z’, along X and h(X) respectively.
In contrast, the uniqueness of algebraic structure is proven in this paper if
the codimension of X is one, and seems plausible if the dimension of X is at
least equal to its codimension.

Needless to sy, this work ws inspired by the works nd their uthors
listed t the end of this pper.

1. The case of codimension 1
Let Z be a formal scheme over a field/c, and I a defining ideal sheaf on Z

such that
(1.0.1) I is invertible as a sheaf of Oz-modules;
(1.0.2) the subscheme X of Z, defined by the ideal sheaf I, is irreducible

smooth and proper over
(1.0.3) dimX >= 2; and
(1.0.4) I/I2, viewed as a sheaf of Ox-modules, is dual to an ample invertible

sheaf on X.

LEMMA (1.1) For every locally free sheafF on Z, He(Z, F) is afinite -module
fori<= dimX- 1.

(For this assertion, (1.0.3) is not needed but it implies the finiteness of
Hi(Z, F).)

We have an exact sequence

0 --. I+F --. YF -- i @ i - 0,

where j*(F) (= F/IF restricted to X) and j*(I) with the inclu-
sion mp j X -- Z. ( denotes the v-times tensor product of with itself.)
Hence we get an exact sequence

(1.1.1) H(Z, Y+IF) - H(Z. I’F) --* H’(X, (R) i’)



ON SOME FORMAL IMBEDDINGS 589

Now let i -< dim X 1. Serre duality theorem on X shows that, by the
ampleness of the dual of I/Is,

H(X, (R) ) 0 for ally>>0.

Hence, by (1.1.1), H(Z, Y+IF) -- H(Z, YF) is suriective for all >> 0.
F being I-adically complete, it follows that H(Z, IF) (0) for all v >> 0.
H(X,/ (R) iv) being a finite/c-module for all

_
0, (1.1.1) implies that

H(Z, YF) is a finite It-module for all v >_ 0, especially for 0, Q.E.D.

LEMMA (1.2) If F is a locally free sheaf on Z, then we have canonical iso-
morphisms

Hi(Z, I-’F) --- H(Z, I-(+)F)
for all , >> O.

Proof. If N denotes the dual of I/I as a sheaf of 0x-modules, then we get
an exact sequence

0-- I-VF -- I-(+)F - (R) N+- 0

where N denotes the p-times tensor product of N with itself. Since N is
mple, H(X, (R) Nv+l) (0) for ll >> 0. Hence

H(Z, I-rE) H(Z,
is surjective for 11 >> 0. But these cohomologies re finite k-modules by
(1.1), so that H(Z, I-VF) should ttia the minimal rnk s /C-module.
Hence the surjective homomorphisms should become bijective for 11 >> 0,
Q.E.D.

LEM (1.3) F being the same as in (1.2), we have an exact sequence

0 -- H(Z, I-F) -- H(Z, I-(V+l)F) H(X,/ (R) N+1) --. 0

for all , >> O, where j*(F) with the inclusion map j X .---> Z and N the
dual of j*(I).

Proof. Immediate from (1.2).

LEMMA (1.4) The graded k-algebra S
erated.

v0H(Z, I-v) is finitely gen-

Proof. Since N is ample on X, $ v_0H(X, Nv) is finitely generated
as a graded k-algebra. This implies that for any integer P > 0 there exists
PP (depending upon ) such that k[$,,

_
#

_
,] contains all the with, >_ P, where the suffixes indicate the homogeneous parts of those degrees.

Choose and fix any so large that the exact sequences of (1.3) hold for all
>_ , where F Oz. Since the homomorphisms

H(Z, I-F)
__
H(X, Nv)



590 HEISUKE HIRONAKA

(appearing in (1.3)) are compatible with the algebra structures of S and ,
it then follows that the subalgebra kiss,, 9’ _< _< 9"] of S contains all the
S with >_ 9’. Therefore S =/[S, 0 _< _< ’] which is finitely generated
by (1.1), Q.E.D.

LEMMA (1.5) Let Z Proj (S), where S is the graded k-algebra of (1.4).
Then there exists a canonical morphism h Z Z and this induces an imbedding

Proof. For the existence of a morphism h, it suffices to show that I is
generated by H(Z, I-’) for some >> 0. By if >> 0, then H(X, N) gen-
erates N by the ampleness ofN and the canonical map H(Z, I-) --* H(X, N
is surjective by (1.3). Since I is non-unit everywhere on Z, it follows by
:Nakayama’s lemma that H(Z, I-) generates I-. Thus we have h Z --. Z.
Since N is ample on X, (1.3) implies that h induces an imbedding X --* Z,
Q.E.D.

