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1. Introduction

The primary motivation for this study is a result of P61ya [8] which states
that two points starting simultaneously in the plane and performing, inde-
pendently, simple random walks will meet infinitely often with probability
one. Dvoretzky and ErdSs [3] remark that three points starting simultane-
ously in the plane and performing independent simple random walks will not
meet infinitely often; however, on the line they will meet with probability one.
On the other hand, four points will not meet infinitely often even in R The
purpose of this paper is to consider some similar questions about stable proc-
esses. First we ask for what values of a and N will two independent stable
processes of index a in R meet? This question can be answered very easily
because if X(t) and Y(t are the two processes and they start simultaneously,
they will meet if and only if the process X(t) Y(t) returns to the origin.
Since X(t) Y(t) is also a stable process of index a and a stable process of
index a in R will return to the origin with positive probability (actually with
probability one) if and only if a > 1 and N 1, this solves the problem of
which values of a and N give rise to processes which will collide. It is also
easy to verify that three independent stable processes can never have a simul-
taneous collision.
The next problem is then to find the Hausdorff dimension of the intersection

when a > 1 and N 1, i.e. the dimension of the set

A {x:X(t) Y(t) x for some > 0}.

The time set on which X(t) Y(t) is the same as the set of zeroes of
X(t) Y(t) so that this time set has Hausdorff dimension 1 1/a [11]. If
this set of times were not random, one could immediately conclude from [1]
that the dimension of A is almost surely a(1 1/) 1. Although ao
attempt will be made to carry out this line of attack, this result will be in-
cluded as a particular case of Theorem 4.1.
These problems will be considered in somewhat more generality than indi-

cated above as we will allow the two stable processes X(t), Y(t), to have
different indices a and . The first step then is to use some potential theory
to obtain a comparison theorem between the process (X(t), Y(t)) in R and
the symmetric stable process Z(t) in R with index I - /a. This
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is carried out in Section 3. The proof that the dimension of the intersection
is almost surely t3 /a is given in Section 4.
We would like to acknowledge many helpful discussions with Bert Fristedt

and Steven Orey which took place during the course of this work.

2. Preliminaries and notation

The characteristic function of a stable process X(t) of index in RN has the
form exp It. (y)], where

(y) i(a, y) X Y I" L w.(y,
N

with a e Rr, X > O,

0) i 0) [, 0)i

for a 1, and # is a probability measure on the surface of the unit sphere S
in R [6]. wl (y, 0) has a different form, but we will not need this in the pres-
ent paper. The element a e R is taken to be zero. The process is called
symmetric when # is uniform. It is assumed that all the processes considered
have been defined so as to have sample functions X(t) which are right con-
tinuous and have left limits everywhere. The processes will also have the
strong Markov property which will be used without further comment.
For a > N 1, the density functionf(t, x) of X(t) is known to be positive,

continuous, and bounded in x so that in particular there are positive constants
cl and c such that

c _f(1, x)

_
c for xl

_
1.

There is also a positive constant ca such that

(2.2) x [x+"f(1, x)

_
ca for ixi >_ 1;

see [9] for a summary of the behavior of the density. The constants cl, c, c3

will depend on which particular stable process we are discussing, but since
there will only be a finite number of processes involved at any one time, we
shall not indicate their dependence on the process. The density also satisfies
the scaling property

f(t, x f(rt, rl"x )r"
for all r > 0, or in terms of the process itself, X(rt) and rl/ax(t) have the
same distribution.
A process X(t) in RN is called point-recurrent if for any x and y in R,

P[X(t) y for some > 0] 1,

while it is called neighborhood-recurrent if for any x in R and any open
sphere G c R,

P[X(t) eG for some > 0] 1.
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A Borel set B in R is said to be polar for X if

P[X(t) eB for some > 0] 0
for all x in R.

