A CHARACTERIZATION OF SOME MULTIPLY TRANSITIVE PERMUTATION GROUPS, I

BY
Dieter Held

The objective of this paper is to give a proof of the following result:
Theorem A. Let G be a finite simple group which contains an involution t such that the following conditions are satisfied:
(I) The centralizer $\mathbf{C}_{G}(t)$ of t in G is a splitting extension of an elementary abelian normal 2 -subgroup of order at most 16 by \mathbb{S}_{4}, the symmetric group of degree four;
(II) the centre of a Sylow 2-subgroup of $\mathbf{C}_{G}(t)$ is cyclic.

Then G is isomorphic to one of the following groups A_{8}, A_{9}, A_{10} or M_{22}. Here A_{n} denotes the alternating group of degree n, and M_{22} is the Mathieu simple group on 22 letters.

This result is a consequence of the following
Theorem B. Let π_{0} be an involution contained in the centre of a Sylow 2-subgroup of A_{10}. Denote by H_{0} the centralizer of π_{0} in A_{10}.

Let G be a finite group with the following two properties:
(a) G has no subgroups of index 2, and
(b) G possesses an involution π such that the centralizer $\mathbf{C}_{G}(\pi)$ of π in G is isomorphic to H_{0}.
Then G is isomorphic to A_{10}.
Remark. Let G be a group satisfying the assumptions of Theorem A. Then $\mathbf{C}_{G}(t)$ contains an elementary abelian normal 2-subgroup M of order at most 16 such that $\mathbf{C}_{G}(t)$ is a splitting extension of M by S_{4}. Hence $|M|$ is equal to 8 or 16 . It is straightforward to check, that, if $|M|=8$, then $\mathbf{C}_{G}(t)$ is uniquely determined. Application of the result in [8] yields that G is isomorphic to A_{8} or A_{9} if $|M|=8$. However, if $|M|=16$, there are precisely two possibilities for $\mathbf{C}_{G}(t)$ as has been observed in [10]. One of these possibilities is that $\mathbf{C}_{G}(t)$ is isomorphic to the centralizer H_{1} of an involution of M_{22}, the other possibility is that $\mathbf{C}_{G}(t)$ is isomorphic to the centralizer of an involution of A_{10}. The theorem in [10] states that if $\mathbf{C}_{G}(t)$ is isomorphic to H_{1} then G is isomorphic to M_{22}. Hence, in order to prove Theorem A, it suffices to prove Theorem B.

1. Some properties of H_{0}

The group H_{0} is isomorphic to a group H generated by the elements π, μ,

[^0]$\mu^{\prime}, \tau, \tau^{\prime}, \rho, \lambda, \xi$ subject to the following relations:
\[

$$
\begin{aligned}
\pi^{2} & =\mu^{2}=\mu^{\prime 2}=\tau^{2}=\tau^{\prime 2}=\rho^{3}=\lambda^{2}=\xi^{2}=1, \\
\pi \mu & =\mu \pi, \quad \pi \mu^{\prime}=\mu^{\prime} \pi, \quad \mu \mu^{\prime}=\mu^{\prime} \mu, \quad \tau \tau^{\prime}=\tau^{\prime} \tau, \\
\rho^{-1} \tau \rho & =\tau \tau^{\prime}, \quad \rho^{-1} \tau^{\prime} \rho=\tau, \quad \tau \lambda=\lambda \tau, \quad \lambda \tau^{\prime} \lambda=\tau \tau^{\prime}, \\
\lambda \rho \lambda & =\rho^{-1}, \quad \pi \tau=\tau \pi, \quad \tau^{\prime} \pi=\pi \tau^{\prime}, \quad \rho \pi=\pi \rho, \quad \lambda \pi=\pi \lambda, \\
\tau \mu & =\mu \tau, \quad \tau^{\prime} \mu \tau^{\prime}=\pi \mu, \quad \rho^{-1} \mu \rho=\mu \mu^{\prime}, \quad \lambda \mu=\mu \lambda, \\
\tau \mu^{\prime} \tau & =\pi \mu^{\prime}, \quad \tau^{\prime} \mu^{\prime}=\mu^{\prime} \tau^{\prime}, \quad \rho^{-1} \mu^{\prime} \rho=\mu, \quad \lambda \mu^{\prime} \lambda=\mu \mu^{\prime}, \\
\pi \xi & =\xi \pi, \quad \mu \xi=\xi \mu, \quad \mu^{\prime} \xi=\xi \mu^{\prime}, \quad \xi \tau \xi=\mu \tau, \\
\xi \tau^{\prime} \xi & =\tau^{\prime} \mu^{\prime}, \quad \xi \lambda \xi=\mu \lambda, \quad \xi \rho \xi=\rho \mu .
\end{aligned}
$$
\]

We put

$$
\begin{aligned}
& D=\left\langle\pi, \mu, \mu^{\prime}, \tau, \tau^{\prime}, \lambda, \xi\right\rangle, \quad M=\left\langle\pi, \mu, \mu^{\prime}, \xi\right\rangle, \quad S=\langle\pi, \mu, \tau, \lambda\rangle \\
& L_{1}=\left\langle\pi, \mu, \lambda, \mu^{\prime} \xi\right\rangle \quad \text { and } \quad L_{2}=\langle\pi, \mu, \tau \lambda, \xi\rangle
\end{aligned}
$$

M, S, L_{1} and L_{2} are the only elementary abelian subgroups of D of order 16. The groups M, S, L_{1} and L_{2} are all contained in $S\left\langle\mu^{\prime}, \xi\right\rangle$ which is equal to $\mathbf{C}_{H}(\mu)$ and $S\left\langle\mu^{\prime}, \xi\right\rangle$ is the only maximal subgroup of D with centre of order 4. The centres of all other maximal subgroups of D are equal to $\langle\pi\rangle$. We have that the elementary abelian subgroups of D of order 16 are self-centralizing in H. Further, $\mathbf{N}_{H}(M)=H, \mathbf{N}_{H}(S)=D, \mathbf{N}_{H}\left(L_{1}\right)=S\left\langle\mu^{\prime}, \xi\right\rangle$, $\mathbf{N}_{H}\left(L_{2}\right)=S\left\langle\mu^{\prime}, \xi\right\rangle$ and $L_{1}^{\tau^{\prime}}=L_{2}$.

The group H is a semi-direct product of its normal subgroup M and its subgroup $\left\langle\tau, \tau^{\prime}\right\rangle\langle\rho\rangle\langle\lambda\rangle$ which is isomorphic to S_{4}. There are eight classes of conjugate involutions of H with the representatives $\pi, \mu, \tau, \lambda, \pi \lambda, \xi, \pi \xi$ and $\tau \lambda \xi$. The orders of the centralizers of these involutions in H are $2^{7} 3,2^{6}, 2^{5}$, $2^{5}, 2^{5}, 2^{5} 3,2^{5} 3,2^{4}$, respectively.

The groups M, S, and L_{2} split into D-conjugate classes in the following way:

$$
\begin{aligned}
M: & 1 ; \pi ; \mu, \pi \mu ; \mu^{\prime}, \pi \mu^{\prime}, \mu \mu^{\prime}, \pi \mu \mu^{\prime} ; \xi, \mu^{\prime} \xi, \mu \xi, \pi \mu \mu^{\prime} \xi ; \pi \xi, \pi \mu^{\prime} \xi, \pi \mu \xi, \mu \mu^{\prime} \xi . \\
S: & 1 ; \pi ; \mu, \pi \mu ; \tau, \pi \tau, \mu \tau, \pi \mu \tau ; \lambda, \mu \lambda, \tau \lambda, \pi \mu \tau \lambda ; \pi \lambda, \pi \mu \lambda, \pi \tau \lambda, \mu \tau \lambda .
\end{aligned}
$$

$L_{2}: 1 ; \pi ; \mu, \pi \mu ; \tau \lambda, \pi \mu \tau \lambda ; \pi \tau \lambda, \mu \tau \lambda ; \xi, \mu \xi ; \pi \xi, \pi \mu \xi ; \tau \lambda \xi, \pi \mu \tau \lambda \xi, \mu \tau \lambda \xi, \pi \tau \lambda \xi$.
The main problem in this paper is the fusion of the conjugate classes of involutions. Some properties of the alternating groups of low degree are needed for our proof; the character tables of [11] seem to be of some help.

In the whole paper, G denotes a group with properties (a) and (b) of the theorem. Thus we assume that H is embedded in G and that $\mathbf{C}_{G}(\pi)=H$. The notation $x \sim y$ means that x is conjugate to y. All other notation is standard.

2. Conjugacy classes of involutions of G

(2.1) Lemma. The involution π is contained in the centre of a Sylow 2-subgroup of G.

Proof. Let R be a Sylow 2-subgroup of G containing D. Then $H \cap R=D$. We have $\pi \epsilon D \subseteq R$, and if $y \in \mathbf{Z}(R)$, then $[y, \pi]=1$. It follows $y \in R \cap=D$. Hence $\mathbf{Z}(R) \subseteq \mathbf{Z}(D)=\langle\pi\rangle$ and so $\mathbf{Z}(R)=\langle\pi\rangle$.
(2.2) Lemma. Each involution of G is conjugate to an involution of S.

Proof. Put $\bar{H}=\left\langle\pi, \mu, \mu^{\prime}, \tau, \tau^{\prime}, \rho, \lambda\right\rangle$ and $\bar{D}=S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle$. It is a consequence of [16; p. 361] that every conjugacy class of involutions of \bar{H} intersects S nontrivially. Application of a lemma in [14] yields that each involution of G is conjugate to some involution in \bar{D}.
(2.3) Lemma. The involution π is conjugate in G to an involution $t \in H$ with $t \neq \pi$.

Proof. If π were not conjugate to an involution $t \in H$ with $t \neq \pi$, then π would not be conjugate to any involution of D different from π. Application of [5; Corollary 1, p. 404] would yield $\pi \in \mathbf{Z}(G \bmod O(G))$, and the Frattiniargument of $[1 ;$ Lemma 1, p. 117] would give $G=H O(G)$ against the assumption that G has no subgroups of index 2.
(2.4) Lemma. The involutions π, λ and $\pi \lambda$ do not lie in the same conjugate class of G.

Proof. Assume the lemma to be false. We have

$$
\mathbf{Z}\left(S\left\langle\mu^{\prime} \xi\right\rangle\right)=\langle\pi, \mu, \lambda\rangle \quad \text { and } \quad \mathbf{C}_{\theta}(\langle\pi, \mu, \lambda\rangle)=S\left\langle\mu^{\prime} \xi\right\rangle .
$$

Call this group W. Denote by D_{λ}^{1} a group of order 64 contained in $\mathbf{C}_{G}(\lambda)$ which contains $S\left\langle\mu^{\prime} \xi\right\rangle$. Define $D_{\pi \lambda}^{1}$ similarly. It is $W^{\prime}=\langle\pi \mu\rangle$ and therefore $\mathbf{Z}\left(D_{\lambda}^{1}\right)=\langle\lambda, \pi \mu\rangle$ and $\mathbf{Z}\left(D_{\pi \lambda}^{1}\right)=\langle\pi \lambda, \pi \mu\rangle$. Put $N=\left\langle W\langle\xi\rangle, D_{\lambda}^{1}, D_{\pi \lambda}^{1}\right\rangle$. Obviously, $\langle\pi \mu\rangle=\mathbf{Z}(N) . \quad N$ cannot be a 2 -group because otherwise $|N|=2^{7}$ but D contains precisely one subgroup of order 64 with centre of order 4. Since N / W is isomorphic to a subgroup of $\operatorname{PSL}(2,7)$ we get that 3 divides $|N / W|$ but 7 does not. Hence $\pi \mu$ is centralized by an element x of order 3 in N. We know that $S \subseteq W\langle\xi\rangle \cap D_{\lambda}^{1} \cap D_{\pi \lambda}^{1}$ and so since $\left|\mathbf{Z}\left(D_{\lambda}^{1}\right)\right|=\left|\mathbf{Z}\left(D_{\pi \lambda}^{1}\right)\right|$ $=4$ we must have $S \triangleleft\langle N, D\rangle$. The group S is elementary abelian of order 16. Hence $\mathcal{S}=\mathbf{N}_{G}(S) / S$ is isomorphic to a subgroup of A_{8}. The involution $\pi \mu$ of S cannot be conjugate to π under $\mathbf{N}_{G}(S)$ since $[x, \pi \mu]=1$ and $H \nsubseteq \mathbf{N}_{G}(S)$. It follows that $3 \cdot 5,3 \cdot 7$ and $5 \cdot 7$ do not divide $|\mathrm{s}|$. But we know that 3 divides $|\mathfrak{s}|$. Therefore, for $|s|$ one obtaines the possibilities $8 \cdot 3$ and $8 \cdot 3^{2}$.