:LEMMA (1.6) Let be the completion of Z along the image of X, and
Z --> the morphism induced by h. Then is an imbedding.

Proof. Both Z and 2 have the same underlying topological space as X,
so that h is clearly a homeomorphism. I shall show that every point has an
affine neighborhood U in X such that h induces an epimorphism of the ring of

21 U to the ring of Z U, where U is viewed as an open set in 2 as well as in Z.
(Note that 21U and Z IU are affine formal schemes.) This clearly suffices
for (1.6). Now let us choose >> 0 so large that H(Z, ITM) generates I-for all g >_ 9. Pick any point x eX. We have eH(Z; I-’) and
H (Z, I-(’+)v e which generate I and I-(+1) respectively at the point x.

Let
U {yeX[I[ 0z. and I(+) v0z,},

where the suffix y indicates the stalk at y. Since I is iavertible and N is
ample on X, U is affine. Hence we hve a topological k-algebra B such that
Z IU Spf (B) Let Spec (A) be the affine piece of Z Proj (S) asso-
ciated with the homogeneous element of degree 29 W 1 in S.
(A S[()-]0 .) Then induces Spf (B) -- Spec A). Let denote the
constant 1 e ] viewed as an element of S H(Z, I-). Let e-.
Then i" e A and generates I in Spf (B). Hence ] B is the ideal of X in
B. Let fl be the (:[ a A)-adic completion of A. Then Spf (fl-) is the affine
part of 2 corresponding to Spec (A). Clearly induces a morphism
Spf (B) -- Spf () which is homeomorphism. By (1.5), induces an
isomorphism /( n A)fl --*. B/]. Since B and i* e :[ n A, it follows
that B is surjective, Q.E.D.
LEMM/k (1.7) The ring S is normal.

Proof. By assumption, X is connected. Moreover, X is regular and I is
invertible. Hence Z is connected and regular. This means that if U is
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an affine open set in Z, then Z U Spf (B) with a regular integral domain B.
Pick any point x e Z. Then there exists an open affine neighborhood U of x
in Z such that, if Z U Spf (B), there exists e B which generates I in U.
It then follows that there exists a canonical homomorphism

H(Z, I-’) -- B-’ c B[-]
which is injective for all v >> 0. Hence S v0H(Z, I-) is an integral
domain. Let be the integral closure of S in its field of fractions. Then

is naturally graded. To prove S, it suffices to show that every homo-
geneous element of belongs to S. Since B is normal, v0B is normal.
Hence if e ,, then e B in the sense of the above H(Z, I-) B-’.
Namely, e H(U, I-’). This is true for every (x, U) as above. Hence

e H(Z, I-’) S, Q.E.D.

LEMMA (1.8) The morphism of (1.6) is an isomorphism.

Proof. By (1.4) and (1.7), Z is a normal algebraic scheme over/. Hence
the local rings of Z are analytically normal. Let x be any point of X. Then,
in a canonical way, 0z^, is identified with a subring of the completion of
0z, ad is faithfully flat over 0z,. Hence 0z^, is normal and
dim 0z, dim 0z^. for all x. The homomorphism 0z^. --. 0z, induced
by is surjective by (1.6). It is therefore bijective if dim 0z, dim 0z^.,
or dim 0z.. We have dim 0z. dim 0x, -t- 1. I shall prove that
dim 0z, dim 0x.x - 1. Since both X and Z are irreducible algebraic
schemes over k, it suffices to show that dim Z dim X W 1, or dim S
dim $ - 1, where is the same as in the proof of (1.4). Let e be the element
of $1 H(Z, 1-1) which is represented by 1 e k. Then, by (1.3), we get a
homomorphism of graded k-algebras S/eS which is biiective in the
homogeneous parts of sufficiently large degrees. Clearly is not zero.
Hence, by (1.4) and (1.7), dim S dim (S/S) -t- 1. But dim S/S dims
by the above homomorphism. We have thus proven that induces an iso-
morphism 0z^, --. 0z, for all x. By (1.6), is an isomorphism, Q.E.D.

THEOREM I. Let Z be any formal scheme over a field and X a defining sub-
cheme of Z satisfying he four conditions (1.0.1)-(1.0.4). Then there exists an
imbedding of X into a projective scheme Z over k, say f" X Z, and an isomor-
phism of formal schemes Z --- which induces f, where is the compleion of
Z along the subscheme f(X).

