A CHARACTERIZATION OF SOME MULTIPLY TRANSITIVE PERMUTATION GROUPS, I

BY

DIETER HELD

The objective of this paper is to give a proof of the following result:

THEOREM A. Let G be a finite simple group which contains an involution t such that the following conditions are satisfied:

(I) The centralizer $\mathbf{C}_{G}(t)$ of t in G is a splitting extension of an elementary abelian normal 2-subgroup of order at most 16 by S_{4} , the symmetric group of degree four;

(II) the centre of a Sylow 2-subgroup of $C_{G}(t)$ is cyclic.

Then G is isomorphic to one of the following groups A_8 , A_9 , A_{10} or M_{22} . Here A_n denotes the alternating group of degree n, and M_{22} is the Mathieu simple group on 22 letters.

This result is a consequence of the following

THEOREM B. Let π_0 be an involution contained in the centre of a Sylow 2-subgroup of A_{10} . Denote by H_0 the centralizer of π_0 in A_{10} .

Let G be a finite group with the following two properties:

- (a) G has no subgroups of index 2, and
- (b) G possesses an involution π such that the centralizer $\mathbf{C}_{\mathbf{G}}(\pi)$ of π in G is isomorphic to H_0 .

Then G is isomorphic to A_{10} .

Remark. Let G be a group satisfying the assumptions of Theorem A. Then $C_G(t)$ contains an elementary abelian normal 2-subgroup M of order at most 16 such that $C_G(t)$ is a splitting extension of M by S_4 . Hence |M|is equal to 8 or 16. It is straightforward to check, that, if |M| = 8, then $C_G(t)$ is uniquely determined. Application of the result in [8] yields that Gis isomorphic to A_8 or A_9 if |M| = 8. However, if |M| = 16, there are precisely two possibilities for $C_G(t)$ as has been observed in [10]. One of these possibilities is that $C_G(t)$ is isomorphic to the centralizer H_1 of an involution of M_{22} , the other possibility is that $C_G(t)$ is isomorphic to the centralizer of an involution of A_{10} . The theorem in [10] states that if $C_G(t)$ is isomorphic to H_1 then G is isomorphic to M_{22} . Hence, in order to prove Theorem A, it suffices to prove Theorem B.

1. Some properties of H_0

The group H_0 is isomorphic to a group H generated by the elements π , μ ,

Received July 16, 1967.

 $\mu', \tau, \tau', \rho, \lambda, \xi$ subject to the following relations:

$$\begin{aligned} \pi^2 &= \mu^2 = {\mu'}^2 = \tau^2 = {\tau'}^2 = \rho^3 = \lambda^2 = \xi^2 = 1, \\ \pi\mu &= \mu\pi, \quad \pi\mu' = \mu'\pi, \quad \mu\mu' = \mu'\mu, \quad \tau\tau' = \tau'\tau, \\ \rho^{-1}\tau\rho &= \tau\tau', \quad \rho^{-1}\tau'\rho = \tau, \quad \tau\lambda = \lambda\tau, \quad \lambda\tau'\lambda = \tau\tau', \\ \lambda\rho\lambda &= \rho^{-1}, \quad \pi\tau = \tau\pi, \quad \tau'\pi = \pi\tau', \quad \rho\pi = \pi\rho, \quad \lambda\pi = \pi\lambda, \\ \tau\mu &= \mu\tau, \quad \tau'\mu\tau' = \pi\mu, \quad \rho^{-1}\mu\rho = \mu\mu', \quad \lambda\mu = \mu\lambda, \\ \tau\mu'\tau &= \pi\mu', \quad \tau'\mu' = \mu'\tau', \quad \rho^{-1}\mu'\rho = \mu, \quad \lambda\mu'\lambda = \mu\mu', \\ \pi\xi &= \xi\pi, \quad \mu\xi = \xi\mu, \quad \mu'\xi = \xi\mu', \quad \xi\tau\xi = \mu\tau, \\ \xi\tau'\xi &= \tau'\mu', \quad \xi\lambda\xi = \mu\lambda, \quad \xi\rho\xi = \rho\mu. \end{aligned}$$

We put

$$\begin{split} D &= \langle \pi, \, \mu, \, \mu', \, \tau, \, \tau', \, \lambda, \, \xi \rangle, \qquad M &= \langle \pi, \, \mu, \, \mu', \, \xi \rangle, \qquad S &= \langle \pi, \, \mu, \, \tau, \, \lambda \rangle, \\ L_1 &= \langle \pi, \, \mu, \, \lambda, \, \mu' \xi \rangle \quad \text{and} \quad L_2 &= \langle \pi, \, \mu, \, \tau \lambda, \, \xi \rangle. \end{split}$$

M, *S*, *L*₁ and *L*₂ are the only elementary abelian subgroups of *D* of order 16. The groups *M*, *S*, *L*₁ and *L*₂ are all contained in $S\langle\mu', \xi\rangle$ which is equal to $\mathbf{C}_{\mathbf{H}}(\mu)$ and $S\langle\mu', \xi\rangle$ is the only maximal subgroup of *D* with centre of order 4. The centres of all other maximal subgroups of *D* are equal to $\langle\pi\rangle$. We have that the elementary abelian subgroups of *D* of order 16 are self-centralizing in H. Further, $\mathbf{N}_{\mathbf{H}}(M) = H$, $\mathbf{N}_{\mathbf{H}}(S) = D$, $\mathbf{N}_{\mathbf{H}}(L_1) = S\langle\mu', \xi\rangle$, $\mathbf{N}_{\mathbf{H}}(L_2) = S\langle\mu', \xi\rangle$ and $L_1^{\tau'} = L_2$.