If N / W is of order $4 \cdot 3$ then $N / W \cong A_{4}$ and a Sylow 2 -subgroup of G would be normalized by an element of order 3 which however is not the case. Hence $N / W \cong S_{3}$. -Now assume $|\mathcal{S}|=8 \cdot 3$. In this case $N \triangleleft \mathbf{N}_{G}(S)$ and so $\langle\pi \mu\rangle=\mathbf{Z}\left(\mathbf{N}_{G}(S)\right)$. But then we would have $\pi \mu=\pi$ which is not possible.

It remains to consider $|s|=8 \cdot 3^{2}$. A Sylow 2-subgroup of s is dihedral of order 8. [6; Theorem 1, p. 553] implies that \mathcal{S} has a subgroup of index 2. Hence \mathcal{S} is isomorphic either to a Sylow 3-normalizer of A_{8} or to the group $(\langle y\rangle \times A)\langle z\rangle$ where $z^{2}=y^{3}=1,\langle y, z\rangle \cong S_{3}, A \cong A_{4}$ and $A\langle z\rangle \cong S_{4}$. Suppose the second case holds. Let T_{λ} be a Sylow 2 -subgroup of $\mathbf{N}_{G}(S)$ containing D_{λ}^{1}. $\mathbf{Z}\left(T_{\lambda}\right)$ is equal either to $\langle\lambda\rangle,\langle\pi \mu \lambda\rangle$ or $\langle\pi \mu\rangle$. Clearly $\mathbf{Z}\left(T_{\lambda}\right)=\langle\pi \mu\rangle$ is not possible because in this case we would have $\pi \sim \pi \mu$ in $\mathbf{N}_{G}(S)$. If $\mathbf{Z}\left(T_{\lambda}\right)=$ $\langle\pi \mu \lambda\rangle$, then note that $\pi \mu \lambda \sim \pi \lambda$ under D, and we get $\left|D \cap T_{\lambda}\right|=32$. On the other hand, \mathcal{S} contains a normal 2 -subgroup of order 4 which yields $\left|D \cap T_{\lambda}\right|=$ 64 and gives a contradiction. If $Z\left(T_{\lambda}\right)=\langle\lambda\rangle$ one argues similarly.

Finally, we have to consider the case that δ is isomorphic to a Sylow 3-normalizer of A_{8}. The four-group $\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle S / S$ acts on \mathfrak{M} where by \mathfrak{T} we denote $\mathbf{0}(\mathrm{S})$. Put $\alpha_{1}=\mu^{\prime} S, \alpha_{2}=\tau^{\prime} S, \alpha_{3}=\mu^{\prime} \tau^{\prime} S$. A result due to R. Brauer [15; p. 146] yields

$$
|\mathfrak{N}| \cdot\left|\mathbf{C}_{\Re \pi}\left(\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right)\right|^{2}=\left|\mathbf{C}_{\Re}\left(\alpha_{1}\right)\right| \cdot\left|\mathbf{C}_{\Re}\left(\alpha_{2}\right)\right| \cdot\left|\mathbf{C}_{\Re \pi}\left(\alpha_{3}\right)\right| .
$$

It is $|\mathfrak{T K}|=9$ and for $i=1,2,3$ the integer $\left|\mathbf{C}_{\mathfrak{M}}\left(\alpha_{1}\right)\right|$ is a divisor of 3. It follows that

$$
\mathbf{C}_{\Re \mathfrak{M}}\left(\left\langle\alpha_{1}, \alpha_{2}\right\rangle\right)=1 \quad \text { and }\left|\mathbf{C}_{9 \pi}\left(\alpha_{i}\right)\right|=\left|\mathbf{C}_{\mathfrak{~}}\left(\alpha_{j}\right)\right|=3
$$

for certain two different involutions α_{i} and α_{j} in $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$. Therefore, in $\mathbf{N}_{G}(S)$, we have that
(1) $S\left\langle\mu^{\prime}\right\rangle$ and $S\left\langle\tau^{\prime}\right\rangle$
or
(2) $S\left\langle\mu^{\prime}\right\rangle$ and $S\left\langle\mu^{\prime} \tau^{\prime}\right\rangle$
or
(3) $S\left\langle\tau^{\prime}\right\rangle$ and $S\left\langle\mu^{\prime} \tau^{\prime}\right\rangle$
are normalized by elements of order 3. It is $\mathbf{Z}\left(S\left\langle\mu^{\prime}\right\rangle\right)=\langle\pi, \mu\rangle, \mathbf{Z}\left(S\left\langle\tau^{\prime}\right\rangle\right)=$ $\langle\pi, \tau\rangle$ and $\mathbf{Z}\left(S\left\langle\mu^{\prime} \tau^{\prime}\right\rangle\right)=\langle\pi, \mu \tau\rangle$. The first two cases cannot happen because $\pi \nsim \pi \mu$ in $\mathbf{N}_{G}(S)$ and $H \nsubseteq \mathbf{N}_{G}(S)$. In the third case conjugates of π in $\mathbf{N}_{G}(S)$ are $\pi, \tau, \pi \tau, \mu \tau, \pi \mu \tau$. Denote by T_{λ} a Sylow 2-subgroup of $\mathbf{N}_{G}(S)$ with $D_{\lambda}^{1} \subset T_{\lambda}$. The group $\langle\pi \mu\rangle$ cannot be the centre of T_{λ}. Hence $Z\left(T_{\lambda}\right)$ is either $\langle\lambda\rangle$ or $\langle\pi \mu \lambda\rangle$. Consequently we get that π is conjugate to λ or to $\pi \lambda$ in $\mathbf{N}_{G}(S)$. If $\left|\mathbf{N}_{G}\left(L_{2}\right)\right|=2^{7} 3^{2}$, then π would have 18 conjugates in L_{2} under $\mathbf{N}_{G}\left(L_{2}\right)$ against $\left|L_{2}\right|=16$. If $\left|\mathbf{N}_{G}(M)\right|=2^{7} 3^{2}$, then π would have precisely 3 conjugates in M under $\mathbf{N}_{G}(M)$ which is not possible. We have proved that S is not conjugate to M and not conjugate to L_{2} in G. If $\mathbf{Z}\left(T_{\lambda}\right)=\langle\lambda\rangle$, then $\left|T_{\lambda} \cap \mathbf{C}(\pi \mu \lambda)\right|=64$ and so $\pi \mu \lambda$ is conjugate to μ in $\mathbf{N}_{G}(S)$. If $\mathbf{Z}\left(T_{\lambda}\right)=$ $\langle\pi \mu \lambda\rangle$, then $\left|T_{\lambda} \cap \mathbf{C}(\lambda)\right|=64$ and λ is conjugate to μ in $\mathbf{N}_{\sigma}(S)$. In any case we obtain $\mu \sim \pi$ in G. Denote by D_{μ} a Sylow 2 -subgroup of $\mathbf{C}_{G}(\mu)$ which contains $S\left\langle\mu^{\prime}, \xi\right\rangle$. Since all the elementary abelian subgroups of D and D_{μ} are contained in $S\left\langle\mu^{\prime}, \xi\right\rangle$ we get $S \triangleleft\left\langle D, D_{\mu}\right\rangle$. It follows $\pi \sim \mu \sim \pi \mu$ in $\mathbf{N}_{G}(S)$, a contradiction. The lemma is proved.
(2.5) Lemma. Interchanging λ and $\pi \lambda$ if necessary we may and shall assume that π is not conjugate to λ in G.

(2.6) Lemma. The involutions π and μ are not conjugate in G.

Proof. By way of contradiction assume $\pi \sim \mu$ in G. Suppose first that neither $\tau, \pi \lambda, \xi, \pi \xi$ nor $\tau \lambda \xi$ is conjugate to π in G. Each of the groups S and L_{2} contains only 3 involutions conjugate to π in G whereas M contains 7 involutions conjugate to π. It follows that M is not conjugate to L_{2} and not conjugate to S. If D_{μ} denotes a Sylow 2 -subgroup of $\mathbf{C}_{\sigma}(\mu)$ which contains $S\left\langle\mu^{\prime}, \xi\right\rangle$, then all the elementary abelian subgroups of order 16 of D_{μ} are contained in $S\left\langle\mu^{\prime}, \xi\right\rangle$. It follows $M \triangleleft\left\langle H, D_{\mu}\right\rangle$ and $\langle\pi, \mu\rangle \triangleleft\left\langle D, D_{\mu}\right\rangle$. Clearly, $\left\langle D, D_{\mu}\right\rangle$ is not a 2-group and therefore $\left\langle D, D_{\mu}\right\rangle$ contains an element v of order 3 with $\pi^{v}=\mu, \mu^{v}=\pi \mu$. Hence π has precisely 7 conjugates in M under $\mathbf{N}_{G}(M)$. It follows $\left|\mathbf{N}_{G}(M)\right|=2^{7} \cdot 3 \cdot 7 . \quad \mathbf{N}_{G}(M) / M$ acts faithfully on $\left\langle\pi, \mu, \mu^{\prime}\right\rangle$ and so $\mathbf{N}_{G}(M) / M=P S L(2,7)$. The involution ξ possesses 4 or 8 conjugates under $\mathbf{N}_{G}(M)$. Since $\left|\mathbf{C}_{H}(\xi)\right|=2^{5} \cdot 3$ we obtain $\left|\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M)\right|$ $=2^{5} \cdot 3 \cdot 7$. Denote by γ an element of order 7 in $\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M) . \gamma$ acts transitively on $\left\{\mu \xi, \mu^{\prime} \xi, \pi \mu \mu^{\prime} \xi, \pi \xi, \pi \mu \xi, \pi \mu^{\prime} \xi, \mu \mu^{\prime} \xi\right\}$. Hence ξ possesses precisely 8 conjugates under $\mathbf{N}_{G}(M)$ against $\left|\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M)\right|=2^{5} \cdot 3 \cdot 7$.

We have shown that at least one of the involutions $\tau, \pi \lambda, \xi, \pi \xi$ and $\tau \lambda \xi$ is conjugate to π in G.