This existence theorem is included in (1.8). We shall next prove the
uniqueness. For this purpose, let us take any imbedding g" X -- Z such
that

(1.9.1) there exists an isomorphism -. such that ], where
21, X -- and f" X ----> 2 are respectively the completions along the images
of X.
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We are interested in the equivalence of the two imbeddings f and g, i.e.,
the existence of an isomorphism e U -- V such that ef g, where U (resp. V)
is an open neighborhood off(X) (resp.g(X)) in Z (resp. Z). Forthis purpose,
we may replace Z by any open neighborhood of g(X), so that Z is regular
irreducible, and then by its closure in some algebraic scheme proper over
(For the existence of this proper algebraic scheme, we can refer to [3].) We
may further replace Z by its normalization for Z is regular in a neighborhood
of g(X). Therefore we shall assume that

(1.9.2) Z is a normal algebraic scheme proper over and the ideal sheaf
I of X on Z_ is invertible as a sheaf of Oz,-modules.

LEMMA (1.9) Under the assumptions (1.9.1) and (1.9.2) the dual N of
I/I (viewed as a sheaf of Ox-modules) is ample on X and we have exact sequences

0 - H(Z1, I-") ----> H(Z, /(u-t-1)) Ho(X, N,+) .__+ 0

for all v >> 0.

Proof. Note that N of (1.9) is the sme s N of (1.3) by (1.9.1) nd (1.8).
Thus N is mple by (1.0.4) nd hence H(X, N"+) (0) for v >> 0, so that

H(Z, ) H(Z1, +)
is surjective for v >> 0. Since H(Z, I+) is finite k-module, it ttins
its minimal for v >> 0. Hence

H(Z, ) H(X,
is bijeetive for ll v >> 0. Then (1.9) follows, Q.E.D.

LEMMA (1.10) There exists a morphism e Z Z such that
(1.10.1) f=eg,
(1.10.2) e induces an isomorphism from a neighborhood of g(X) in Z

to a neighborhood of f(X) in Z.
(1.10.3) is the completion of e along the images of X.

Proof. We hve cnonicl commutative diagrams

0 ---> H(Z, I-’) ---+ H(Z, I-’+) ----> H(X, N"+) ----> 0

0 -- H(Z, I-’) -- H(Z, I-(’+) H(X, N"+) ---+ 0

0 ---> H(Z, I-’) ----> H (Z, I-(’+) ----> H(X, Y"+) ---> 0

where I denotes the ideal sheaf of f(X) on Z. The top vertical arrows
are injective because the sheaf maps I-’ I--* re injective. The isomor-
phisms between the second row und the lust ure due to the definition of Z
as Proj (,=0H(Z, I-’)) and to the obvious monomorphisms from the last
row to the second. Now the horizontal sequences are all exc for u >> 0
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by (1.3) and (1.9). Say this is the case for all >_ 0. In dealing with
the modules of the above diagram, H(Z1, I-{) and H(Z, I-) will be viewed
as submodules of S H(Z, I-) by the monomorphisms of the above
diagram. It then follows from the diagram that, for 11

(1 10.4) H(Z, ) H(Z ) + e-H(Z, I-O)

where e is the identity 1 e , which is viewed ss n element of H(Z, I-)
(ss well ss H(Z I) Let T =o (Z, I7), which will be viewed
s grsded k-subslgebr of S o H(Z, I-). By (1.10.4), if is ny
homogeneous element of degree d > 0 of S, then for every v ,o we get

= + e-
with some w e T( H(Z, I) and f0 e S0. Since S,0 is a finite k-mod-
ule, we get sn equation of the form

d--I d(--0)f + a + + a-0 f,0 + v 0

where at e k for all j and v e T. (For instance, this P can be P0 -t- rankk S0 .)
Thus S is integral over T. Moreover (1.10.4) shows that S/T,, are/c-mod-
ules of bounded ranks for all P >_ 0. Since S (and hence T) is an integral
domain, this is possible only when S and T hve the same field of fractions.
In fact, if the rank of S as T-module is bigger than 1, then there exists
homogeneous element 0 in S such that T a T (0), so thst, if b deg ,
then rank S/T rank (T), rank T_ for all P b. Here obviously
rank T, is not bounded for 0, by (1.9) and (1.0.3). Thus S is bira-
tionsl and integral over T. But T is normal because Z is so. Therefore
S T. By (1.9) and the ampleness of N on X, H(Z, I) generates

at every point of X for all P 0. Moreover, e generates I7 at every
point of Z1 X for all > 0. Thus we have a canonical morphism
#’Z Proj (T). Let e e"e’ with the obvious isomorphism e" Proj (T)

Pro] (S) Z. Then (1.10.1) is clear by the diagrams in the beginning
of the proof. The isomorphism of (1.9.1) is cleurly compatible with the
morphism e. Hence by (1.8) and (1.9.1), we get (1.10.3). As for (1.10.2),
it suffices to show that e’ Z Proj (T) induces an isomorphism in a neigh-
borhood of g(X). First of all, Proj (T) is integrally closed in the function
field of Z. But (1.9.1) implies that dimZ dX 1 dZ. Hence
e must be birational. Then (1.10.3) implies that e’ is an isomorphism along
g(X) or in neighborhood of g(X), Q.E.D.