The group H is a semi-direct product of its normal subgroup M and its subgroup $\langle \tau, \tau' \rangle \langle \rho \rangle \langle \lambda \rangle$ which is isomorphic to S_4 . There are eight classes of conjugate involutions of H with the representatives π , μ , τ , λ , $\pi\lambda$, ξ , $\pi\xi$ and $\tau\lambda\xi$. The orders of the centralizers of these involutions in H are 2^73 , 2^6 , 2^5 , 2^5 , 2^5 , 2^{53} , 2^{53} , 2^4 , respectively.

The groups M, S, and L_2 split into D-conjugate classes in the following way:

$$M\!:=\!1\,;\,\pi\,;\,\mu,\,\pi\mu\,;\,\mu',\,\pi\mu',\,\mu\mu',\,\pi\mu\mu'\,;\,\xi,\,\mu'\xi,\,\mu\xi,\,\pi\mu\mu'\xi\,;\,\pi\xi,\,\pi\mu'\xi,\,\pi\mu\xi,\,\mu\mu'\xi.$$

S: 1; π ; μ , $\pi\mu$; τ , $\pi\tau$, $\mu\tau$, $\pi\mu\tau$; λ , $\mu\lambda$, $\tau\lambda$, $\pi\mu\tau\lambda$; $\pi\lambda$, $\pi\mu\lambda$, $\pi\tau\lambda$, $\mu\tau\lambda$.

 $L_2: \quad 1; \pi; \mu, \pi\mu; \tau\lambda, \pi\mu\tau\lambda; \pi\tau\lambda, \mu\tau\lambda; \xi, \mu\xi; \pi\xi, \pi\mu\xi; \tau\lambda\xi, \pi\mu\tau\lambda\xi, \mu\tau\lambda\xi, \pi\tau\lambda\xi.$

The main problem in this paper is the fusion of the conjugate classes of involutions. Some properties of the alternating groups of low degree are needed for our proof; the character tables of [11] seem to be of some help.

In the whole paper, G denotes a group with properties (a) and (b) of the theorem. Thus we assume that H is embedded in G and that $\mathbf{C}_G(\pi) = H$. The notation $x \sim y$ means that x is conjugate to y. All other notation is standard.

2. Conjugacy classes of involutions of G

(2.1) LEMMA. The involution π is contained in the centre of a Sylow 2-subgroup of G.

Proof. Let R be a Sylow 2-subgroup of G containing D. Then $H \cap R = D$. We have $\pi \in D \subseteq R$, and if $y \in \mathbb{Z}(R)$, then $[y, \pi] = 1$. It follows $y \in R \cap = D$. Hence $\mathbb{Z}(R) \subseteq \mathbb{Z}(D) = \langle \pi \rangle$ and so $\mathbb{Z}(R) = \langle \pi \rangle$.

(2.2) LEMMA. Each involution of G is conjugate to an involution of S.

Proof. Put $\bar{H} = \langle \pi, \mu, \mu', \tau, \tau', \rho, \lambda \rangle$ and $\bar{D} = S \langle \mu', \tau' \rangle$. It is a consequence of [16; p. 361] that every conjugacy class of involutions of \bar{H} intersects S non-trivially. Application of a lemma in [14] yields that each involution of G is conjugate to some involution in \bar{D} .

(2.3) LEMMA. The involution π is conjugate in G to an involution $t \in H$ with $t \neq \pi$.

Proof. If π were not conjugate to an involution $t \in H$ with $t \neq \pi$, then π would not be conjugate to any involution of D different from π . Application of [5; Corollary 1, p. 404] would yield $\pi \in \mathbb{Z}(G \mod O(G))$, and the Frattiniargument of [1; Lemma 1, p. 117] would give G = HO(G) against the assumption that G has no subgroups of index 2.

(2.4) LEMMA. The involutions π , λ and $\pi\lambda$ do not lie in the same conjugate class of G.

Proof. Assume the lemma to be false. We have

 $\mathbf{Z}(S\langle \mu'\xi\rangle) = \langle \pi, \mu, \lambda \rangle$ and $\mathbf{C}_{G}(\langle \pi, \mu, \lambda \rangle) = S\langle \mu'\xi \rangle$.