Suppose that $\pi \sim \tau$ or $\pi \sim \pi \lambda$ holds in G. Assume first $\pi \sim \tau$ in G. Denote by D_{τ}^{1} a group of order 64 with $S\left\langle\tau^{\prime}\right\rangle \subset D_{\tau}^{1} \subset \mathbf{C}_{G}(\tau)$. Then $S \triangleleft\left\langle D, D_{\tau}^{1}\right\rangle$ since S char $S\left\langle\tau^{\prime}\right\rangle$. Further, $\left\langle D, D_{\tau}^{1}\right\rangle$ is not a 2 -group because $\left|\mathbf{C}_{H}(\tau)\right|=32$. Since $\lambda \nsim \pi$ in G we get the following possibilities for $\left|\mathbf{N}_{G}(S)\right|: 2^{7} \cdot 3,2^{7} \cdot 7$, $2^{7} \cdot 5,2^{7} \cdot 3^{2}$. The case $\left|\mathbf{N}_{G}(S)\right|=2^{7} \cdot 7$ or $2^{7} \cdot 5$ cannot happen because A_{8} has no subgroups of order $2^{3} \cdot 7$ or $2^{3} \cdot 5$ with dihedral Sylow 2 -subgroups. If $\left|\mathbf{N}_{G}(S)\right|=2^{7} \cdot 3$, then π, μ and $\pi \mu$ are the only conjugates of π under $\mathbf{N}_{G}(S)$. Denote by X a Sylow 2 -subgroup of $\mathbf{N}_{G}(S)$ with $D_{\tau}^{1} \subset X$. It follows that $\mathbf{Z}(X)$ is equal to $\langle\mu\rangle$ or to $\langle\pi \mu\rangle$. It is $|X \cap \mathbf{C}(\tau)|=64$ and so $\tau \sim \mu$ in $\mathbf{N}_{G}(S)$ since μ and $\pi \mu$ are the only elements of D such that their centralizers intersect D in a group of order 64. This contradicts the fact that π, μ and $\pi \mu$ are the only conjugates of π under $\mathbf{N}_{G}(S)$. We are in the case $\left|\mathbf{N}_{G}(S) / S\right|=2^{3} 3^{2}$ and so $\pi \sim \tau \sim \pi \lambda$ under $\mathbf{N}_{G}(S)$. -Assume now $\pi \sim \pi \lambda$ in G. Denote by $D_{\pi \lambda}^{1}$ a group of order 64 with $S\left\langle\mu^{\prime} \xi\right\rangle \subset D_{\pi \lambda}^{1} \subset \mathbf{C}_{G}(\pi \lambda)$. It is $Z\left(D_{\pi \lambda}^{1}\right)=$ $\langle\pi \lambda, \pi \mu\rangle$ and so $S \triangleleft\left\langle D, D_{\pi \lambda}^{1}\right\rangle$. Further, $\left\langle D, D_{\pi \lambda}^{1}\right\rangle$ is not a 2 -group. $\left|\mathbf{N}_{G}(S) / S\right|$ is equal to either $2^{3} 3$ or $2^{3} 3^{2}$. If $\left|\mathbf{N}_{G}(S) / S\right|=2^{3} 3$, denote by X a Sylow 2-subgroup of $\mathbf{N}_{G}(S)$ which contains $D_{\pi \lambda}^{1} . \quad \mathbf{Z}(X)$ is equal to $\langle\mu\rangle$ or to $\langle\pi \mu\rangle$ and $\left|X \cap D_{\pi \lambda}^{1}\right|=64$. We obtain $\pi \lambda \sim \mu$ in $\mathbf{N}_{G}(S)$ which is a contradiction. Hence $\left|\mathbf{N}_{G}(S) / S\right|=2^{3} 3^{2}$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{G}(S)$ also in this case. So, if $\pi \sim \tau$ or $\pi \sim \pi \lambda$ in G, then the conjugate class of μ in $\mathbf{N}_{G}(S)$ consists of μ and $\pi \mu$ because $\mu \sim \pi \nsim \lambda$ and the fact that both τ and $\pi \lambda$ have 4 conjugates under D. It follows that 3^{2} divides $\left|\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)\right|$ against $\mu \sim \pi$ in G.

We have proved so far that at least one of the involutions $\xi, \pi \xi$ and $\tau \lambda \xi$ is conjugate to π in G and that neither τ nor $\pi \lambda$ are conjugate to π in G. Denote by D_{μ} a Sylow 2 -subgroup of $\mathbf{C}_{G}(\mu)$ which contains $S\left\langle\mu^{\prime}, \xi\right\rangle$. Then $\left|\left\langle D, D_{\mu}\right\rangle\right|=$ $2^{7} 3$ since $\langle\pi, \mu\rangle \triangleleft\left\langle D, D_{\mu}\right\rangle$, and $S\left\langle\mu^{\prime}, \xi\right\rangle$ contains all elementary abelian subgroups of order 16 of D_{μ}. Since M and L_{2} contain at least 4 conjugates of π in G and S contains only 3 conjugates of π, we conclude that S is normal in $\left\langle D, D_{\mu}\right\rangle$. The element λ has at least 4 conjugates under $\left\langle D, D_{\mu}\right\rangle$. If 3 divides $\left|\mathbf{C}(\lambda) \cap\left\langle D, D_{\mu}\right\rangle\right|$ then denote by v an element of order 3 in $\mathbf{C}(\lambda) \cap\left\langle D, D_{\mu}\right\rangle$. We may choose v so that $\pi^{v}=\mu, \mu^{v}=\pi \mu$. It follows $(\mu \lambda)^{v}=\pi \mu \lambda$, and so, λ would have more than 4 conjugates in $\left\langle D, D_{\mu}\right\rangle$. This is a contradiction since $2^{5} 3$ divides $\left|\mathbf{C}(\lambda) \cap\left\langle D, D_{\mu}\right\rangle\right|$ in this case. Hence 3 does not divide $\mid \mathbf{C}(\lambda) \cap$ $\left\langle D, D_{\mu}\right\rangle \mid$. Because of $\pi \nsim \lambda$ we have that λ has precisely 12 conjugates in $\left\langle D, D_{\mu}\right\rangle$. Therefore $\lambda \sim \tau$ in $\left\langle D, D_{\mu}\right\rangle$ and so $S\left\langle\mu^{\prime} \xi\right\rangle$ would be conjugate to $S\left\langle\tau^{\prime}\right\rangle$ against $\left|\mathbf{Z}\left(S\left\langle\tau^{\prime}\right\rangle\right)\right|=4$ and $\left|\mathbf{Z}\left(S\left\langle\mu^{\prime} \xi\right\rangle\right)\right|=8$. This contradiction proves the lemma.
(2.7) Lemma. The involutions π, ξ and $\pi \xi$ do not lie in the same conjugate class of G.

Proof. Assume that $\pi \sim \xi \sim \pi \xi$ in G. Denote by D_{ξ}^{1} a group of order 64 with $L_{2}\left\langle\mu^{\prime}\right\rangle \subset D_{\xi}^{1} \subset \mathbf{C}_{G}(\xi)$. Since $Z\left(D_{\xi}^{1}\right)=\langle\xi, \pi \mu\rangle$ we have $M \triangleleft\left\langle H, D_{\xi}^{1}\right\rangle$ and $H \subset\left\langle H, D_{\xi}^{1}\right\rangle$. The involution π has 5 or 9 conjugates in M under $\mathrm{N}_{G}(M)$. Since $\mathbf{N}_{G}(M) / M$ is isomorphic to a subgroup of A_{8}, it follows that π has precisely 5 conjugates in M under $\mathbf{N}_{G}(M)$. An element of order 5 in $\mathbf{N}_{G}(M)$ must operate fixed-point-free on M, and so, either $\mu \sim \pi \xi$ or $\mu \sim \xi$ since μ has 6 conjugates in M under H. This contradicts (2.6).
(2.8) Lemma. Interchanging ξ and $\pi \xi$ if necessary, we may and shall assume that π is not conjugate to ξ in G.
(2.9). Lemma. The involution π is conjugate to τ or to $\pi \lambda$ in G.

Proof. Assume by way of contradiction that the lemma is false. By (2.3), (2.5), (2.6) and (2.8) follows that $\pi \sim \pi \xi$ or $\pi \sim \tau \lambda \xi$ in G and $\left[\mathbf{N}_{G}(S): D\right]=1$

Suppose first that $\pi \sim \pi \xi$ in G. Denote by $D_{\pi \xi}^{1}$ a group of order 64 with $L_{2}\left\langle\mu^{\prime}\right\rangle \subset D_{\pi \xi}^{1} \subset \mathbf{C}_{G}(\pi \xi)$. Since $\mathbf{Z}\left(D_{\pi \xi}^{1}\right)=\langle\pi \xi, \pi \mu\rangle$, we get $L_{2} \triangleleft\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, D_{\pi \xi}^{1}\right\rangle$ $=V$. Clearly, V is not a 2 -group and V normalizes $\langle\pi, \mu, \xi\rangle$ since $\mathbf{Z}\left(L_{2}\left\langle\mu^{\prime}\right\rangle\right)=$ $\langle\pi, \mu, \xi\rangle$. Not all involutions of $\langle\pi, \mu, \xi\rangle$ lie in the same conjugate class of G. Hence V contains an element x of order 3 such that $\pi^{x}=\pi \xi,(\pi \xi)^{x}=\pi \mu \xi, \mu^{x}=$ $\mu \xi,(\mu \xi)^{x}=\xi$ and $[x, \pi \mu]=1$. From a lemma in [14] we conclude that $\pi \lambda$ is conjugate to an involution of $M\left\langle\tau, \tau^{\prime}\right\rangle\langle\rho\rangle$. It follows that $\pi \lambda$ is conjugate to μ or τ in G. Assume that $\pi \lambda \sim \mu$ in G. Denote by $T_{\pi \lambda}$ a Sylow 2 -subgroup of $\mathbf{C}_{G}(\pi \lambda)$ which contains S. Clearly, $S \triangleleft\left\langle D, T_{\pi \lambda}\right\rangle$ and $\left\langle D, T_{\pi \lambda}\right\rangle$ is not a 2-group. It follows $\left[\mathbf{N}_{G}(S): D\right]>1$ which is not possible. Now assume that $\pi \lambda \sim \tau$ in G. Then 64 divides $\left|\mathbf{C}_{G}(\pi \lambda)\right|$ since $S\left\langle\mu^{\prime} \xi\right\rangle$ and $S\left\langle\tau^{\prime}\right\rangle$ are not isomorphic. Denote by $T_{\pi \lambda}$ a subgroup of $\mathbf{C}_{G}(\pi \lambda)$ of order 64 which contains
$S\left\langle\mu^{\prime} \xi\right\rangle$. Since $\mathbf{Z}\left(T_{\pi \lambda}\right)=\langle\pi \lambda, \pi \mu\rangle$ we have $S \triangleleft\left\langle D, T_{\pi \lambda}\right\rangle$ and $\left[\mathbf{N}_{G}(S): D\right]>1$ which again cannot happen. We have shown that π is not conjugate to $\pi \xi$ and that π must be conjugate to $\tau \lambda \xi$.

Denote by $D_{\tau \lambda \xi}^{1}$ a group of order 64 with centre of order 4 and $L_{2} \subset D_{\tau \lambda \xi}^{1} \subset$ $\mathbf{C}_{G}(\tau \lambda \xi)$. Then $L_{2} \triangleleft\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, D_{\tau \lambda \xi}^{1}\right\rangle=V$. Clearly, V is not a 2-group. It follows $\left[\mathbf{N}_{G}\left(L_{2}\right): S\left\langle\mu^{\prime}, \xi\right\rangle\right]=5$. An element of order 5 in $\mathbf{N}_{G}\left(L_{2}\right)$ must act fixed-point-free on L_{2}. Hence, $\mu \sim \tau \lambda$ or $\mu \sim \pi \tau \lambda$ in G. If $\mu \sim \pi \tau \lambda$ then $\mu \sim \lambda$ in G. Denote by T_{λ} a Sylow 2 -subgroup of $\mathbf{C}_{G}(\lambda)$ which contains S. Then $S \triangleleft\left\langle D, T_{\lambda}\right\rangle$ and $\left[\mathbf{N}_{G}(S): D\right]>1$ which is not possible. If $\mu \sim \tau \lambda$ then $\mu \sim \pi \lambda$ in G and again one gets a contradiction. The lemma is proved.
(2.10) Lemma. $\mathbf{N}_{G}(S) / S$ is isomorphic to a Sylow 3-normalizer in A_{8}. Further $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{G}(S)$.

Proof. From (2.9) we conclude that $\pi \sim \pi \lambda$ or $\pi \sim \tau$ in G. Assume first $\pi \sim \pi \lambda$ in G. Denote by $D_{\pi \lambda}^{1}$ a subgroup of order 64 of $\mathbf{C}_{G}(\pi \lambda)$ with $S\left\langle\mu^{\prime} \xi\right\rangle \subset$ $D_{\pi \lambda}^{1}$. Since $\mathbf{Z}\left(D_{\pi \lambda}^{1}\right)=\langle\pi \lambda, \pi \mu\rangle$ we get $S \triangleleft\left\langle D, D_{\pi \lambda}^{1}\right\rangle$. Hence $n=\left[\mathbf{N}_{G}(S): D\right]$ is equal to 5 or to 9 . Since $\mathbf{N}_{G}(S) / S$ is isomorphic to a subgroup of A_{8}, we obtain $n=9$ and so $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{G}(S)$. Assume now that $\pi \sim \tau$ in G. Denote by D_{τ}^{1} a subgroup of order 64 of $\mathbf{C}_{G}(\tau)$ with $S\left\langle\tau^{\prime}\right\rangle \subset D_{\tau}^{1}$. Since S char $S\left\langle\tau^{\prime}\right\rangle$, we get $S \triangleleft\left\langle D, D_{\tau}^{1}\right\rangle$. Hence $\left[\mathbf{N}_{\theta}(S): D\right]=9$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{G}(S)$. In any case $\left|\mathbf{N}_{G}(S) / S\right|=2^{3} 9$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{G}(S)$. A Sylow 2 -subgroup of $\mathbf{N}_{G}(S) / S=S$ is dihedral of order 8. From [6; Theorem 1. p. 553] we conclude that S must have a subgroup of index 2 . If S has no normal subgroups of index 4 , then $\mathcal{S}=(\langle x\rangle \times A)\langle y\rangle$ where $x^{3}=y^{2}=1$, $A \cong A_{4},\langle x, y\rangle \cong S_{3}$ and $A\langle y\rangle \cong S_{4}$. Then either $S\left\langle\tau^{\prime}, \mu^{\prime}\right\rangle \triangleleft \mathbf{N}_{G}(S)$ or $S\left\langle\mu^{\prime}, \xi\right\rangle \triangleleft \mathbf{N}_{G}(S)$. In the first case an element of order 3 in $\mathbf{N}_{G}(S)$ would normalize $\mathbf{Z}\left(S\left\langle\tau^{\prime}, \mu^{\prime}\right\rangle\right)$ against $H \$ \mathbf{N}(S)$ and in the second case we would get $\pi \sim \mu$ in $\mathbf{N}_{G}(S)$ which is not possible because of (2.6). We have proved that S must have a normal subgroup of index 4 . The lemma is proved.
(2.11) Lemma. There is an element u of order 3 in $\mathbf{N}_{G}(S)$ with $\pi^{u}=\tau$, $\tau^{u}=\pi \tau . \quad$ Further, $\left|\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)\right|=64 \cdot 3$ and μ is conjugate to λ in $\mathbf{N}_{G}(S)$. G has precisely two conjugacy classes of involutions.