We have now established

TI,ORV,M II. Given (Z, X) as in Theorem I, the solution f’X -- Z is
unique up to an isomorphism of an open neighborhood of f(X) in Z.

As s matter of fact, the solution f X -- Z with

Z Pro (E) oH (Z, I-’)
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is the minimal solution with normal Z. Here the minimality is meant in the
sense of birational morphism (or birational domination). (See (1.10).)

LEMMA (1.11) Let h Z Z be the same as in (1.5). Let Zo be any open
neighborhood off(X) in Z and Fo a locally free sheaf on Zo. Let F h*(Fo).
Then h induces an isomorphism H(Zo, Fo) ---* H(Z, F).

Proof. By (1.8), if I is the ideal sheaf off(X) in Z, then 1-1 is an ample
invertible sheaf on Z. Moreover, Z (and hence Z0) is normal. Therefore,
since Zo f(X) and Fo is locally free, the canonical homomorphism

H(Zo, Fo) H(X, Fo
is bijective, where (and later) f(X) is identified with X. Hence it suffices to
prove that H(X, FolX) -- H(Z, F) is bijective. I- being ample as above,
we have a monomorphism of sheaves

e" F0 I7
for some positive integers m and , where I0 I [Z0. By the definition (1.5)
of Z, we have a canonical isomorphism H(Z, I-) H(Z, I-) and hence
an isomorphism

H(X, ([Z)-) H(Z, I-).

Z being identified with X as a topological space, we have

Fo Z IX)-"
in the sense of e and the other obvious monomorphisms into

(In general, the intersection of two subsheaves of a sheaf in the presheaf
sense is a sheaf.) Hence,

H(X, F0]Z) H(X, (IIX)-)nH(Z,F) H(Z, I-’) nH(Z,F)
H(Z, F). Q.E.D.

LEMMA (1.12) Let h Z Z be as above. Let F be a locally free sheaf Z.
Then there exists a coherent sheaf F on Z such that F is isomorphic to h*(F).

Proof. By (1.3) and the ampleness of N, YI is generated by H(Z, FI-)
for v >> 0. Thus there exists an epimorphism

r" I F

for some positive integers m and n. Let G Ker (r), which is locally free.
Let us take the graded S-modules

B 0H(Z,(I’)I-) and C 0H(Z, GI-’).

Then r induces a monomorphism of graded S-modules s" C B. Let
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A Coker (s). By (1.4), S is noetherian and the S-modules A, B and C
are finite. Let ,/ and be the coherent sheaves on Z Proj (S) respec-
tively associated with A, B and C. We then have an exact sequence

Since the morphism h is flat, it induces an exact sequence

0---, h*() h*() --. h*(/i) --, O.

But we have a natural isomorphism

h*(0) --, m I"

by (1.8), and a natural epimorphism h*(/) --, by (1.3). Comparing the
two exact sequences of sheaves on Z, we get an isomorphism h*(/t) -* F,
Q.E.D.

Remark (1.13) The homomorphisms of local rings induced by the mor-
phism h are all faithfully flat. Thus the coherent sheaf F obtained in (1.12)
is locally free at every point of f(X) or in some neighborhood of ](X) in Z.
In an algebraic scheme, the set of non-regular points is closed. The com-

plement of this closed subset will be called the regular part of the scheme.

THEOREM III. Let h:Z --> Z be the morphism of (1.5). Let Z’ be the
regular part of Z, and h Z -o Z the morphism induced by h. Then h induces
an isomorphism Pic (Z) -o Pie (Z).

Proof. By (1.12), this homomorphism Pic (h) is surjective, for if F is a
coherent sheaf on Z and induces an invertible sheaf on a neighborhood of
f(X) in Z’, then the double dual of F on Z is invertible and induces the same
sheaf in the neighborhood as F itself. To see that Pic (h) is injective,
take any two invertible sheaves F and G on Z’. Let F h*(F) and
G h’*(G). Then

Horn0z (, G) h’*(Homoz,(F G)).

These Horn being invertible, (1.11) implies that F is isomorphic to G if and
only if F is to G, Q.E.D.