Call this group W. Denote by D_{λ}^{λ} a group of order 64 contained in $C_{\sigma}(\lambda)$ which contains $S\langle \mu'\xi \rangle$. Define $D_{\pi\lambda}^{1}$ similarly. It is $W' = \langle \pi \mu \rangle$ and therefore $Z(D_{\lambda}^{1}) = \langle \lambda, \pi \mu \rangle$ and $Z(D_{\pi\lambda}^{1}) = \langle \pi \lambda, \pi \mu \rangle$. Put $N = \langle W \langle \xi \rangle, D_{\lambda}^{1}, D_{\pi\lambda}^{1} \rangle$. Obviously, $\langle \pi \mu \rangle = Z(N)$. N cannot be a 2-group because otherwise $|N| = 2^{7}$ but D contains precisely one subgroup of order 64 with centre of order 4. Since N/W is isomorphic to a subgroup of PSL(2, 7) we get that 3 divides |N/W| but 7 does not. Hence $\pi\mu$ is centralized by an element x of order 3 in N. We know that $S \subseteq W\langle \xi \rangle \cap D_{\lambda}^{1} \cap D_{\pi\lambda}^{1}$ and so since $|Z(D_{\lambda}^{1})| = |Z(D_{\pi\lambda}^{1})|$ = 4 we must have $S \triangleleft \langle N, D \rangle$. The group S is elementary abelian of order 16. Hence $\$ = \mathbf{N}_{\sigma}(S)/S$ is isomorphic to a subgroup of $A_{\$}$. The involution $\pi\mu$ of S cannot be conjugate to π under $\mathbf{N}_{\sigma}(S)$ since $[x, \pi\mu] = 1$ and $H \not \equiv \mathbf{N}_{\sigma}(S)$. It follows that $3 \cdot 5, 3 \cdot 7$ and $5 \cdot 7$ do not divide |\$|. But we know that 3 divides |\$|. Therefore, for |\$| one obtaines the possibilities $\$ \cdot 3$ and $\$ \cdot 3^{2}$.

If N/W is of order $4 \cdot 3$ then $N/W \cong A_4$ and a Sylow 2-subgroup of G would be normalized by an element of order 3 which however is not the case. Hence $N/W \cong S_3$. —Now assume $|S| = 8 \cdot 3$. In this case $N \triangleleft \mathbf{N}_G(S)$ and so $\langle \pi \mu \rangle = \mathbf{Z}(\mathbf{N}_G(S))$. But then we would have $\pi \mu = \pi$ which is not possible. It remains to consider $|S| = 8 \cdot 3^2$. A Sylow 2-subgroup of S is dihedral of order 8. [6; Theorem 1, p. 553] implies that S has a subgroup of index 2. Hence S is isomorphic either to a Sylow 3-normalizer of A_8 or to the group $(\langle y \rangle \times A) \langle z \rangle$ where $z^2 = y^3 = 1$, $\langle y, z \rangle \cong S_3$, $A \cong A_4$ and $A \langle z \rangle \cong S_4$. Suppose the second case holds. Let T_{λ} be a Sylow 2-subgroup of $\mathbf{N}_G(S)$ containing D_{λ}^1 . $\mathbf{Z}(T_{\lambda})$ is equal either to $\langle \lambda \rangle$, $\langle \pi \mu \lambda \rangle$ or $\langle \pi \mu \rangle$. Clearly $\mathbf{Z}(T_{\lambda}) = \langle \pi \mu \rangle$ is not possible because in this case we would have $\pi \sim \pi \mu$ in $\mathbf{N}_G(S)$. If $\mathbf{Z}(T_{\lambda}) = \langle \pi \mu \lambda \rangle$, then note that $\pi \mu \lambda \sim \pi \lambda$ under D, and we get $|D \cap T_{\lambda}| = 32$. On the other hand, S contains a normal 2-subgroup of order 4 which yields $|D \cap T_{\lambda}| = 64$ and gives a contradiction. If $\mathbf{Z}(T_{\lambda}) = \langle \lambda \rangle$ one argues similarly.

Finally, we have to consider the case that S is isomorphic to a Sylow 3-normalizer of A_8 . The four-group $\langle \mu', \tau' \rangle S/S$ acts on \mathfrak{M} where by \mathfrak{M} we denote $\mathbf{0}(S)$. Put $\alpha_1 = \mu'S$, $\alpha_2 = \tau'S$, $\alpha_3 = \mu'\tau'S$. A result due to R. Brauer [15; p. 146] yields

$$|\mathfrak{M}| \cdot |\mathbf{C}_{\mathfrak{M}}(\langle \alpha_1, \alpha_2 \rangle)|^2 = |\mathbf{C}_{\mathfrak{M}}(\alpha_1)| \cdot |\mathbf{C}_{\mathfrak{M}}(\alpha_2)| \cdot |\mathbf{C}_{\mathfrak{M}}(\alpha_3)|.$$

It is $|\mathfrak{M}| = 9$ and for i = 1, 2, 3 the integer $|\mathbf{C}_{\mathfrak{M}}(\alpha_1)|$ is a divisor of 3. It follows that

$$\mathbf{C}_{\mathfrak{M}}(\langle \alpha_1, \alpha_2 \rangle) = 1$$
 and $|\mathbf{C}_{\mathfrak{M}}(\alpha_i)| = |\mathbf{C}_{\mathfrak{M}}(\alpha_j)| = 3$

for certain two different involutions α_i and α_j in $\langle \alpha_1, \alpha_2 \rangle$. Therefore, in $\mathbf{N}_{\mathcal{G}}(S)$, we have that

(1) $S\langle \mu' \rangle$ and $S\langle \tau' \rangle$ or (2) $S\langle \mu' \rangle$ and $S\langle \mu' \tau' \rangle$ or