Let X(t) and Y(t) be two independent stable processes in R with indices
a and respectively, where we assume for now that a and are not both 2.
(Each of these processes will have another parameter corresponding to the
measure in the representation for the characteristic function, but this other
parameter will be suppressed throughout the paper.) Let

(2.3) U,(x) fo f( t, x)](t, x) dt

Rwhere x (xl x.) e and f,, fa are the densities of X,, Ya. The integral
converges for all x 0 as we shall see from Lemma 3.1 below. The process
(X,,(t), Y(t)) in R has a continuous density and the potential kernel of this
process will have a density with respect to Lebesgue measure in R given by
u(x, y) U,a(y x). It follows from the general theory of Hunt [5] (see
also [2] that if we let

(2.4) W (x) f U,(y x)#(dy)

be the potential of a measure #, then a Borel set B is polar for (X(t), Y(t)
if andonly if W, is unbounded for all finite non-zero measures with compact
support contained in B. The same theory also applies to the symmetric
stable process of index <2 in R, where the potential of a measure will be

f
3. A comparison theorem

X(t) and Y(t) will denote independent, one-dimensional stable processes
with indices a and / respectively. We will consider the process
(X,(t), Y(t) in R. When a f, this process is not stable, but it is similar
in certain respects to a stable process and the main purpose of this section is
to prove the relevant similarity.

THEOREM 3.1. Let 1 <_ a <_ 2, and let X,,(t), Y(t) be independent
stable processes in R. Then the process (X,(t), Y(t)) has the same Borel
polar subsets of the line y x in R as does the symmetric stable process Z(t)
in R with index . 1 + /.
The following lemmas will be needed in the proof.

LEMMA3.1. Let x (x x) and 1 < <_ a <_ 2, 2. Then there
exist positive constants c c such that

if
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may ssume xl > O.

U.(x) f
If x 0, the inequality is trivial. Suppose ix2

_
ix1 I"; we

Using the scaling property, we have

f,(t, xl)f(t, x2) dt

f.(1, t--U"x)f( 1, t-Ux)t-u"-u dt

Ix21 1

ow we use the inequalities (2.1) nd (2.2) on the densities to obtain

U.(x) < c x x dt + c c x -ua dt
121

i----, i.-
Since ]x (iz g (I x, x, under the given
inequality relating x and x:, this completes the proof in this case. The other
estimate is obtMned similarly or by simply interchanging the roles of x and
x, a nd .
LEMMA 3.2. Let 1 < a 2, < 2. There exists a positive nstant
such that

U,(y x) c y -1-,
where y y y x x x: ) and 2 x x).

Proof. If [y x " ]y x ], the inequality follows immeately
from Lemma 3.1. If, on the other hand, y x ] ]y x ", then

U,a(y x) c y x [,--,m ca([ y x

( z )--’ c z --.
LEMMA 3.3. Let 1 < a 2, < 2. Then there is a positive nstant

Co such that
U,a(x) Co x [-- for Ix 1.

Proof. Using the scMing property and (2.1)

Uo(z) A(1, -)o(, -%,)C-’

which gives ghe resulg. (Noge ghag I N I since N 1.)
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Proof of Theorem 3.1. Note first that if a 2, the conclusion follows
since all fully two dimensional processes with index 2 have the same polar
sets. Hence we can assume that 1 < f_ a g 2, < 2. By the remurks
between (2.4) and (2.5), it is enough to show that W, (x) is bounded for
some fite non-zero measure with compact support contained in B if and only
if W (x) is bounded. By Lemmu 3.2, W, (x) g cc W (), so that if
W is bounded then so is W, . On the other hand, by Lemma 3.3,

iY x - (dy) +
-> x - (d)

cc f U,(y- x)(dy) + c(B)
-1

Le I fi 2, nd () () be independen sble processes
dened o probability spce (, ). For e de,he

The principal resul of he pper is

() 1o1 o /.

Iu priculr, if fi heu dim () is 1 s mentioned ieiurodue-
iom

Before sring he proof of he eorem, we sll ueed some lemms.

oo/. Since 1 fi , boX() d () re poi-recurre; i pr-
iculr, hey re neighborhood-recurrent. Hence ech process sises
Chug-Fuch’s crierio for recurrence (see, e.g., Feler, p. 78 []).
his fc i is eily ceckedh he process () () lso sises his
recurrence cerion. ence e process X() Y() is neighborhood-re-
current. Le