Remark (1.14) Let us consider the case in which the base field is the com-
plex number field C. Then, for each integer >_ 0, the ideal sheaf I"+ on Z
defines an algebraic C-scheme X, (e.g., X X0) and hence a complex-
analytic space X" associated with it. The complex-analytic spaces X,a"

for all the non-negative integers , form an inductive system in an obvious
fashion, and this has a limit space Z"" in the category of local-ringed spaces,
which is uniquely determined by Z (i.e., independent of the choice of a defining
ideal I). In short, we have the "complex-analyticformal" space Z associated
with a given "algebraic formal" scheme Z. Conversely, if a complex-analytic
formal space Z^ is given and satisfied the conditions analoguous to (1.0.1)-
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(1.0.4), then there exists a unique algebraic formal scheme Z such that
Zan is isomorphic to Z^. Thus all the lemmas and theorems of 1, preceding
this remark, make sense and can be proven essentially in the same way,
except for the finiteness of the k-module Hi(Z1, I-v) which is needed in the
proof of (1.9). In the complex-analytic situation, we are not a priori able
to reduce the proof of Th. II to the case of a proper (i.e., compact) Z1 as was
done in (1.9.1)-(1.9.2). But, instead, with no loss of generality we may
assume that Z is strongly pseudoconcave, so that HI(ZI, F) for a locally
free sheaf F is a finite C-module by a theorem of Andreotti-Grauert (cf.
[5, Lemma 4, 5]).

Remart (1.15) Suppose we are given a complex-analytic formal space
Z^ in the same way as in (1.14). By a complex-analytic structure in Z^, we
mean a complex-analytic space 2 containing X such that its completion
along X is isomorphic to Z^. The uniqueness of 2 (within a neighborhood
of Xa) for such Z^ has been proven by Nirenberg-Spencer [4] and Griffiths
[1]. Rossi proved that a complex-analytic manifold 2 containing X and
satisfying the conditions analogous to (1.0.1)-(1.0.4) admits an algebraic
structure [5, Th. 3, 5]. Using this theorem of Rossi, we may deduce by a
standard GAGA-technique the uniqueness of complex-analytic structure in
Z^ from.the same of algebraic structure in the corresponding Z, i.e., Theorem
II. However, it should be noted that in the case of higher codimensions,
the latter uniqueness is definitely false in general as was remarked in the
introduction while the former uniqueness may still hold. The existence
theorem of Rossi can be rather easily deduced from Theorems I and II (cf.
Remark (1.14) ).

2. Imbeddings into a projective space
Throughout this section, 1 will denote an algebraically closed field, P pN)

a proiective space of dimension N over/c, and X a closed connected reduced
subscheme of dimension n > 1 of P. Let us pick an arbitrary pair of linear
subspaces L and Y of P such that

(2.1) dimL=N-n- 1, dimY=n, andLnX=LnY= O(empty).

Let V P L. For each geometric point y of V, My will denote the unique
linear subspace of dimension N n of P, over the residue field (y) of y,
such L and y are contained in

LEMMX (2.2) There exists a unique morphism r" V ---* Y such that, for
every geometric point y of Y, thefibre -(y) is equal to My L. Moreover, there
exists a unique structure of vector bundle for r V -o Y such that the given in-
clusion s Y -- V is the zero section.

Proof. The uniqueness assertions are clear. To see the existeace of
we shall first construct the closure of V -o Y into a projective fibre bundle

-o Y whose fibres are isomorphic to those M with y e Y. This can be
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done by means of Grassmanian variety, but here is a direct construction.
Let/ -- P be the monoidal transformation of P with center L. Let M*
be the strict transform of M by . Then induces an isomorphism
M* -- My. Then there exists a morphism # Y such thatM* #-1(y)
for all y e Y. To be explicit, let k[Zo, zl, zN] be the homogeneous co-
ordinate ring of P such that the ideal of L is generated by (z0, zl, ..., z)
and the ideal of Y by (z+, ..., zN). Then we have

Proj ([zz, 0 < j <_ N and 0 <_ i n]),

and we may identify Y with Proj (k[z0, z, z]). This gives rise to an
obvious morphism - Y which is #. The fibres of # are obviously projec-
tive spaces of dimension N n 1, which are those M*. Moreover,
intersects each M* in a linear subspace of codimension 1 (= the image of L
by M -- M*). # has a section Y - , the inclusion through V. Lemma
(2.2) is now clear, Q.E.D.