(3) $S\langle \tau' \rangle$ and $S\langle \mu' \tau' \rangle$

are normalized by elements of order 3. It is $Z(S\langle \mu' \rangle) = \langle \pi, \mu \rangle, Z(S\langle \tau' \rangle) =$ $\langle \pi, \tau \rangle$ and $\mathbf{Z}(S\langle \mu' \tau' \rangle) = \langle \pi, \mu \tau \rangle$. The first two cases cannot happen because $\pi \sim \pi \mu$ in $\mathbf{N}_{g}(S)$ and $H \not \subseteq \mathbf{N}_{g}(S)$. In the third case conjugates of π in $\mathbf{N}_{\mathcal{G}}(S)$ are π , τ , $\pi\tau$, $\mu\tau$, $\pi\mu\tau$. Denote by T_{λ} a Sylow 2-subgroup of $\mathbf{N}_{\mathcal{G}}(S)$ with $D_{\lambda}^{1} \subset T_{\lambda}$. The group $\langle \pi \mu \rangle$ cannot be the centre of T_{λ} . Hence $\mathbf{Z}(T_{\lambda})$ is either $\langle \lambda \rangle$ or $\langle \pi \mu \lambda \rangle$. Consequently we get that π is conjugate to λ or to $\pi \lambda$ in $\mathbf{N}_{\mathcal{G}}(S)$. If $|\mathbf{N}_{\mathcal{G}}(L_2)| = 2^7 3^2$, then π would have 18 conjugates in L_2 under $\mathbf{N}_{\mathcal{G}}(L_2)$ against $|L_2| = 16$. If $|\mathbf{N}_{\mathcal{G}}(M)| = 2^7 3^2$, then π would have precisely 3 conjugates in M under $\mathbf{N}_{a}(M)$ which is not possible. We have proved that S is not conjugate to M and not conjugate to L_2 in G. If $\mathbf{Z}(T_{\lambda}) = \langle \lambda \rangle$, then $|T_{\lambda} \cap \mathbf{C}(\pi \mu \lambda)| = 64$ and so $\pi \mu \lambda$ is conjugate to μ in $\mathbf{N}_{\mathcal{G}}(S)$. If $\mathbf{Z}(T_{\lambda}) =$ $\langle \pi \mu \lambda \rangle$, then $|T_{\lambda} \cap \mathbf{C}(\lambda)| = 64$ and λ is conjugate to μ in $\mathbf{N}_{\mathcal{G}}(S)$. In any case we obtain $\mu \sim \pi$ in G. Denote by D_{μ} a Sylow 2-subgroup of $\mathbf{C}_{\mathbf{G}}(\mu)$ which contains $S\langle \mu', \xi \rangle$. Since all the elementary abelian subgroups of D and D_{μ} are contained in $S\langle \mu', \xi \rangle$ we get $S \triangleleft \langle D, D_{\mu} \rangle$. It follows $\pi \sim \mu \sim \pi \mu$ in $\mathbf{N}_{g}(S)$, a contradiction. The lemma is proved.

(2.5) LEMMA. Interchanging λ and $\pi\lambda$ if necessary we may and shall assume that π is not conjugate to λ in G.

(2.6) LEMMA. The involutions π and μ are not conjugate in G.

Proof. By way of contradiction assume $\pi \sim \mu$ in G. Suppose first that neither τ , $\pi\lambda$, ξ , $\pi\xi$ nor $\tau\lambda\xi$ is conjugate to π in G. Each of the groups S and L_2 contains only 3 involutions conjugate to π in G whereas M contains 7 involutions conjugate to π . It follows that M is not conjugate to L_2 and not conjugate to S. If D_{μ} denotes a Sylow 2-subgroup of $C_{\sigma}(\mu)$ which contains $S\langle\mu', \xi\rangle$, then all the elementary abelian subgroups of order 16 of D_{μ} are contained in $S\langle\mu', \xi\rangle$. It follows $M \triangleleft \langle H, D_{\mu} \rangle$ and $\langle \pi, \mu \rangle \triangleleft \langle D, D_{\mu} \rangle$. Clearly, $\langle D, D_{\mu} \rangle$ is not a 2-group and therefore $\langle D, D_{\mu} \rangle$ contains an element v of order 3 with $\pi^{v} = \mu$, $\mu^{v} = \pi\mu$. Hence π has precisely 7 conjugates in M under $\mathbf{N}_{G}(M)$. It follows $|\mathbf{N}_{G}(M)| = 2^{7} \cdot 3 \cdot 7$. $\mathbf{N}_{G}(M)/M$ acts faithfully on $\langle \pi, \mu, \mu' \rangle$ and so $\mathbf{N}_{G}(M)/M = PSL(2, 7)$. The involution ξ possesses 4 or 8 conjugates under $\mathbf{N}_{G}(M)$. Since $|\mathbf{C}_{H}(\xi)| = 2^{5} \cdot 3$ we obtain $|\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M)|$ $= 2^{5} \cdot 3 \cdot 7$. Denote by γ an element of order 7 in $\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M)$. γ acts transitively on $\{\mu\xi, \mu'\xi, \pi\mu\mu'\xi, \pi\xi, \pi\mu\xi, \pi\mu\xi, \pi\mu'\xi, \mu\mu'\xi\}$. Hence ξ possesses precisely 8 conjugates under $\mathbf{N}_{G}(M)$ against $|\mathbf{C}(\xi) \cap \mathbf{N}_{G}(M)| = 2^{5} \cdot 3 \cdot 7$.

We have shown that at least one of the involutions τ , $\pi\lambda$, ξ , $\pi\xi$ and $\tau\lambda\xi$ is conjugate to π in G.