Proof. Denote by D_{τ}^{1} a subgroup of order 64 of $\mathbf{C}_{G}(\tau) \cap \mathbf{N}_{G}(S)$ which contains $S\left\langle\tau^{\prime}\right\rangle$. It is $\langle\pi, \tau\rangle \triangleleft\left\langle S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle, D_{\tau}^{1}\right\rangle=X$. Suppose X is a 2 -group. Then $|X|=2^{7}$ and $\mathbf{Z}(X) \subseteq\langle\pi, \tau\rangle$. It is $S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle \triangleleft X$ and so $\mathbf{Z}(X)=\langle\pi\rangle$ against $\left|\mathbf{C}_{H}(\tau)\right|=32$. Hence X is not a 2 -group. If follows the existence of an element u of order 3 in X with $\pi^{u}=\tau$ and $\tau^{u}=\pi \tau$ since $u \in \mathbf{N}_{G}(S)$ and $H \nsubseteq \mathbf{N}_{G}(S)$. Assume that 9 divides $\left|\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)\right|$. Then $\{\mu, \pi \mu\}$ is the conjugate class of μ in $\mathbf{N}_{G}(S)$. Since $\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S) \triangleleft \mathbf{N}_{G}(S)$ it follows $u \in \mathbf{C}(\mu)$. Then $(\pi \mu)^{u}=\tau \mu$ yields a contradiction. Hence $\left|\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)\right|$ $=64 \cdot 3$ and $\mu \sim \lambda$ in $\mathbf{N}_{G}(S)$. Since by (2.2) each involution of G is conjugate to an involution in S, we get that G has precisely two conjugate classes of involutions.
(2.12) Lemma. The involution π is conjugate to $\pi \xi$ in $\mathbf{N}_{G}(M)$.

Proof. It is a consequence of (2.8), (26) and (2.11) that $\mu \sim \xi$ in G. Denote by T_{ξ} a Sylow 2 -subgroup of $\mathbf{C}_{G}(\xi)$ which contains $M\langle\tau \lambda\rangle$. It follows $M \triangleleft\left\langle H, T_{\xi}\right\rangle$ and $T_{\xi} \not \ddagger H$ since $\left|\mathbf{C}_{H}(\xi)\right|=2^{5} 3$. Hence $\left[\mathbf{N}_{G}(M): H\right]>1$ and π must be conjugate to $\pi \xi$ under $\mathbf{N}_{G}(M)$.
(2.13) Lemma. Let T_{ξ} be a Sylow 2-subgroup of $\mathbf{C}_{G}(\xi)$ with $L_{2}\left\langle\mu^{\prime}\right\rangle \subset T_{\xi}$. Put $L=\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, T_{\xi}\right\rangle$. Then $|L|=2^{6} 3$. There exists an element α in L of order 3 such that $\pi^{\alpha}=\pi \xi,(\pi \xi)^{\alpha}=\pi \mu \xi, \mu^{\alpha}=\mu \xi,(\mu \xi)^{\alpha}=\xi$ and $[\alpha, \pi \mu]=1$. $\left|\mathbf{N}_{G}\left(L_{2}\right)\right|$ is equal to $2^{6} 3$ or $2^{6} 3^{2} . \quad \mathbf{Z}(L)=\langle\pi \mu\rangle$ and $L \subseteq \mathbf{N}_{G}\left(L_{2}\right)$.

Proof. We know that $\mu \sim \xi$ in G from (2.11) and (2.9). Denote by T_{ξ} a Sylow 2-subgroup of $\mathbf{C}_{G}(\xi)$ which contains $L_{2}\left\langle\mu^{\prime}\right\rangle$. Since $\left(L_{2}\left\langle\mu^{\prime}\right\rangle\right)^{\prime}=\langle\pi \mu\rangle$ one gets $\mathbf{Z}\left(T_{\xi}\right)=\langle\xi, \pi \mu\rangle$. Also $\mathbf{Z}\left(L_{2}\left\langle\mu^{\prime}\right\rangle\right)=\langle\pi, \mu, \xi\rangle$ and $L_{2} \triangleleft T_{\xi}$. Put $\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, T_{\xi}\right\rangle=L$. We have $\langle\pi, \mu, \xi\rangle \triangleleft L$ and $\langle\pi \mu\rangle=\mathbf{Z}(L)$. Clearly, L is not a 2-group since $\pi \mu \leadsto \pi . \quad L / L_{2}\left\langle\mu^{\prime}\right\rangle$ is isomorphic to a subgroup of $\operatorname{PSL}(2$, 7). Because of $\pi \mu \in Z(L)$ we get $|L|=2^{6} 3$. Since $H \cap L=S\left\langle\mu^{\prime}, \xi\right\rangle$, no element conjugate to π under L can be centralized by an element of order 3 of L. Considering the elements of $\langle\pi, \mu, \xi\rangle$ one gets the existence of an element α of order 3 in L such that $\pi^{\alpha}=\pi \xi,(\pi \xi)^{\alpha}=\pi \mu \xi, \mu^{\alpha}=\mu \xi,(\mu \xi)^{\alpha}=\xi$ and $[\pi \mu, \alpha]=1$. For $\left[\mathbf{N}_{G}\left(L_{2}\right): S\left\langle\mu^{\prime}, \xi\right\rangle\right]$ we get the following possibilities: 3,5 , $3^{2}, 7$. If $\left|\mathbf{N}_{G}\left(L_{2}\right)\right|=2^{6} 5$ or $2^{6} 7$, then $\mathbf{N}_{G}\left(L_{2}\right)=\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, T_{\xi}\right\rangle$ which is not possible. The lemma is proved.
(2.14) Lemma. The involution π is conjugate to $\tau \lambda \xi$ in G.

Proof. Assume the lemma to be false. Then $\tau \lambda \xi \sim \mu$ in G. Denote by $T_{\tau \lambda \xi}$ a Sylow 2-subgroup of $\mathbf{C}_{G}(\tau \lambda \xi)$ which contains L_{2}. Because of $\mathbf{Z}\left(T_{\tau \lambda \xi}\right)=$ $\langle\tau \lambda \xi, x\rangle$ is a four-group we get $L_{2} \triangleleft\left\langle S\left\langle\mu^{\prime}, \xi\right\rangle, T_{\tau \lambda \xi}\right\rangle=X$. Clearly, X cannot be a 2 -group since $S\left\langle\mu^{\prime}, \xi\right\rangle \neq T_{\tau \lambda \xi}$. Application of (2.13) yields $\mathbf{N}_{G}\left(L_{2}\right)=X$ and X is of order $2^{6} 3$. Thus $X=L$. We may put $x=\pi \mu$. Obviously, $\langle\pi, \mu\rangle$ is conjugate to $\langle\tau \lambda \xi, \pi \mu\rangle$ in L, and so $\pi \sim \pi \mu \tau \lambda \xi$ in L. But ($\pi \mu \tau \lambda \xi$) μ^{\prime} $=\tau \lambda \xi$ against our assumption. The proof is complete.
(2.15) Lemma. We have $[\alpha, \tau \lambda]=1$.

Proof. There are nine elements in L_{2} which are conjugate to π in G. From (2.13) follows that α acts transitively on $\{\mu, \mu \xi, \xi\}$. Also $[\alpha, \pi \mu]=1$. There remain the elements $\tau \lambda$ and $\pi \mu \tau \lambda$ which α must centralize.

3. Simplicity of G

(3.1) Lemмa. G is a simple group.

Proof. Since $0(H)=1$ and $\pi \sim \tau \sim \pi \tau$ in G we get from [15; p. 146] that $\mathbf{O}(G)=1$. The fact that $\mathbf{N}_{G}(D)=D$ together with [1; Lemma 1, p. 117] yields that G possesses no non-trivial odd order factor group. If G were not a simple group then G has a normal subgroup Y with $1 \subset Y \subset G$. Since
$|Y| \equiv 0(\bmod 2)$ and $|G / Y| \equiv 0(\bmod 2)$ we get that π or μ is contained in Y because G has precisely two classes of involutions. Hence, $\langle\pi, \mu\rangle \subseteq Y$ and since D is generated by involutions, we get $D \subseteq Y$ against $|G / Y| \equiv$ $0(\bmod 2) . \quad$ The lemma is proved.

4. The centralizer of μ in G

(4.1) Lemma. $\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)$ is generated by the elements $\pi, \mu, \tau, \lambda, \mu^{\prime}, \xi, \nu$ subject to the following relations: $\nu^{3}=1,[\nu, \mu]=[\nu, \lambda]=[\nu, \xi]=1, \pi^{\nu}=\pi \tau \lambda$, $\tau^{\nu}=\pi \mu \lambda, \mu^{\prime} \nu \mu^{\prime}=\nu^{-1}$.

Proof. We are going to use the results of (2.10) and (2.11). It is $\mid \mathbf{C}(\mu) \cap$ $\mathbf{N}_{G}(S) \mid=64 \cdot 3$. Let ν be an element of order 3 in $\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)$. Denote by \bar{N} the subgroup of $\mathbf{N}_{G}(S)$ of order $64 \cdot 9$ which has $S\left\langle\tau^{\prime}, \mu^{\prime}\right\rangle$ as a Sylow 2 -subgroup. We consider $N=\bar{N} \cap \mathbf{C}(\mu)$. Clearly, $\nu \in N$. Since the conjugate class of μ in $\mathbf{N}_{\theta}(S)$ consists of 6 elements, since $H \nsubseteq \mathbf{N}_{G}(S)$ and since $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{G}(S)$ we get $[\nu, \lambda]=1$. It follows $\mathbf{C}_{s}(\nu)=\langle\mu, \lambda\rangle$ and no element in $S \backslash\langle\mu, \lambda\rangle$ normalizes $\langle\nu\rangle$. The case $\mathbf{N}(\langle\nu\rangle) \cap N=\mathbf{C}(\nu) \cap N$ is not possible since otherwise $S\left\langle\mu^{\prime}\right\rangle$ would be normal in N against $\pi \nsim \mu$ and $H \nsubseteq \mathbf{N}_{G}(S) . \quad N$ contains precisely three Sylow 2 -subgroups which one obtains from $S\left\langle\mu^{\prime}\right\rangle$ by transforming with ν and ν^{-1}. Hence a Sylow 2 -subgroup of $\mathbf{N}(\langle\nu\rangle)$ n N is contained in $S\left\langle\mu^{\prime}\right\rangle$ and so an element in $S\left\langle\mu^{\prime}\right\rangle \backslash S$ must invert ν. Elements in $S\left\langle\mu^{\prime}\right\rangle \backslash S$ are the four elements of order 4 with square equal to π which cannot invert ν since $[\pi, \nu] \neq 1$, the four elements with square equal to $\pi \mu$ which cannot invert ν since $[\pi \mu, \nu]=[\pi, \nu] \neq 1$, the sets of elements $K_{1}=\left\{\mu^{\prime}, \mu \mu^{\prime}, \pi \mu \mu^{\prime}, \pi \mu^{\prime}\right\}$ and $K_{2}=\left\{\mu^{\prime} \lambda, \mu \mu^{\prime} \lambda, \pi \mu \mu^{\prime} \lambda, \pi \mu^{\prime} \lambda\right\}$. If $x \in K_{1}$ with $x^{-1} \nu x=\nu^{-1}$, then by conjugating with an element in S we obtain an element ν^{\prime} of order 3 in $\left\langle S\left\langle\mu^{\prime}\right\rangle, \nu\right\rangle$ with $\mu^{\prime} \nu^{\prime} \mu^{\prime}=\nu^{\prime-1}$. The same can be done if an element in K_{2} inverts ν because $[\lambda, \nu]=1$. Hence we may assume that $\mu^{\prime} \nu \mu^{\prime}=\nu^{-1}$. Considering the conjugate class of μ in $\mathbf{N}_{G}(S)$ and noting that $\left|\mathbf{C}_{s}(\nu)\right|=4$, we get $(\pi \mu)^{\nu}=\pi \mu \tau \lambda$ or $\tau \lambda$. Interchanging ν and ν^{-1} if necessary we may and shall assume that $\pi^{\nu}=\pi \tau \lambda$ and $\tau^{\nu}=\pi \mu \lambda$.