The projective space Y has the fundamental line bundle, whose sections form
an ample invertible sheaf on Y denoted by 0r(1). This is the sheaf asso-
ciated with a hyperplane in Y. The fundamental line bundle of Y can be
obtained as the normal bundle of an imbedding of Y into a proective space
of dimension n W 1 as a hyperplane. In our situation as above, if (E,.., E_) is a system of linear subspaces of dimension n 1 of P whose
intersection is equal to Y and whose loin is P, then the normal bundle of Y
in P is in a natural way the direct sum of the normal bundles of Y in the E.,
l_j_< N-n. We thus obtain:

LMMX (2.3) The vector bundle " V --> Y is isomorphic to the N n) -fold
fibre product of the fundamental line bundle of Y with itself. In particular, it is
.ample.

Let v W --+ X be the vector bundle obtained from v V -- Y by base
extension q" X -, Y, where q is induced by r and the inclusion X -- V.
Namely W V X r X. (2.3) implies

LEMMX (2.4) r" W --> X is a vector bundle over X such that the sheaf of
its sections is isomorphic to (N n) times direct sum of 0(1) with itself.

Proof. 0(1) is induced by the fundamental line bundle on P, or by 0e(1).
If G is a hyperplane in Y, then the closure of -I(G) in P is a hyperplane. In
other words, 0(1) q*(0r(1)). (2.4) then follows from (2.3) and
W V rX, Q.E.D.

Let W -- V be the projection. The inclusion map r X --. V induces an
imbedding rl" X -- W by (r, ida), which is a section of the vector bundle .
Moreover, we have r try. Let (resp. l) be the completion of V (resp.
W) along X with respect to r (resp. r). Let " ld --, ]7 be the morphism
induced by t, or the completion of along X.
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:LEMMA (2.5) The local homomorphism Ov^.u Ov^, induced by is injective
for every y (x with x e l?V such that X has dimension n in any neighborhood
of the point Xo with rl(xo) x.

Proof. To prove that 0r^. -- 0^, is injective, it is enough that the local
homomorphism induces a monomorphism of their completions. 0v^, (resp.
0w^.) has the same completion as 0r,v (resp. 0w.). Moreover, W V X rX.
Therefore, it is enough to prove that the local homomorphism 0r., -- 0x.,
induced by q induces a monomorphism of their completions. By (2.1), q
is a finite morphism. Y is regular, so that the completion of 0r.0 has no
zero-divisor, it follows that the completion of 0r.0 --* 0x.0 is injective,
because by assumption, X has dimension n locally at x0, Q.E.D.

I am indebted to R. Hartshorne for giving me the proof of the lemma below,
which is much simpler than my original proof by induction.

LEMMA (2.6) Let p U X be a vector bundle on X, which is a direct sum
of ample line bundles on X. Let Fo be a locally free sheaf on X, and F p*(Fo).
Let (resp./) be the completion of U (resp. F) along the zero section of the
bundle p. Then we have a canonical isomorphism

H( U, F) ---. H(,
Proof. Let L, 1 <_ i <_ r, be the ample invertible sheaves on X such that

L1 @ @ Lr is isomorphic to the sheaf of sections of p U --. X. Call
this sheaf L. Let L’ be the dual of L on X. Then we have a canonical iso-
morphism U --._- Spec (S(L’)), where S(L’) denotes the sheaf of symmetric
tensor algebras of L’ over 0x. Let S be the homogeneous part of degree
of S(L’). Since p is affine and F0 is coherent, we have

H(U, F) H(X, F0 (R) (0S)) oH(Z, Fo (R) S)
and

H(,i) H(X, Fo (R) (I:-0 S)) IIoH(Z, Fo (R) S).

Hence, for (2.6), it suffices that H(X, Fo @ S) 0 for all >> 0. Now,
S is obviously a direct sum of invertible sheaves which are tensor products of
the form LI (R) (R) L’., where L are dual to L for all j. Since each L is
negative, there exists 0, depending on F0, such that F0 (R) LI (R) (R) L; is
negative for every >_ 0 and for every choice of (i, it). This implies
that H(X, F0 (R) S) (0) for all > 0, Q.E.D.

Conov (2.6.1) (Hartshorne) Let be the completion of P along X.
Then we have H(, 0.^) k.

Proof. Let X be the irreducible components of X, and/3(i) the comple-
tions of P along X. Then there is a natural homomorphism

H(, O^) H((i), 0^()),

which is clearly injective. If (2.6.1) holds for Xi, then H(/(i), 0e^()) k



ON SOME FORMAL IMBEDDINGS 599

for every i. Hence the natural map

H(2, e,H(X,,
is lso injective. This mp clearly fctors through H(X, 0x), which is k
because X is connected and reduced by assumption. Thus we have only to
prove (2.6.1) for the case of irreducible X. Now,/ ? and (2.5) shows that
H(7, 0v^) --, H(W, 0^) is in]ective. By (2.6), H(W, 0^) is isomorphic
to H(W, 0w). Let L’ be the dual of the sheaf of sections of 1 W - X.
Then, by (2.4), L’ is isomorphic to (N n) times direct sum of 0x(-1)
with itself. It follows that if S is the -th symmetric tensor power of L’,
then H(X, S) 0 for all v > 0. We have W Spec (oS). There-
fore

H HH(W, Ov) H(X, @,-.oS,) @..o (X, S,) (X, Ox) k,

Q.E.D.