Suppose that $\pi \sim \tau$ or $\pi \sim \pi \lambda$ holds in G. Assume first $\pi \sim \tau$ in G. Denote by D^1_{τ} a group of order 64 with $S\langle \tau' \rangle \subset D^1_{\tau} \subset C_{\mathcal{G}}(\tau)$. Then $S \triangleleft \langle D, D^1_{\tau} \rangle$ since S char $S\langle \tau' \rangle$. Further, $\langle D, D_{\tau}^1 \rangle$ is not a 2-group because $|\mathbf{C}_{H}(\tau)| = 32$. Since $\lambda \sim \pi$ in G we get the following possibilities for $|\mathbf{N}_{G}(S)| : 2^{7} \cdot 3, 2^{7} \cdot 7$, $2^7 \cdot 5, 2^7 \cdot 3^2$. The case $|\mathbf{N}_{\mathfrak{g}}(S)| = 2^7 \cdot 7$ or $2^7 \cdot 5$ cannot happen because A_8 has no subgroups of order $2^3 \cdot 7$ or $2^3 \cdot 5$ with dihedral Sylow 2-subgroups. If $|\mathbf{N}_{\mathfrak{G}}(S)| = 2^7 \cdot 3$, then π, μ and $\pi\mu$ are the only conjugates of π under $\mathbf{N}_{\mathfrak{G}}(S)$. Denote by X a Sylow 2-subgroup of $\mathbf{N}_{\mathcal{G}}(S)$ with $D^1_{\tau} \subset X$. It follows that $\mathbf{Z}(X)$ is equal to $\langle \mu \rangle$ or to $\langle \pi \mu \rangle$. It is $|X \cap \mathbf{C}(\tau)| = 64$ and so $\tau \sim \mu$ in $\mathbf{N}_{\mathcal{G}}(S)$ since μ and $\pi\mu$ are the only elements of D such that their centralizers intersect D in a group of order 64. This contradicts the fact that π , μ and $\pi\mu$ are the only conjugates of π under $\mathbf{N}_{\mathcal{G}}(S)$. We are in the case $|\mathbf{N}_{\mathcal{G}}(S)/S| = 2^{3}3^{2}$ and so $\pi \sim \tau \sim \pi \lambda$ under $\mathbf{N}_{G}(S)$. —Assume now $\pi \sim \pi \lambda$ in G. Denote by $D^1_{\pi\lambda}$ a group of order 64 with $S\langle \mu'\xi\rangle \subset D^1_{\pi\lambda} \subset C_{\mathcal{G}}(\pi\lambda)$. It is $\mathbf{Z}(D^1_{\pi\lambda}) =$ $\langle \pi \lambda, \pi \mu \rangle$ and so $S \triangleleft \langle D, D^1_{\pi \lambda} \rangle$. Further, $\langle D, D^1_{\pi \lambda} \rangle$ is not a 2-group. $|\mathbf{N}_{\mathcal{G}}(S)/S|$ is equal to either $2^{3}3$ or $2^{3}3^{2}$. If $|\mathbf{N}_{\mathfrak{g}}(S)/S| = 2^{3}3$, denote by X a Sylow 2-subgroup of $\mathbf{N}_{\mathfrak{G}}(S)$ which contains $D^{1}_{\pi\lambda}$. $\mathbf{Z}(X)$ is equal to $\langle \mu \rangle$ or to $\langle \pi \mu \rangle$ and $|X \cap D^1_{\pi\lambda}| = 64$. We obtain $\pi\lambda \sim \mu$ in $\mathbf{N}_{\mathfrak{G}}(S)$ which is a contradiction. Hence $|\mathbf{N}_{g}(S)/S| = 2^{3}3^{2}$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{g}(S)$ also in this case. So, if $\pi \sim \tau$ or $\pi \sim \pi \lambda$ in G, then the conjugate class of μ in $\mathbf{N}_{G}(S)$ consists of μ and $\pi\mu$ because $\mu \sim \pi \sim \lambda$ and the fact that both τ and $\pi\lambda$ have 4 conjugates under D. It follows that 3^2 divides $|\mathbf{C}(\mu) \cap \mathbf{N}_{\mathcal{G}}(S)|$ against $\mu \sim \pi$ in G.

We have proved so far that at least one of the involutions ξ , $\pi\xi$ and $\tau\lambda\xi$ is conjugate to π in G and that neither τ nor $\pi\lambda$ are conjugate to π in G. Denote by D_{μ} a Sylow 2-subgroup of $\mathbf{C}_{\mathcal{G}}(\mu)$ which contains $S\langle \mu', \xi \rangle$. Then $|\langle D, D_{\mu} \rangle| =$ $2^{7}3$ since $\langle \pi, \mu \rangle \triangleleft \langle D, D_{\mu} \rangle$, and $S \langle \mu', \xi \rangle$ contains all elementary abelian subgroups of order 16 of D_{μ} . Since M and L_2 contain at least 4 conjugates of π in G and S contains only 3 conjugates of π , we conclude that S is normal in $\langle D, D_{\mu} \rangle$. The element λ has at least 4 conjugates under $\langle D, D_{\mu} \rangle$. If 3 divides $|\mathbf{C}(\lambda) \cap \langle D, D_{\mu} \rangle|$ then denote by v an element of order 3 in $\mathbf{C}(\lambda) \cap \langle D, D_{\mu} \rangle$. We may choose v so that $\pi^{v} = \mu, \mu^{v} = \pi \mu$. It follows $(\mu \lambda)^{v} = \pi \mu \lambda$, and so, λ would have more than 4 conjugates in $\langle D, D_{\mu} \rangle$. This is a contradiction since $2^{\circ}3$ divides $|\mathbf{C}(\lambda) \cap \langle D, D_{\mu} \rangle|$ in this case. Hence 3 does not divide $|\mathbf{C}(\lambda) \cap \langle D, D_{\mu} \rangle|$ $\langle D, D_{\mu} \rangle$. Because of $\pi \sim \lambda$ we have that λ has precisely 12 conjugates in $\langle D, D_{\mu} \rangle$. Therefore $\lambda \sim \tau$ in $\langle D, D_{\mu} \rangle$ and so $S \langle \mu' \xi \rangle$ would be conjugate to $S\langle \tau' \rangle$ against $|Z(S\langle \tau' \rangle)| = 4$ and $|Z(S\langle \mu'\xi \rangle)| = 8$. This contradiction proves the lemma.