Finally, we consider the subgroup \bar{U} of $\mathbf{N}_{G}(S)$ of order $32 \cdot 9$ with Sylow 2-subgroup $S\left\langle\mu^{\prime} \xi\right\rangle$. Put $U=\mathbf{C}(\mu) \cap \bar{U}$. Clearly, $U=\left\langle S\left\langle\mu^{\prime} \xi\right\rangle, \nu\right\rangle$. From [17; Theorem 4, p. 169] we conclude that ν is inverted by an element in U since $\left(S\left\langle\mu^{\prime} \xi\right\rangle\right)^{\prime}=\langle\pi \mu\rangle$ and $[\pi \mu, \nu] \neq 1$. Such an element can be found in $S\left\langle\mu^{\prime} \xi\right\rangle \backslash S$. All elements of order 4 in $S\left\langle\mu^{\prime} \xi\right\rangle \backslash S$ have square equal to $\pi \mu$, and so, they cannot invert ν. There remain the eight involutions of $S\left\langle\mu^{\prime} \xi\right\rangle \backslash S: \mu^{\prime} \xi, \pi \mu^{\prime} \xi, \mu \mu^{\prime} \xi, \pi \mu \mu^{\prime} \xi, \lambda \mu^{\prime} \xi, \pi \lambda \mu^{\prime} \xi, \mu \lambda \mu^{\prime} \xi, \pi \mu \lambda \mu^{\prime} \xi$. Since $[\mu, \nu]=$ $[\nu, \lambda]=1$ we have that either $\mu^{\prime} \xi$ or $\pi \mu^{\prime} \xi$ inverts ν. If $\pi \mu^{\prime} \xi$ inverts ν then $\pi \xi$ centralizes ν and so $(\pi \xi)^{\nu}=\pi \lambda \tau \xi^{\nu}=\pi \xi$. It follows $\xi^{\nu}=\tau \lambda \xi$ against (2.14) and (2.8). We have proved that $\mu^{\prime} \xi$ inverts ν and therefore $[\nu, \xi]=1$. The proof is complete.
(4.2) Lemma. $\quad \mathbf{C}_{G}(\mu)=(\langle\mu, \lambda\rangle \times A)\left\langle\mu^{\prime}\right\rangle$, where $A \cong A_{6}, A\left\langle\mu^{\prime}\right\rangle \cong S_{6}$ and $\left\langle\pi \mu, \tau \lambda, \nu, \mu^{\prime} \xi, \alpha^{\tau^{\prime}}\right\rangle \subseteq A$. Further, $\left[u, \tau^{\prime}\right]=1, \mu^{u}=\lambda, \lambda^{u}=\mu \lambda$ and $\mu^{\prime} u \mu^{\prime}=u^{-1}$.

Proof. First we shall consider the normalizer of $\langle\pi, \tau\rangle$ in $\mathbf{N}_{G}(S)$. It is $\mathbf{C}_{G}(\langle\pi, \tau\rangle)=S\left\langle\tau^{\prime}\right\rangle$. Hence, by (2.11), $\mathbf{N}_{G}(\langle\pi, \tau\rangle)=S\left\langle\tau^{\prime}\right\rangle\left\langle u, \mu^{\prime}\right\rangle=X$ and $|X|=64 \cdot 3$.

If 3 divides $\mathbf{C}_{\boldsymbol{x}}(\mu)$, then $\{\mu, \pi \mu\}$ is the conjugate class of μ in X. Denote by v an element of order 3 in $\mathbf{C}_{X}(\mu)$. Since no element of order 3 in $\mathbf{N}_{\theta}(S)$ centralizes π, we get $(\pi \mu)^{v}=\tau \mu$ or $\pi \tau \mu$ which is not possible. It follows $\left|\mathbf{C}_{X}(\mu)\right|=32$. In a similar way one proves $\left|\mathbf{C}_{X}(\mu \tau)\right|=32$, because $\mu \tau$ is not in the centre of a Sylow 2 -subgroup of X. It follows that $\mu \sim \lambda$ in X and $\mu \tau \sim \pi \lambda$ in X. The conjugate class of μ in X is $\{\mu, \pi \mu, \lambda, \mu \lambda, \tau \lambda, \pi \mu \tau \lambda\}$. Since $\mathbf{C}_{x}(\lambda) \nsubseteq S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle$, we have either $\mathbf{C}_{X}(\lambda) \subseteq\left(S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle\right)^{u}$ or $\mathbf{C}_{X}(\lambda) \subseteq$ $\left(S\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle\right)^{u^{-1}}$. For the action of u on S one gets $\pi^{u}=\tau, \tau^{u}=\pi \tau, \mu^{u}=\bar{\lambda}$, $\lambda^{u}=\mu \lambda$.

We know that $\left(\mu \tau^{\prime}\right)^{u}$ is equal to one of the four elements in $S\left\langle\tau^{\prime}\right\rangle$ the squares of which are equal to τ. These elements are $\lambda \tau^{\prime}, \tau \lambda \tau^{\prime}, \pi \lambda \tau^{\prime}, \pi \tau \lambda \tau^{\prime}$. We know that $\mu^{u}=\lambda$. It follows that $\left(\tau^{\prime}\right)^{u}$ is equal to $\tau^{\prime}, \tau \tau^{\prime}, \pi \tau^{\prime}$, or $\pi \tau \tau^{\prime}$. The set $\mathfrak{S}=\left\{\tau^{\prime}, \tau \tau^{\prime}, \pi \tau^{\prime}, \pi \tau \tau^{\prime}\right\}$ is u-invariant. Hence u centralizes an element in \mathfrak{S}. The group $\langle\mu, \lambda\rangle$ operates transitively on \mathfrak{S}, and so, transforming u by an element in $\langle\mu, \lambda\rangle$, we may and shall assume that $u \tau^{\prime}=\tau^{\prime} u$.

We consider now $u \mu^{\prime}$. We have $u \mu^{\prime} \in \mathbf{C}_{X}(\lambda) \cap \mathbf{C}(\tau)$, and so

$$
\left(u \mu^{\prime}\right)^{u^{-1}} \in \mathbf{C}_{X}(\mu) \cap C(\pi)=S\left\langle\mu^{\prime}\right\rangle
$$

Further,

$$
\left(u \mu^{\prime}\right)^{u-1} \in S\left\langle\mu^{\prime}\right\rangle \cap \mathbf{C}_{X}\left(\tau^{\prime}\right)=\langle\pi, \tau\rangle\left\langle\mu^{\prime}\right\rangle
$$

Clearly, $\left(u \mu^{\prime}\right)^{u^{-1}} €\langle\pi, \tau\rangle$ since otherwise $u \epsilon\langle\pi, \tau\rangle\left\langle\mu^{\prime}\right\rangle$ against $u^{3}=1$. Considering the possibilities for $u \mu^{\prime}$, we get that $\left(u \mu^{\prime}\right)^{u^{-1}}=\mu^{\prime}$ or $\left(u \mu^{\prime}\right)^{u^{-1}}=\pi \tau \mu^{\prime}$. If the last possibility holds then $u \mu^{\prime}=\mu^{\prime} \pi \tau u^{-1}$. Put $\bar{u}=\pi u$ and note that the order of πu is 3 and that \vec{u} has all the properties of u required so far. Compute $\left(\bar{u} \mu^{\prime}\right)^{2}=\pi u \mu^{\prime} \pi u \mu^{\prime}=u \tau \pi \pi \tau u^{-1}=1$. It follows that $\mu^{\prime} \vec{u} \mu^{\prime}=\bar{u}^{-1}$ or equivalently $\left(\vec{u} \mu^{\prime}\right)^{\bar{u}^{-1}}=\mu^{\prime}$. Hence we may and shall assume that $\mu^{\prime} u \mu^{\prime}=u^{-1}$.

We turn now to the determination of $\mathbf{C}_{G}(\mu)$. Put $\bar{G}=\mathbf{C}_{G}(\mu)$ and $\overline{(5)} /\langle\mu\rangle=$ © . In the epimorphism (5) \rightarrow (5) put $\pi \rightarrow p, \tau \rightarrow t, \lambda \rightarrow l, \mu^{\prime} \rightarrow m$, $\xi \rightarrow z, \nu \rightarrow n$ and $\alpha^{\tau^{\prime}} \rightarrow a$.

It is $\mathbf{C}_{\circledast}(p)=\langle l, z\rangle \times\langle p, t\rangle\langle m\rangle=\mathfrak{I}$, where $\langle p, t\rangle\langle m\rangle$ is dihedral of or$\operatorname{der} 8, \mathbf{Z}(\mathfrak{T})=\langle l, z, p\rangle$ and $\mathfrak{T}^{\prime}=\langle p\rangle . \quad \mathfrak{T}$ is a Sylow 2 -subgroup of (5) and $\mathbf{N}_{\mathscr{E}}(\mathfrak{I})=\mathfrak{I}$. Application of [17; Lemma, p. 169] yields that no two different elements of $\mathbf{Z}(\mathfrak{T})$ are conjugate in (J).

Assume $p \sim t$ in (§). Then there exists and $x \in \bar{\S}$ such that $x^{-1} \pi x=\tau$ or $\mu \boldsymbol{\tau}$. We have $\left|\mathbf{C}(\boldsymbol{\tau}) \cap \mathbf{C}_{G}(\mu)\right|=\left|\mathbf{C}(\pi) \cap \mathbf{C}_{G}(\mu \lambda)\right|=32$ against $\mid \mathbf{C}(\pi) \cap$ $\mathbf{C}_{G}(\mu) \mid=64$. Hence $p \nsim t$ in (\$). Further, $p \nsim m, p \nsim l m, p \nsim z t, p \nsim z l t$ because $(\pi \xi)^{\nu}=\pi \tau \lambda \xi$ and therefore $(p z)^{n}=p t l z$ and $(z l t)^{m}=p t l z$. Certainly, one has $p^{n}=p t l$ and $p^{a}=p m z$. Whether $p \sim z l m$ in (f) or not has not been decided so far.

Application of $[17$; Theorem 5, p. 170] yields that the transfer of $\mathbb{5}$ into \mathfrak{T}
is isomorphic to $\mathfrak{I} /\langle p, l t, z m\rangle$ if $p \nsim z l m$ in \mathfrak{S}, or to $\mathfrak{I} /\langle p, t, l, z m\rangle$ if $p \sim z l m$ in (5 .