LEMMA (2.7) Let p U ----> X and U be the same as in (2.6). IfX is smooth
and has dimension

_
2, then there exists a commutative diagram of canonical

homomorphisms

Pic (X) Pic (U)

Pie (1)
where " is an isomorphism, is injective and Coker () is a torsion group. More
precisely, Coker (/) is reduced to the identity if char (k) O, and it is a p’-
torsion group with an integer , > 0 if char (k) p > 0.

Proof. We shall prove that there exists a canonical map

/* :Pic () --. Pic (X)

such that * o fl id and Ker (fl*) (--*. Coker (/)) has the torsion property.
Naturally fl (resp. *) is induced by the completed projection " - X
(resp. the inclusion X--, by the zero section of p U -- X). Let U, be
the subscheme of U defined by the ideal sheaf j,+l, where J is the ideal sheaf
of the zero section. In particular, U0 X. Let 0 be the structure sheaf of
U and 0* the sheaf of the groups of invertible elements in 0,. Then there
exists a natural exact sequence

(2.7.1) 0---> J/J+ f--+ 0" 0"-1 -- 0

where f() 1 -t- . Here J/J+, viewed as a sheaf on X, is isomorphic to
the symmetric v-th power S, of the proof of (2.6). S, is a direct sum of nega-
tive invertible sheaves on X. Therefore, if char (k) 0, then Kodaira’s
vanishing theorem implies H(U, J/J"+) (0) for all v > 0 and all
i _< dim X 1. (See Theorem 2, [7].) In particular, this is the case for
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$
i 1. Thus H(U, 0*) --* H(U_, 0-) is iniective for all > 0, and,
passing to their limit,

H (, 0" ^) -- H (Z, 0)
is in]ective. Namely, * is injective. Clearly f*f id, aud hence f is an
isomorphism. Next consider the case of char (k) p > 0. In this case,
H(U, J/J+) may not be zero but is obviously a p-torsion group as every
vector space over/ is. Moreover, since X is smooth, Serre’s duality and
vanishing theorems show that H(X, S,) (0) for all sufficiently large
and alli _< dimX 1. In particular, for i 1. Thus the kernel of
H(U, 0" ) ----> H(U,_ *0,-) is a p-torsion group for all > 0 and vanishes
for >> 0. Therefore, the kernel of H(, 0*v ^) --* H(X, 0x*) is a p’4orsion
group for some integer > 0. fl* id is clear, and the assertion on
follows. It is now enough to prove that 7 is sur]ective, as the equality
is clear. (The canonical map , (resp. a) is induced by the map p U -- X(resp. the completion -- U).) But the bi]ectivity of is easily proven,
because p U -- X is a vector bundle, Q.E.D.

If Q is a formal or ordinary scheme, then K will denote the sheaf of "total
ring of fractions" of 0q. Namely, K is the associated sheaf of the presheaf
K’ defined by" K’(U) the total ring of fractions of 0(U), where U is
any open subset of Q. If Q is a reduced irreducible scheme (ordinary),
then H(Q, K) is the field of rational functions on Q, which is isomorphic to
the field of fractions of 0e., for every point x of Q.

THEOE IV. Let X be a smooth irreducible subscheme of dimension >_2
of a projective space P over an algebraically closed field. Let be the completion
of P along X. Then we have a natural isomorphism

H(P, g,) -- H(.P, ge^).

Proof. The homomorphism d* H(P, K.) - H(P, K^) is induced by
the completion morphism d P -- P. Let x e X, which may be viewed as
point of both P and P. Then the local homomorphism 0,, --, 0. ^,, induces an
isomorphism of their completions and hence it is injective. H(P,
being he field of fractions of 0., it follows that d* is injective. Take any
pair (L, Y) satisfying (2.1). This defines r V --* Y, rt W--* X, t" W -- V,
]? P, IV and as before. induces a homomorphism