(2.7) LEMMA. The involutions π , ξ and $\pi\xi$ do not lie in the same conjugate class of G.

Proof. Assume that $\pi \sim \xi \sim \pi \xi$ in G. Denote by D_{ξ}^{1} a group of order 64 with $L_{2}\langle \mu' \rangle \subset D_{\xi}^{1} \subset \mathbf{C}_{G}(\xi)$. Since $\mathbf{Z}(D_{\xi}^{1}) = \langle \xi, \pi \mu \rangle$ we have $M \triangleleft \langle H, D_{\xi}^{1} \rangle$ and $H \subset \langle H, D_{\xi}^{1} \rangle$. The involution π has 5 or 9 conjugates in M under $\mathbf{N}_{G}(M)$. Since $\mathbf{N}_{G}(M)/M$ is isomorphic to a subgroup of A_{8} , it follows that π has precisely 5 conjugates in M under $\mathbf{N}_{G}(M)$. An element of order 5 in $\mathbf{N}_{G}(M)$ must operate fixed-point-free on M, and so, either $\mu \sim \pi \xi$ or $\mu \sim \xi$ since μ has 6 conjugates in M under H. This contradicts (2.6).

(2.8) LEMMA. Interchanging ξ and $\pi \xi$ if necessary, we may and shall assume that π is not conjugate to ξ in G.

(2.9). LEMMA. The involution π is conjugate to τ or to $\pi\lambda$ in G.

Proof. Assume by way of contradiction that the lemma is false. By (2.3), (2.5), (2.6) and (2.8) follows that $\pi \sim \pi \xi$ or $\pi \sim \tau \lambda \xi$ in G and $[\mathbf{N}_{\mathcal{G}}(S):D] = 1$

Suppose first that $\pi \sim \pi\xi$ in *G*. Denote by $D_{\pi\xi}^1$ a group of order 64 with $L_2\langle \mu' \rangle \subset D_{\pi\xi}^1 \subset \mathbf{C}_G(\pi\xi)$. Since $\mathbf{Z}(D_{\pi\xi}^1) = \langle \pi\xi, \pi\mu \rangle$, we get $L_2 \triangleleft \langle S \langle \mu', \xi \rangle, D_{\pi\xi}^1 \rangle = V$. Clearly, *V* is not a 2-group and *V* normalizes $\langle \pi, \mu, \xi \rangle$ since $\mathbf{Z}(L_2\langle \mu' \rangle) = \langle \pi, \mu, \xi \rangle$. Not all involutions of $\langle \pi, \mu, \xi \rangle$ lie in the same conjugate class of *G*. Hence *V* contains an element *x* of order 3 such that $\pi^x = \pi\xi$, $(\pi\xi)^x = \pi\mu\xi$, $\mu^x = \mu\xi$, $(\mu\xi)^x = \xi$ and $[x, \pi\mu] = 1$. From a lemma in [14] we conclude that $\pi\lambda$ is conjugate to an involution of $M\langle \tau, \tau'\rangle\langle \rho \rangle$. It follows that $\pi\lambda$ is conjugate to μ or τ in *G*. Assume that $\pi\lambda \sim \mu$ in *G*. Denote by $T_{\pi\lambda}$ a Sylow 2-subgroup of $\mathbf{C}_G(\pi\lambda)$ which contains *S*. Clearly, $S \triangleleft \langle D, T_{\pi\lambda} \rangle$ and $\langle D, T_{\pi\lambda} \rangle$ is not a 2-group. It follows $[\mathbf{N}_G(S):D] > 1$ which is not possible. Now assume that $\pi\lambda \sim \tau$ in *G*. Then 64 divides $|\mathbf{C}_G(\pi\lambda)|$ since $S\langle \mu'\xi \rangle$ and $S\langle \tau' \rangle$ are not isomorphic. Denote by $T_{\pi\lambda}$ a subgroup of $\mathbf{C}_G(\pi\lambda)$ of order 64 which contains

 $S\langle \mu'\xi \rangle$. Since $\mathbf{Z}(T_{\pi\lambda}) = \langle \pi\lambda, \pi\mu \rangle$ we have $S \triangleleft \langle D, T_{\pi\lambda} \rangle$ and $[\mathbf{N}_{\sigma}(S):D] > 1$ which again cannot happen. We have shown that π is not conjugate to $\pi\xi$ and that π must be conjugate to $\tau\lambda\xi$.