Assume by way of contradiction that $\$ 5$ has no normal subgroup of index 4. Then (5) has a normal subgroup \mathfrak{M} with $[\mathscr{B}: \mathfrak{M}]=2$. Since $\mathscr{F}^{\prime} \subseteq \mathfrak{M}$ we get $\mathfrak{T}^{\prime} \subseteq \mathfrak{M}$ and so $\langle p, t, l, z m\rangle \subseteq \mathfrak{M}$. Since $p \sim z m \sim z m p \sim z l m \sim z l m p$ in (5) and $z \& \mathfrak{M}$ we get that these five elements are conjugate in \mathfrak{M}. We have

$$
\mathbf{C}_{\mathfrak{m}}(p)=\langle l\rangle \times\langle p, t\rangle\langle z m\rangle=\mathfrak{F}
$$

Because of $\mathfrak{F}^{\prime}=\langle p\rangle$ we get $\mathbf{N}_{\mathfrak{m}}(\mathfrak{F})=\mathfrak{F}$ and so l, p and $l p$ lie in three different conjugate classes of \mathfrak{M}. Consider

$$
\begin{aligned}
& \mathbf{C}_{\mathfrak{m}}(p) \cap \mathbf{C}(z m)=\mathbf{C}_{\mathfrak{m}}(p) \cap \mathbf{C}(z p m)=\mathbf{C}_{\mathfrak{m}}(p) \cap \mathbf{C}(z l m) \\
&= \mathbf{C}_{\mathfrak{m}}(p) \cap \mathbf{C}(z p l m)=\langle l\rangle \times\langle p, z m\rangle=\mathfrak{F}_{1}
\end{aligned}
$$

\mathfrak{F}_{1} is an elementary abelian group of order 8 and is normalized by Sylow 2-subgroups of \mathfrak{M} the commutator groups of which are $\langle p\rangle,\langle z m\rangle,\langle z p m\rangle,\langle z l m\rangle$, $\langle z l p m\rangle$. It follows $\left[\mathbf{N}_{\mathfrak{m}}\left(\mathfrak{F}_{1}\right): \mathfrak{F}\right] \geq 5$ and so 7 must divide $\left|\mathbf{N}_{\mathfrak{m}}\left(\mathfrak{F}_{1}\right) / \mathfrak{F}_{1}\right|$ from which would follow that all involutions of \mathfrak{F}_{1} are conjugate against $p \nsim l$ in \mathfrak{M}. We have shown that $\mathbb{S H}$ has a normal subgroup \mathfrak{M} of index 4 and that $p \nsim z l m$ in (5).

We prove next that (5) has no non-trival normal subgroup of odd order. We have

$$
|\mathbf{C}(\pi) \cap \bar{\S}|=64,|\mathbf{C}(\tau) \cap \bar{\circlearrowleft}|=32
$$

and

$$
|\mathbf{C}(\pi \boldsymbol{\pi}) \cap \bar{Ð}|=|\mathbf{C}(\boldsymbol{\pi}) \cap \mathbf{C}(\lambda)|=32
$$

Using [15; p. 146], we get from the action of $\langle\pi, \tau\rangle$ on $\mathbf{O}(\mathbb{\text { (FI}})$ that $\mathbf{O}(\mathbb{5})$ is trivial. It follows from [17; Theorem 4, p. 169] that 0 (ङ) $=1$.

The 2 -group $\langle p, l t, z m\rangle$ is dihedral of order 8 and is a Sylow 2 -subgroup of \mathfrak{M}. Further, $\mathbf{C}_{\mathfrak{M}}(p)=\langle p, l t, z m\rangle, \mathbf{O}(\mathfrak{M})=1$ and $\langle n, a\rangle \subseteq \mathfrak{M}$. Assume that \mathfrak{M} has a subgroup of index 2. If \mathfrak{N} is the intersection of all subgroups of index 2 of \mathfrak{M}, then $2 \leq[\mathfrak{M}: \mathfrak{R}] \leq 4$, and so $\langle p\rangle$ and $\langle p, l t, z m\rangle \subseteq \mathfrak{N}$ which is not possible. Hence \mathfrak{M} does not possess subgroups of index 2 . We are in the situation to apply [6; Theorem 1, p. 553] and get that $\mathfrak{M} \cong A_{6}$ or $\mathfrak{M} \cong P S L(2,7)$.

Denote by $\overline{\mathfrak{M}}$ the counter image of \mathfrak{M} in $\overline{\mathfrak{G}}$. A Sylow 2-subgroup of $\overline{\mathfrak{M}}$ is $\langle\mu\rangle \times\langle\pi \mu, \tau \lambda\rangle\left\langle\mu^{\prime} \xi\right\rangle$. From a result in [3] we get $\overline{\mathfrak{M}}=\langle\mu\rangle \times A$ where A is isomorphic to A_{6} or $P S L(2,7)$. Since A char \bar{M} we get $A \triangleleft \bar{G}$. Clearly, $\left\langle\nu, \alpha^{\tau^{\prime}}\right\rangle \subseteq A$, and since $\langle\pi \mu, \tau \lambda\rangle\langle\nu\rangle$ is isomorphic to A_{4}, also $\langle\pi \mu, \tau \lambda\rangle\langle\nu\rangle \subseteq A$. Because of $(\pi \mu)^{\tau^{\prime} \alpha \tau^{\prime}}=\pi \mu \mu^{\prime} \xi$, it follows $\mu^{\prime} \xi \in A$. Hence $\langle\pi \mu, \tau \lambda\rangle\left\langle\mu^{\prime} \xi\right\rangle$ is a Sylow 2-subgroup of A.

We shall consider now $A\left\langle\mu^{\prime}\right\rangle=X$. Assume that $\mathbf{C}_{x}(A)=\left\langle y \mu^{\prime}\right\rangle$ is of order 2 for some $y \in A$. Then $\left[y, \mu^{\prime}\right]=[y, \pi \mu]=1$ and $\nu^{-1}=y^{-1} \nu y$. Since $\left(y \mu^{\prime}\right)^{2}=1$ we have $y^{2}=1$. Since

$$
\mathbf{C}_{A}(\pi \mu)=\langle\pi \mu, \tau \lambda\rangle\left\langle\mu^{\prime} \xi\right\rangle \quad \text { and } \quad\langle\pi \mu, \tau \lambda\rangle\langle\nu\rangle\left\langle\mu^{\prime} \xi\right\rangle \cong S_{4}
$$

we obtain $y=\mu^{\prime} \xi$. We must have $\left[y \mu^{\prime}, \tau^{\prime} \alpha \tau^{\prime}\right]=\left[\xi, \tau^{\prime} \alpha \tau^{\prime}\right]=1$. Consequently,

$$
1=\xi \tau^{\prime} \alpha^{-1} \tau^{\prime} \xi \tau^{\prime} \alpha \tau^{\prime}=\xi \tau^{\prime} \alpha^{-1} \mu^{\prime} \xi \alpha \tau^{\prime}=\xi \tau^{\prime}\left(\alpha^{-1} \mu^{\prime} \alpha\right) \mu \tau^{\prime}
$$

and so

$$
\alpha^{-1} \mu^{\prime} \alpha=\tau^{\prime} \xi \tau^{\prime} \mu=\mu^{\prime} \xi \mu \sim \pi
$$

which is not possible. It follows that $\mathbf{C}_{\boldsymbol{x}}(A)=1$ and $A\left\langle\mu^{\prime}\right\rangle$ is isomorphic to an automorphism group of A. Since a Sylow 2-subgroup of $A\left\langle\mu^{\prime}\right\rangle$ has no elements of order 8 , we get $A \cong A_{6}$ and $A\left\langle\mu^{\prime}\right\rangle \cong S_{6}$.

We have $|\bar{G}|=8 \cdot|A|$, and $\overline{\mathbb{G}} / \mathrm{C}_{\bar{\Theta}}(A) \cong S_{6}$ since $\overline{\text { G }}$ has no elements of order 8. It follows that $\left|\mathbf{C}_{\bar{\Theta}}(A)\right|=4$. Obviously, $A \cap \mathbf{C}_{\bar{\Phi}}(A)=1$. Since $\bar{\Phi} / A$ is dihedral of order 8 , we have to discuss the following three cases:
(1) $A \mathbf{C}_{\bar{\oplus}}(A)=A\left\langle\mu, \mu^{\prime}\right\rangle$,
(2) $A \mathbf{C}_{\bar{\oplus}}(A)=A\left\langle\mu^{\prime} \lambda\right\rangle$,
(3) $A \mathbf{C}_{\bar{\oplus}}(A)=A\langle\mu, \lambda\rangle$.

The case (1) cannot happen, since then $A \mathbf{C}_{\Phi}(A)=\langle\mu\rangle \times A\left\langle\mu^{\prime}\right\rangle$ against $\left|\mathbf{C}_{\bar{\Theta}}(A)\right|=4$. Assume that we are in the case (2). Then $\mathbf{C}_{\bar{\Theta}}(A)=\left\langle y \mu^{\prime} \lambda\right\rangle$ would be of order 4 for some $y \in A$. We have

$$
\left[y, \mu^{\prime} \lambda\right]=[y, \pi \mu]=\left[y \mu^{\prime}, \nu\right]=1 \quad \text { and } \quad\left(y \mu^{\prime} \lambda\right)^{2}=y^{2} \mu \in \mathbf{C}(A)
$$

and so $y^{2} \in \mathbf{C}(A) \cap A=1$. It follows that $y=\mu^{\prime} \xi$. Hence $\mathbf{C}_{\bar{\oplus}}(A)=\langle\xi \lambda\rangle$. Therefore $\left[\xi \lambda, \tau^{\prime} \alpha \tau^{\prime}\right]=1$ which means

$$
\tau^{\prime} \alpha^{-1} \tau^{\prime}(\xi \lambda) \tau^{\prime} \alpha \tau^{\prime}=\tau^{\prime} \alpha^{-1}\left(\mu^{\prime} \xi \tau \lambda\right) \alpha \tau^{\prime}=\tau^{\prime}\left(\alpha^{-1} \mu^{\prime} \alpha\right) \mu \tau \lambda \tau^{\prime}=\xi \lambda
$$

and therefore

$$
\alpha^{-1} \mu^{\prime} \alpha=\tau^{\prime} \xi \lambda \tau^{\prime} \lambda \tau \mu=\mu^{\prime} \xi \tau \lambda \lambda \tau \mu=\mu \mu^{\prime} \xi \sim \pi
$$

yields a contradiction.
We are necessarily in case (3). Since $\mu \epsilon \mathbf{C}_{\bar{\Phi}}(A)$ we get $A \mu \cap \mathbf{C}(A)=\mu$ and hence $A \lambda \cap \mathbf{C}_{\bar{\Theta}}(A) \neq \emptyset$ since $\left|\mathbf{C}_{\bar{\Theta}}(A)\right|=4$. There exists $y \in A$ such that $y \lambda \in \mathbf{C}(A)$. It follows that $[y, \lambda]=[y, \nu]=[y, \pi \mu]=1$. Because of

$$
\mathbf{C}_{A}(\pi \mu)=\left\langle\pi \mu, \tau \lambda, \mu^{\prime} \xi\right\rangle \quad \text { and }\langle\pi \mu, \tau \lambda\rangle\langle\nu\rangle\left\langle\mu^{\prime} \xi\right\rangle \cong S_{4}
$$

it follows that $y=1$. Hence $\mathbf{C}_{\bar{\circlearrowleft}}(A)=\langle\mu, \lambda\rangle$. The lemma is proved.

5. The identification of G with A_{10}

(5.1) Lemma. $[u, \nu]=1$ and $u \nu$ is of order 3. $\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle$ normalizes $\langle u, \nu\rangle$.