t*" H(P, Ke^) -- H(W, K^),

which is injective by (2.5). By (2.4), Lemmas (2.6) and (2.7) are applicable
to the vector bundle v’W -- X. I claim that the canonical map
H(W, K) H(i?V, Kw^) is biiective. For the same reason as above,
this map is injective. Take any h* ^) *eH(W, K Let L be the sheaf
associated with the pole of h*, i.e., the dual of L* is defined as the ideal sheaf
M* k-(0^) where )," 0^ - K^ is the multiplication by h*. (Note
that we have a natural inclusion 0^ K^ .) ]?V being regular, M* and
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hence L* are invertible. By (2.7), there exists a positive integer m such that
L* is the completion of an invertible sheaf F (F0) on W, where F0 is an
invertible sheaf on X. By (2.6), H(W, F) is isomorphic to H(W, L’m).
We have natural M* c 0w This induces 0w^ c L* and L* L*m. In
this sense, h* H *m)e (W, L and also/ c H(W, L*), where/ is the base
field of W. Let h’ and hr’ be the image of h* and 1 k by the isomorphism
H(W, F) -- H(l?V, L’m). Then there exists a unique h H(W, K)
such that h hh", for F is an invertible sheaf on W. It follows that h*
is the image of h by the canonical map H(W, K) ---. H(W, K^). This
map is thus bijective as was claimed. We now have a commutative diagram
of monomorphisms

d*H(P, Kv) H(, Kv^)

H(W, gw) -- H(lr, gw^)
To prove that d* is surjective (and hence bijective), pick any element

Hg e (/, Ke^). Then g* corresponds to an element h H(W, Kw). Since
W is obtained by the base extension q" X --. Y, the branch locus B(t) of
t" W V is equal to r-l(B(q)) where r" V Y is the projection. The
field extension H(P, Ke) ---. H(P, Kp)(g*) is isomorphic to the subextension
of H(P, Kv) -- H(W, Kw), which is generated by the element h. Therefore
it is an algebraic extension and its branch locus in V is contained in r-l(B(q)).
For the same element g* we can choose various (L, Y) satisfying (2.1)
The intersection of r-(B(q)) for all such (L, Y) has codimension >_2 in P.
To see this, it is enough to take two pairs (L, Y) and (L’, Y’) such that either
L n L’ or Y Y’ is empty. H(P, K.) is a purely transcendental extension
of/ and any non-trivial extension ramifies. By the purity of branch locus,
H(P, K,)(g*) H(P, g.), Q.E.D.

Theorem V. Let X be a smooth and irreducible subvariety of dimension >_ 2
of a projective space P over an algebraically closed field k. Let be the completion
of P along X, and let c ----> P be the natural morphism inducing the identity
of X. Let Z be any algebraic scheme over k. Then every morphism Z
over t is of the form fc with a rational map f" P ---, Z which induces a morphism
within a neighborhood of X. Moreoverf is uniquely determined by .

Proof. With no loss of generality we may assume that Z is reduced and
irreducible. The reason for this is that/ is irreducible and locally integral.
Now, take any rational function h on Z which is regular at least at one point

Hof (X) Then *(h)e (/, Kp^) is well defined, and, by Theorem III
of 2, there is a unique rational function h’ on P such that c*(h’) *(h).
For every point x e X, the function field H(P, K.) being identified with the
field of fractions of the local ring 0e.,, the intersection H(P, K,) 0^.
makes sense and is equal to 0e.,. (In fact, the same is true even if 0e^.,
is replaced by its completion, which is canonically isomorphic to the comple-
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tion of 0e, .) Thus the existence of h’ for every given h implies that the
local homomorphism 0z, --* 0^, induced by for each x e X has its image
in 0,. This immediately implies the existence of f" P --* Z as is stated in
Theorem V. The uniqueness of f is obvious, Q.E.D.

The analogues of the above Theorems IV and V have been proven implicitly
in 1 for the case of codimension one in the situation as general as was de-
scribed there. To be explicit, let us state them as follows"

THEOREM IV*. Le X be a smooth irreducible subscheme of a smooth irre-
ducible algebraic scheme Z over an algebraically closed field k. Assume that
X is proper over , tha the codimension of X in Z is one and $ha he normal
bundle of X in Z (or he dual of I/I as a sheaf of O-modules, where I is the
ideal sheaf of X in Z) is ample. Le$ Z be he compleion of Z along X. Then
we have a natural isomorphism

H(Z, gz) --- H(Z, Hz)

Proof. Immediate from (1.11) and (1.12), (cf. Proof of Th. IV).

TEoE*. Le X, Z and Z be he same as in Theorem IV*. Le c Z ----> Z
be he natural morphism. Le W be any algebraic scheme over k, and Z ----> W
be any morphism over . Then there exists a unique rational map f" Z W
such ha$ f induces a morphism within a neighborhood of X in Z and fc

Proof. Immediate from Th. IV* (cf. Proof of Th. V).
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