Denote by $D_{\tau\lambda\xi}^{\dagger}$ a group of order 64 with centre of order 4 and $L_2 \subset D_{\tau\lambda\xi}^{\dagger} \subset \mathbf{C}_{G}(\tau\lambda\xi)$. Then $L_2 \triangleleft \langle S\langle \mu', \xi \rangle, D_{\tau\lambda\xi}^{\dagger} \rangle = V$. Clearly, V is not a 2-group. It follows $[\mathbf{N}_{G}(L_2):S\langle \mu', \xi \rangle] = 5$. An element of order 5 in $\mathbf{N}_{G}(L_2)$ must act fixed-point-free on L_2 . Hence, $\mu \sim \tau\lambda$ or $\mu \sim \pi\tau\lambda$ in G. If $\mu \sim \pi\tau\lambda$ then $\mu \sim \lambda$ in G. Denote by T_{λ} a Sylow 2-subgroup of $\mathbf{C}_{G}(\lambda)$ which contains S. Then $S \triangleleft \langle D, T_{\lambda} \rangle$ and $[\mathbf{N}_{G}(S):D] > 1$ which is not possible. If $\mu \sim \tau\lambda$ then $\mu \sim \tau\lambda$ in G and again one gets a contradiction. The lemma is proved.

(2.10) LEMMA. $\mathbf{N}_{G}(S)/S$ is isomorphic to a Sylow 3-normalizer in A_{8} . Further $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{G}(S)$.

Proof. From (2.9) we conclude that $\pi \sim \pi \lambda$ or $\pi \sim \tau$ in G. Assume first $\pi \sim \pi \lambda$ in G. Denote by $D_{\pi\lambda}^1$ a subgroup of order 64 of $\mathbf{C}_{\mathcal{G}}(\pi\lambda)$ with $S\langle \mu'\xi \rangle \subset$ $D^1_{\pi\lambda}$. Since $\mathbb{Z}(D^1_{\pi\lambda}) = \langle \pi\lambda, \pi\mu \rangle$ we get $S \triangleleft \langle D, D^1_{\pi\lambda} \rangle$. Hence $n = [\mathbb{N}_g(S):D]$ is equal to 5 or to 9. Since $\mathbf{N}_{\mathcal{G}}(S)/S$ is isomorphic to a subgroup of A_8 , we obtain n = 9 and so $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{\mathcal{G}}(S)$. Assume now that $\pi \sim \tau$ in G. Denote by D_{τ}^1 a subgroup of order 64 of $\mathbf{C}_{\mathfrak{g}}(\tau)$ with $S\langle \tau' \rangle \subset D_{\tau}^1$. Since S char $S\langle \tau' \rangle$, we get $S \triangleleft \langle D, D_{\tau}^1 \rangle$. Hence $[\mathbf{N}_g(S):D] = 9$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{g}(S)$. In any case $|\mathbf{N}_{g}(S)/S| = 2^{3}9$ and $\pi \sim \tau \sim \pi \lambda$ in $\mathbf{N}_{g}(S)$. A Sylow 2-subgroup of $\mathbf{N}_{g}(S)/S = S$ is dihedral of order 8. From [6; Theorem 1. p. 553] we conclude that S must have a subgroup of index 2. If S has no normal subgroups of index 4, then $\$ = (\langle x \rangle \times A) \langle y \rangle$ where $x^3 = y^2 = 1$, $A \cong A_4, \langle x, y \rangle \cong S_3$ and $A \langle y \rangle \cong S_4$. Then either $S \langle \tau', \mu' \rangle \triangleleft \mathbf{N}_{\mathcal{G}}(S)$ or $S\langle \mu', \xi \rangle \triangleleft \mathbf{N}_{g}(S)$. In the first case an element of order 3 in $\mathbf{N}_{g}(S)$ would normalize $\mathbf{Z}(S\langle \tau', \mu' \rangle)$ against $H \not\subseteq \mathbf{N}(S)$ and in the second case we would get $\pi \sim \mu$ in $\mathbf{N}_{\mathfrak{G}}(S)$ which is not possible because of (2.6). We have proved that S must have a normal subgroup of index 4. The lemma is proved.

(2.11) LEMMA. There is an element u of order 3 in $\mathbf{N}_{G}(S)$ with $\pi^{u} = \tau$, $\tau^{u} = \pi \tau$. Further, $|\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)| = 64 \cdot 3$ and μ is conjugate to λ in $\mathbf{N}_{G}(S)$. G has precisely two conjugacy classes of involutions.