To sho h X() () is poin-recurren we mus demousre h
(x ) I for ll x nd in . We rs showh(, ) i for ll. We use Lemm 3.1 of [7] from c i follows reely

exp[--()] is he characteristic fuco of X() () if
IX Re ()]- is iuegmble for some X 0, eu is relr for for
process, nd Ms implies (, ) 1. Bu we hve
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d f d

where h, a, b are positive constants and a, B are greater than 1, so the integral
does converge. Therefore (y, y) 1. Now q(., y) for y fixed is an excessive
function with respect to the process X,(t) Y(t) (see [2] for the relevant
definitions.) Furthermore, since the density of X (t) Y (t) is continuous,
it follows by an application of Fatou’s Lemma that any excessive function is
lower semi-continuous. Hence q(x, y) is lower semi-continuous as a function
of x. We now show that q)(x, y) 1 for all x and y. For any y in R and
e > 0, there is a neighborhood G of y such that q(z, y) > 1 e for all z e G
by the lower semicontinuity. Thus starting from any x in R
will enter a neighborhood G1 of y, whose closure is contained in G, with prob-
ability one and then hit y at some later time with probability at least 1
so that q(x, y) > 1 c. This completes the proof of the lemma.
We remark here that point-recurrence of the process X() Y(t) implies

that the two dimensional process (X(t), Y(t)) hits the line y x in R with
probability one, no matter where it starts. This fact will be used in the proof
of Theorem 4.1.

Following Taylor [10], let X0,() denote a symmetric stable process of index
t in RN. For an analytic set A in RN, let

o,(x, A P*[X,(t) A for some > 0].
We shall need Theorem 4 of [10], which we state here as

LMMA 4.2. Suppose A is an analytic subset ofR or R. Then, for any x,

if A R, dimA 1-inf{O:.(x,A) >0};

if A R, dimA 2 inf{O q.(x, A) > 0}.

Proof of Theorem 4.1. We first show that dim A(to) _< fl- /a almost
surely. Since the set A() is linear, the case a 2 is trivial. By Lemma
4.2, it will suffice to show that for any positive t < 1 fl 4- B/a, an inde-
pendent symmetric stable process Xa(t, ’) running on the diagonal in R hits
A () with probability zero. (Here we adopt for convenience the convention
that A () also refers to the diagonal of the set A () X A() in R.) If
X,a(t, ’) is defined on the probability space (tT, $’, P’), then X,a(t, ’),
X,(t, ), Ya(t, ) are all defined on the product space (t2 X if, $ X $’, P X
P’). We need to show that

(4.1) P’{to’ X0a(t, to’) A (to) for some > O} 0

for almost all o. Let
r {(to, to’):Xoa(t, to’)A(to) for some t>O};

then r X ’. Let B(to’) denote the range of Xa( ", to’). Then r equals

r, (x.(t, Y,(t, for some > 0}.
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Since dim B(o’) 0 a.s. (P’) by [1], B(0’) is a.s. (P’) polar for the sym-
metric process Xx+-la(t) by Lemma 4.2. Now it is a consequence of
Theorem 3.1 that B(o’) is polar for (X(t), Y($)), for almost all o’. An
application of Fubini’s theorem gives that P P’(r) P P’(r) o
and then (4.1).
We now show that dim A() >_ t t/ almost surely. Choose so that

1 t W// < 0 < 2 and consider an independent symmetric stable process
Xa(t, 0’) running on the diagonal. As in the other part, we find that the
symmetric stable process X+_.() will hit B(o’) with positive probability,
and so the process (X(t), Y() will also by Theorem 3.1. (Note that since
the density of the process is positive, U(x) > 0 for all x, consequently when
a set is not polar for (X(t), Y()) it will be hit with positive probability
from any starting point.) Hence P P’(rx) > 0, and so there is a T such
that

P X P’{ (, o’) (Z(t, o), Yt(t, o) B(o’) for some t (0, T)} > 0.

By Fubini’s theorem there is a set/ e $ with P(/k > 0 such that if o e/k
then

P’{o’ Xoa(t, o’) e A r(o) for some > 0} > 0,
where

At(c0) {(x,x)’X(t, o0) Y(t,o) x for some te(0, T)}.

It then follows from Lemma 4.2 that dim Ar() _> 1 for 0 /. In order
to see that this is actually the case for almost all , let r0( 0 and for n >_ I,

r,() inf {t > ,-1 + T’X(t) Y(t)}.

The , are all finite almost surely by Lemma 4.1. Define

O,(o) dim {(x,x) X,,(t) Yn(t) x forsome e (r,_l, r,_l + T)};

the G, are independent, identically distributed random variables with G
dim Ar. Also dim A() >_ sup, G, () so that

P[dim A < 1 0] _< [1 P(/)]"

for all n. Therefore dim A (0) >_ 1 0 almost surely which concludes the
proof of the theorem since 0 was arbitrarily close to 1 -t- O/a.
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