Proof. Denote by R a Sylow 3 -subgroup of $\mathbf{N}_{G}(S)$ which contains u. We know that R is elementary abelian of order 9 , and that $S R \triangleleft \mathbf{N}_{G}(S)$. Consider $S R\left\langle\tau^{\prime}, \mu^{\prime}\right\rangle=X$ and compute $\mathbf{C}_{X}(u)$. It is $\mathbf{C}_{X}(u)=R\left(S\left\langle\tau^{\prime}, \mu^{\prime}\right\rangle\right.$ n $\mathbf{C}(u))=R\left\langle\tau^{\prime}\right\rangle$. Further, $R \triangleleft R\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle$. The element ν possesses precisely four conjugates in $R S$ under $R S$. These are $\nu, \nu^{\pi}, \nu^{\tau}, \nu^{\pi \tau}$. Hence $\nu^{x} \in R$, for some x in $\{1, \pi, \tau, \pi \tau\}$. If $x=\tau$, then ν^{τ} and $\mu^{\prime} \nu^{\tau} \mu^{\prime}$ lie in R and hence [$\left.\nu^{\tau}, \mu^{\prime} \nu^{\tau} \mu^{\prime}\right]=1$ which is not possible. Therefore $x \neq \tau$. Similarly, one proves
that $x \neq \pi \tau$. It follows that $x=1$ or $x=\pi$. Interchanging ν and ν^{π} if necessary, we may and shall assume $[u, \nu]=1$.
(5.2) Lemma. The element $u \nu$ of order 3 centralizes A. Further,

$$
\mathbf{N}_{G}(\langle\mu, \lambda\rangle)=(\langle\mu, \lambda\rangle \times A)\left\langle u, \mu^{\prime}\right\rangle
$$

Proof. Clearly,

$$
u \nu \in \mathbf{N}_{G}(\langle\mu, \lambda\rangle), \quad \mathbf{C}_{\theta}(\langle\mu, \lambda\rangle)=\langle\mu, \lambda\rangle \times A
$$

It follows that $u \nu$ normalizes A. The automorphism group of A is an extension of A by a four-group. Hence $u \nu$ induces an inner automorphism on A. We have $[\pi \mu, u \nu]=1$ and since $\mathbf{C}_{A}(\pi \mu)=\left\langle\pi \mu, \tau \lambda, \mu^{\prime} \xi\right\rangle$, it follows that $(u \nu)^{4}$ induces the identity automorphism on A. Because $u \nu$ is of order 3 , we obtain $[u \nu, A]=1$.
(5.3) Lemma. Denote by ω an element of order 5 in $A\left\langle\mu^{\prime}\right\rangle . \mathbf{C}_{G}(\omega)$ is equal to $(\langle\mu, \lambda\rangle\langle u \nu\rangle) \times\langle\omega\rangle$ or $L \times\langle\omega\rangle$ where $L \cong A_{5}$.

Proof. There is only one conjugate class of elements of order 5 in $\mathbf{C}_{G}(\mu)$. We have $\mathbf{C}_{G}(\omega) \cap \mathbf{C}_{G}(\mu)=\langle\mu, \lambda\rangle \times\langle\omega\rangle$. Let U be a Sylow 2 -subgroup of $\mathbf{C}_{G}(\omega)$ containgin $\langle\mu, \lambda\rangle$. Assume $\langle\mu, \lambda\rangle \subset U$. If $\mathbf{Z}(U) \nsubseteq\langle\mu, \lambda\rangle$, then 2^{3} divides $\left|\mathbf{C}_{G}(\omega) \cap \mathbf{C}_{G}(\mu)\right|$ which is not the case. Hence $\mathbf{Z}(U) \subseteq\langle\mu, \lambda\rangle$ and μ, λ or $\mu \lambda$ is contained in $\mathbf{Z}(U)$. But then $\left|\mathbf{C}_{G}(\omega) \cap \mathbf{C}_{G}(x)\right|$ is divisible by 2^{3} where $x \in\{\mu, \mu \lambda, \lambda\}$. However, in G we have $\mu \sim \lambda \sim \mu \lambda$, and so, $\mathbf{C}_{G}(x) \cap$ $\mathbf{C}_{G}(\omega)$ is conjugate to $\mathbf{C}_{G}(\mu) \cap \mathbf{C}_{G}(\omega)$ in G against $2^{3} \times\left|\mathbf{C}_{G}(\omega) \cap \mathbf{C}_{G}(\mu)\right|$. We have proved that $U=\langle\mu, \lambda\rangle$. Put $K=\mathbf{0}\left(\mathbf{C}_{G}(\omega)\right)$. It follows from [15; p. 146] that

$$
|K| \cdot\left|\mathbf{C}_{K}(\langle\mu, \lambda\rangle)\right|^{2}=\left|\mathbf{C}_{K}(\mu)\right| \cdot\left|\mathbf{C}_{K}(\lambda)\right| \cdot\left|\mathbf{C}_{K}(\mu \lambda)\right|=5^{3}
$$

Therefore $|K|=5$ and $K=\langle\omega\rangle$. It follows from (5.2) that $u \nu \in \mathbf{C}_{G}(\omega)$. Hence all involutions of $\mathbf{C}_{G}(\omega)$ are conjugate under $\mathbf{C}_{G}(\omega)$. Application of [12; Main Theorem, p. 191] yields the lemma.
(5.4) Lemma. $\quad \mathbf{C}_{G}(u \nu)=\langle u \nu\rangle \times W$ where $W \cong A_{7}$ and $A \subset W$.

Proof. It is $\mu^{\tau^{\prime}}=\pi \mu$. Hence

$$
\mathbf{C}_{G}(\pi \mu)=(\langle\pi \mu, \tau \lambda\rangle \times \tilde{A})\left\langle\mu^{\prime}\right\rangle
$$

and

$$
\langle u v, \alpha, \mu, \lambda, \xi\rangle \subseteq \tilde{A}
$$

We know that $\tilde{A} \cong A_{6}$. There exists an element β in \tilde{A} such that $\left(\beta \mu^{\prime}\right)^{2}=1$ and $\left[\beta \mu^{\prime}, u \nu\right]=1$. Put

$$
Y=\mathbf{C}_{G}(\pi \mu) \cap \mathbf{C}_{G}(u \nu)
$$

The group $T=\langle\pi \mu, \tau \lambda\rangle\left\langle\beta \mu^{\prime}\right\rangle$ is dihedral of order 8 and a Sylow 2-subgroup of Y. The structure of $\widetilde{A}\left\langle\mu^{\prime}\right\rangle$ yields $|Y|=2^{3} 3^{2}$. Let U be a Sylow 2 -subgroup of $\mathbf{C}_{\sigma}(u \nu)$ which contains T. Suppose $T \subset U$. If $Z(U) \nsubseteq T$, then 2^{4}
divides $|Y|$ which cannot happen. If $\mathbf{Z}(U) \subseteq T$, then $\mathbf{Z}(U)=\langle\pi \mu\rangle$ and again we get a contradiction to $|Y|$. Hence $T=U$.

Put $K=\mathbf{0}\left(\mathbf{C}_{G}(u \nu)\right)$. We have

$$
|K| \cdot\left|\mathbf{C}_{K}(\langle\pi \mu, \tau \lambda\rangle)\right|^{2}=\left|\mathbf{C}_{K}(\pi \mu)\right| \cdot\left|\mathbf{C}_{K}(\tau \lambda)\right| \cdot\left|\mathbf{C}_{K}(\pi \mu \tau \lambda)\right|
$$

Since $\mathbf{C}_{G}(\mu)$ does not contain subgroups of order divisible by $3 \cdot 5$, we obtain' that K is a 3 -group with $3 \leq|K| \leq 81$. We know that $A \subseteq \mathbf{C}_{\theta}(u \nu)^{\cdot}$ Hence ω induces an automorphism on $K /\langle u \nu\rangle$. Since a 3 -group of order at most 27 does not have an automorphism of order 5 which follows from [7; Theorem 12.2.2, p. 178], we know that ω stabilizes the chain $K \supseteq\langle u \nu\rangle \supset\langle 1\rangle$. It is a consequence of $[9 ;$ Lemma $7, \mathrm{p} .6]$ that ω centralizes K. Application of (5.3) yields $K=\langle u \nu\rangle$ is of order 3.

We shall now apply [6; Theorem 1, p. 553]. If $\mathbf{C}_{G}(u \nu)=B$ has a normal subgroup of index 4 , then B would have a normal 2 -complement against $\omega \in B$ and $\mathbf{0}(B)=\langle u \nu\rangle$. Put $B /\langle u \nu\rangle=\mathfrak{B}$ and $\langle u \nu\rangle A /\langle u \nu\rangle=\mathfrak{N}$. Assume that \mathfrak{B} has a subgroup \mathfrak{U} of index 2 . Clearly, $\mathfrak{A} \nsubseteq \mathfrak{U}$ since 8 does not divide $|\mathfrak{U}|$. Hence $\mathfrak{U} \mathfrak{U}=\mathfrak{B}$ and $\mathfrak{U} \cap \mathfrak{A} \triangleleft \mathfrak{A}$. If $\mathfrak{U} \cap \mathfrak{H}=1$, then $\mathfrak{B} / \mathfrak{U} \cong \mathfrak{Y u} / \mathfrak{U}$ $\cong \mathfrak{U} / \mathfrak{U} \cap \mathfrak{H}=\mathfrak{N}$ yields a contradiction. If $\mathfrak{U} \cap \mathfrak{U}=\mathfrak{N}$, then $\mathfrak{H} \subseteq \mathfrak{U}$ which we had ruled out. Hence \mathfrak{B} does not have subgroups of index 2 . It follows that \mathfrak{B} is isomorphic to $\operatorname{PSL}(2, q), q$ odd, or \mathfrak{B} is isomorphic to A_{7}. In any case, \mathfrak{B} is a simple group. In the epimorphism $B \rightarrow \mathfrak{B}$ put $b \rightarrow \bar{b}$ for an element $b \in B$. We have

$$
\left|\mathbf{C}_{\mathfrak{B}}(\bar{\pi} \bar{\mu})\right|=2^{3} 3 \text { and } \mathbf{C}_{\mathfrak{B}}(\bar{\pi} \bar{\mu})=(\langle\bar{\pi} \bar{\mu}, \bar{\tau} \bar{\lambda}\rangle \times\langle\bar{x}\rangle)\left\langle\bar{\beta} \bar{\mu}^{\prime}\right\rangle
$$

where $\bar{x}^{3}=1$ for an $x \in A$ and $\left\langle\bar{x}, \bar{\beta} \bar{\mu}^{\prime}\right\rangle \cong S_{3}$ since in $\widetilde{A}\left\langle\mu^{\prime}\right\rangle$ a group of order 9 is not centralized by an involution. It follows that $\mathbf{C}_{\mathfrak{B}}(\bar{\pi} \bar{\mu})=\mathbf{C}_{A_{7}}((12)(34))$ and so by the result of [13] we must have $\mathfrak{B} \cong A_{7}$. Since $\langle u \nu\rangle \times A \subseteq \mathbf{C}(u \nu)$ we get from a result in [3] that $\mathbf{C}_{G}(u \nu)=\langle u \nu\rangle \times W$, where $W \cong A_{7}$. Since A has no subgroup of index 3 , it follows $A \subset W$. The proof is complete.
(5.5) Lemma. $\quad \mathbf{N}_{G}(\langle u \nu\rangle)=(\langle u \nu\rangle \times W)\left\langle\mu^{\prime}\right\rangle$ and $W\left\langle\mu^{\prime}\right\rangle \cong S_{7}$.

Proof. Put $W\left\langle\mu^{\prime}\right\rangle=X$. Suppose $\mathbf{C}_{X}(W)=\left\langle w \mu^{\prime}\right\rangle$ is of order 2 for some $w \in W$. Then $\left[w \mu^{\prime}, W\right]=1$ but no involution of G centralizes a group isomorphic to A_{7}. Hence $W\left\langle\mu^{\prime}\right\rangle$ is an automorphism group of W and so

$$
W\left\langle\mu^{\prime}\right\rangle \cong S_{7}
$$

(5.6) Lemma. $\quad \mathbf{N}_{\theta}(\langle u \nu\rangle) \cap \mathbf{C}_{G}(\mu)=A\left\langle\mu^{\prime}\right\rangle$.

Proof. We have
$\mathbf{N}_{G}(\langle u \nu\rangle) \cap \mathbf{C}_{G}(\mu)=\left\langle\mu^{\prime}\right\rangle\left((\langle u \nu\rangle \times W) \cap \mathbf{C}_{G}(\mu)\right)=\left\langle\mu^{\prime}\right\rangle(W \cap \mathbf{C}(\mu))=\left\langle\mu^{\prime}\right\rangle A$.
(5.7) Lemma. In G we have $u \nu \sim \nu, u \sim \rho$ and $\nu \nsim u$.

Proof. Since $\left[u, \tau^{\prime}\right]=1$ and $\tau^{\prime} \sim \pi$ in G and since all elements of order 3 in H are conjugate in H, we conclude that $\rho \sim u$ in G. We have [$\pi \mu \mu^{\prime} \xi, \rho$] $=1$ and $\pi \mu \mu^{\prime} \xi \sim \mu$ in G. There is a Sylow 2-subgroup J of $\mathbf{C}_{G}\left(\pi \mu \mu^{\prime} \xi\right) \boldsymbol{n}$
$\mathbf{C}_{G}(\rho)$ which is dihedral of order 8 and contains $\left\langle\pi, \pi \mu \mu^{\prime} \xi\right\rangle$. It follows that J is a Sylow 2-subgroup of $\mathbf{C}_{G}(\rho)$. If we had $\rho \sim u \nu$ in G, then J and

$$
\left\langle\pi \mu, \tau \lambda, \mu^{\prime} \xi\right\rangle
$$

would be conjugate in G against $\left\langle\pi \mu, \tau \lambda, \mu^{\prime} \xi\right\rangle \subseteq A$. Hence $\rho \nsim u \nu$ in G. Since $\langle\mu, \lambda, \xi\rangle$ centralizes ν, we get $\nu \nsim \rho$ in G. Since $\mathbf{C}_{G}(\mu)$ has precisely two classes of elements of order 3, it follows $u \nu \sim \nu$ in G.
(5.8) Lemma. We have $\xi u \nu \xi=u^{-1} \nu^{-1}, \xi u \xi=u^{-1} \nu$ and $\nu^{\tau^{\prime}}=u^{-1} \nu^{-1}$.

Proof. The element $u \nu$ centralizes A and $\mu^{\prime} \xi \in A$. We get $\mu^{\prime} \xi u \nu \xi u^{\prime}=u \nu$ and so $\xi u \nu \xi=u^{-1} \nu^{-1}$ and $\xi u \xi=u^{-1} \nu$. To complete the proof, one represents $\left\langle\mu^{\prime}, \tau^{\prime}\right\rangle\langle\xi\rangle$ on $\langle u, \nu\rangle$ and uses (4.1) and (4.2).
(5.9) Lemma. The elements α and ν of order 3 commute.

Proof. From (5.8) we conclude that $\mathbf{C}_{G}(u \nu)$ is mapped onto $\mathbf{C}_{G}(\nu)$ under τ^{\prime}. Since $\alpha^{\tau^{\prime}} \epsilon W$, we get $[\nu, \alpha]=1$.
(5.10) Lemma. The involutions $\mu^{\prime}, \nu \mu^{\prime}, \pi \mu \mu^{\prime}$ and ξ are conjugate in $W\left\langle\mu^{\prime}\right\rangle$ and are transpositions. The involution $\pi \mu \xi$ is a product of three transpositions.

Proof. We have $\left(\pi \mu \mu^{\prime}\right)^{\tau \lambda}=\mu^{\prime}$ and $\langle\pi \mu, \tau \lambda\rangle\langle\nu\rangle\left\langle\mu^{\prime}\right\rangle \cong S_{4}$. Hence $\nu \mu^{\prime} \sim \mu^{\prime}$ in $W\left\langle\mu^{\prime}\right\rangle$. The element α of order 3 normalizes $L_{2},\langle\pi, \mu, \xi\rangle$ and $L_{2}\left\langle\mu^{\prime}\right\rangle=$ $\mathbf{C}_{G}(\langle\pi, \mu, \xi\rangle)$. Using the fact that $[\nu, \alpha]=1$ one verifies that

$$
\left(\mu^{\prime}\right)^{\alpha} \epsilon\left\{\mu^{\prime}, \mu \mu^{\prime}, \xi \mu^{\prime}, \mu \mu^{\prime} \xi\right\}
$$

Since $\pi \sim \mu \mu^{\prime} \xi$, we get

$$
\left(\mu^{\prime}\right)^{\alpha} \epsilon\left\{\mu^{\prime}, \mu \mu^{\prime}, \xi \mu^{\prime}\right\}
$$

If $\left(\mu^{\prime}\right)^{\prime \alpha}=\mu^{\prime}$, then $\left(\mu \mu^{\prime}\right)^{\alpha}=\mu \xi \mu^{\prime} \sim \pi$ yields a contradiction. Also $\left(\mu^{\prime}\right)^{\alpha}=\xi \mu^{\prime}$ is not possible since then $\left(\xi \mu^{\prime}\right)^{\alpha}=\mu \xi \mu^{\prime} \sim \pi$ which is not possible. We must have $\left(\mu^{\prime}\right)^{\alpha}=\mu \mu^{\prime}$ and so $\left(\mu \mu^{\prime}\right)^{\alpha}=\xi \mu^{\prime}$. Hence $\mu^{\prime} \sim \mu \mu^{\prime} \sim \xi \mu^{\prime}$ in $\left(W\left\langle\mu^{\prime}\right\rangle\right)^{r^{\prime}}$ since $\left\langle\alpha, \mu^{\prime}\right\rangle \subseteq\left(W\left\langle\mu^{\prime}\right\rangle\right)^{\tau^{\prime}}$. Therefore $\mu^{\prime} \sim \pi \mu \mu^{\prime} \sim \xi$ in $W\left\langle\mu^{\prime}\right\rangle$. Now, either μ^{\prime} or $\pi \mu \xi$ is a transposition in $W\left\langle\mu^{\prime}\right\rangle$. Since $\pi \sim \pi \mu \xi$ in G and 5 does not divide $|H|$ we get that μ^{\prime} is a transposition and $\pi \mu \xi$ is a product of three transpositions.
(5.11) Lemma. The group G contains a subgroup Q isomorphic to A_{10}.

Proof. From [2; Section 161] follows that S_{7} contains precisely one conjugate class of subgroups isomorphic to S_{6}. By S_{6} we denote the symmetric group on the set $\{1,2,3,4,5,6\}$. There exists an isomorphism φ of $W\left\langle\mu^{\prime}\right\rangle$ onto S_{7} which maps $A\left\langle\mu^{\prime}\right\rangle$ onto $S_{6} . \quad\left\{\mu^{\prime}, \nu \mu^{\prime}, \pi \mu \mu^{\prime}, \xi\right\}$ is a set of transpositions in $A\left\langle\mu^{\prime}\right\rangle \backslash A$. Using φ, we can find a transposition $\sigma \epsilon W\left\langle\mu^{\prime}\right\rangle \backslash\left(W \cup A\left\langle\mu^{\prime}\right\rangle\right)$ such that the order of $\sigma \mu^{\prime}$ is 3 and $\left[\sigma, \nu \mu^{\prime}\right]=\left[\sigma, \pi \mu \mu^{\prime}\right]=[\sigma, \xi]=1$. Also, we can find a transposition δ in $A\left\langle\mu^{\prime}\right\rangle \backslash A$ such that $[\sigma, \delta]=\left[\mu^{\prime}, \delta\right]=\left[\nu \mu^{\prime}, \delta\right]=1$, $\left(\pi \mu \mu^{\prime} \delta\right)^{3}=(\delta \xi)^{3}=1$. Clearly, both σ and δ invert $\mu \nu$ and $[\mu . \delta]=1$.

We have $\langle\sigma, \mu\rangle \subseteq \mathbf{C}_{G}\left(\nu \mu^{\prime}\right) \cap \mathbf{C}\left(\pi \mu \mu^{\prime}\right) \cap \mathbf{C}(\xi)=X$. The group X is trans-
formed by $\pi \mu \tau \lambda$ onto $\mathbf{C}_{G}(\nu) \cap \mathbf{C}\left(\mu^{\prime}\right) \cap \mathbf{C}(\xi)=\bar{X}$ since

$$
\mathbf{C}\left(\nu \mu^{\prime}\right) \cap \mathbf{C}\left(\pi \mu \mu^{\prime}\right)=\mathbf{C}(\nu \pi \mu) \cap \mathbf{C}\left(\pi \mu \mu^{\prime}\right)
$$

Obviously,

$$
\mathbf{C}\left(\mu^{\prime}\right) \cap \mathbf{C}(\xi)=\mathbf{C}\left(\mu^{\prime} \xi\right) \cap \mathbf{C}\left(\mu^{\prime}\right)
$$

The elements μ^{\prime} and $\mu^{\prime} \xi$ are transpositions of $W^{\tau^{\prime}}\left\langle\mu^{\prime}\right\rangle$ and $\left[\mu^{\prime}, \mu^{\prime} \xi\right]=1$. It follows that 3 divides the order of X. Since $\mathbf{C}_{G}(\nu) \cap \mathbf{C}\left(\mu^{\prime}\right) \cong S_{5}$ by (5.7), (5.8) and (5.10), we get $\bar{X}=\langle\xi\rangle \times\langle k\rangle\langle z\rangle$, where $k^{3}=z^{2}=1$ and $\langle k, z\rangle \cong S_{3}$ since $\xi \in Z(\bar{X})$. Since $[\mu, \alpha] \neq 1$, we get that the order of $\mu \sigma$ is either 3 or 6 . Denote by $\bar{\sigma}$ the element $\sigma^{\pi \mu \tau \lambda}$. Suppose that the order of $\mu \bar{\sigma}$ is 6 . Then $\langle\mu \bar{\sigma}\rangle \triangleleft \bar{X}$ and $(\mu \bar{\sigma})^{3}=\xi$. Since $\xi^{\pi \mu \tau \lambda}=\xi$ and $(\mu \alpha)^{3}=\xi$, it follows from $\left[\mu \sigma, \pi \mu \mu^{\prime} \delta\right]=1$ that also $\left[\xi, \pi \mu \mu^{\prime} \delta\right]=1$ and so $[\xi, \delta]=1$ against $1 \neq \delta \xi$ and $(\delta \xi)^{3}=1$. It follows that $\mu \sigma$ is of order 3.

Put $u \nu=M_{1}, \mu=M_{2}, \sigma=M_{3}, \mu^{\prime}=M_{4}, \nu \mu^{\prime}=M_{5}, \pi \mu \mu^{\prime}=M_{6}, \delta=M_{7}$ and $\xi=M_{8}$. For the M_{i} we have obtained the following relations:

$$
1=M_{1}^{3}=M_{i+1}^{2}=\left(M_{i} M_{i+1}\right)^{3}=\left(M_{i} M_{j}\right)^{2}
$$

where $i, j=1,2, \cdots, 8, j>i+1$.
It follows from [4; chapter XIII] that $\left\langle M_{1}, M_{2}, \cdots, M_{8}\right\rangle=Q \cong A_{10}$.
(5.12) Lemma. $G=Q$.

Proof. From (4.2) and the fact that Q contains precisely two classes of involutions, and because $\mathbf{C}_{G}(\mu)$ is isomorphic to $\mathbf{C}_{A_{10}}((12)(34))$, we obtain that Q contains the centralizer in G of each of its involutions. Assume that Q is properly contained in G. Since by (3.1) the group G is simple, we get $\bigcap_{g \epsilon G} Q^{g}=1$. Application of a lemma in [14] yields that the number of conjugate classes of involutions of G is one against (2.11). We have proved that $Q=G$ and so $G \cong A_{10}$. The proof of Theorem B is complete.

References

1. R. BaER, Classes of finite groups and their properties, Illinois J. Math., vol. 1 (1957), pp. 115-187.
2. W. Burnside, Theory of groups of finite order, 2nd edition, Dover, New York, 1955.
3. W. Gaschütz, Zur Erweiterungstheorie der endlichen Gruppen, J. Reine Angew. Math., vol. 190 (1952), pp. 93-107.
4. L. E. Dickson, Linear groups, with an exposition of the Galois field theory, Dover, New York, 1958.
5. G. Glauberman, Central elements in core-free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
6. D. Gorenstein and J. H. Walter, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., vol. 6 (1962), pp. 553-593.
7. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
8. D. Held, A Characterization of the alternating groups of degrees eight and nine, J. Algebra, vol. 7 (1967), pp. 218-237.
9. - , Gruppen beschränkt Engelscher Automorphismen, Math. Ann., vol. 162 (1965), pp. 1-8.
10. Z. Janko, A characterization of the Mathieu simple groups, I, J. Algebra, vol. 9 (1968), pp. 1-19.
11. D. E. Littlewood, The theory of group characters and matrix representations of groups, 2nd edition, Oxford University Press, Oxford, 1958.
12. M. Suzuki, On characterizations of linear groups, I, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 191-204.
13. - On finite groups containing an element of order four which commutes only with its powers, Illinois J. Math., vol. 3 (1959), pp. 255-271.
14. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.
15. H. Wielandt, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Zeitschr., vol. 73 (1960), pp. 146-158.
16. W. J. Wong, A characterization of the alternating group of degree eight, Proc. London Math. Soc. (3), vol. XIII (1963), pp. 359-383.
17. H. Zassenhaus, Gruppentheorie, 2nd edition, Vandenhoeck \& Ruprecht, Göttingen.

Monash University
Clayton, Victoria
Australia

[^0]: Received July 16, 1967.