Proof. Denote by D_{τ}^{\dagger} a subgroup of order 64 of $\mathbf{C}_{g}(\tau) \cap \mathbf{N}_{g}(S)$ which contains $S\langle \tau' \rangle$. It is $\langle \pi, \tau \rangle \triangleleft \langle S \langle \mu', \tau' \rangle$, $D_{\tau}^{1} \rangle = X$. Suppose X is a 2-group. Then $|X| = 2^{\tau}$ and $\mathbf{Z}(X) \subseteq \langle \pi, \tau \rangle$. It is $S\langle \mu', \tau' \rangle \triangleleft X$ and so $\mathbf{Z}(X) = \langle \pi \rangle$ against $|\mathbf{C}_{H}(\tau)| = 32$. Hence X is not a 2-group. If follows the existence of an element u of order 3 in X with $\pi^{u} = \tau$ and $\tau^{u} = \pi\tau$ since $u \in \mathbf{N}_{g}(S)$ and $H \not \leq \mathbf{N}_{g}(S)$. Assume that 9 divides $|\mathbf{C}(\mu) \cap \mathbf{N}_{g}(S)|$. Then $\{\mu, \pi\mu\}$ is the conjugate class of μ in $\mathbf{N}_{g}(S)$. Since $\mathbf{C}(\mu) \cap \mathbf{N}_{g}(S) \triangleleft \mathbf{N}_{g}(S)$ it follows $u \in \mathbf{C}(\mu)$. Then $(\pi\mu)^{u} = \tau\mu$ yields a contradiction. Hence $|\mathbf{C}(\mu) \cap \mathbf{N}_{g}(S)|$ $= 64 \cdot 3$ and $\mu \sim \lambda$ in $\mathbf{N}_{g}(S)$. Since by (2.2) each involution of G is conjugate to an involution in S, we get that G has precisely two conjugate classes of involutions. (2.12) LEMMA. The involution π is conjugate to $\pi\xi$ in $\mathbf{N}_{\mathcal{G}}(M)$.

Proof. It is a consequence of (2.8), (2.6) and (2.11) that $\mu \sim \xi$ in G. Denote by T_{ξ} a Sylow 2-subgroup of $\mathbf{C}_{G}(\xi)$ which contains $M\langle \tau \lambda \rangle$. It follows $M \triangleleft \langle H, T_{\xi} \rangle$ and $T_{\xi} \not \sqsubseteq H$ since $|\mathbf{C}_{H}(\xi)| = 2^{5}3$. Hence $[\mathbf{N}_{G}(M):H] > 1$ and π must be conjugate to $\pi\xi$ under $\mathbf{N}_{G}(M)$.

(2.13) LEMMA. Let T_{ξ} be a Sylow 2-subgroup of $C_{G}(\xi)$ with $L_{2}\langle \mu' \rangle \subset T_{\xi}$. Put $L = \langle S \langle \mu', \xi \rangle, T_{\xi} \rangle$. Then $|L| = 2^{6}3$. There exists an element α in L of order 3 such that $\pi^{\alpha} = \pi\xi$, $(\pi\xi)^{\alpha} = \pi\mu\xi$, $\mu^{\alpha} = \mu\xi$, $(\mu\xi)^{\alpha} = \xi$ and $[\alpha, \pi\mu] = 1$. $|\mathbf{N}_{G}(L_{2})|$ is equal to $2^{6}3$ or $2^{6}3^{2}$. $\mathbf{Z}(L) = \langle \pi\mu \rangle$ and $L \subseteq \mathbf{N}_{G}(L_{2})$.

Proof. We know that $\mu \sim \xi$ in G from (2.11) and (2.9). Denote by T_{ξ} a Sylow 2-subgroup of $C_{G}(\xi)$ which contains $L_{2}\langle \mu' \rangle$. Since $(L_{2}\langle \mu' \rangle)' = \langle \pi \mu \rangle$ one gets $Z(T_{\xi}) = \langle \xi, \pi \mu \rangle$. Also $Z(L_{2}\langle \mu' \rangle) = \langle \pi, \mu, \xi \rangle$ and $L_{2} \triangleleft T_{\xi}$. Put $\langle S \langle \mu', \xi \rangle, T_{\xi} \rangle = L$. We have $\langle \pi, \mu, \xi \rangle \triangleleft L$ and $\langle \pi \mu \rangle = Z(L)$. Clearly, L is not a 2-group since $\pi \mu \sim \pi$. $L/L_{2}\langle \mu' \rangle$ is isomorphic to a subgroup of PSL(2,7). Because of $\pi \mu \in Z(L)$ we get $|L| = 2^{6}3$. Since $H \cap L = S\langle \mu', \xi \rangle$, no element conjugate to π under L can be centralized by an element of order 3 of L. Considering the elements of $\langle \pi, \mu, \xi \rangle$ one gets the existence of an element α of order 3 in L such that $\pi^{\alpha} = \pi \xi$, $(\pi \xi)^{\alpha} = \pi \mu \xi$, $\mu^{\alpha} = \mu \xi$, $(\mu \xi)^{\alpha} = \xi$ and $[\pi \mu, \alpha] = 1$. For $[\mathbf{N}_{G}(L_{2}): S\langle \mu', \xi \rangle]$ we get the following possibilities: 3, 5, 3^{2} , 7. If $|\mathbf{N}_{G}(L_{2})| = 2^{6}5$ or $2^{6}7$, then $\mathbf{N}_{G}(L_{2}) = \langle S\langle \mu', \xi \rangle, T_{\xi} \rangle$ which is not possible. The lemma is proved.

(2.14) LEMMA. The involution π is conjugate to $\tau\lambda\xi$ in G.

Proof. Assume the lemma to be false. Then $\tau\lambda\xi \sim \mu$ in *G*. Denote by $T_{\tau\lambda\xi}$ a Sylow 2-subgroup of $C_{\sigma}(\tau\lambda\xi)$ which contains L_2 . Because of $Z(T_{\tau\lambda\xi}) = \langle \tau\lambda\xi, x \rangle$ is a four-group we get $L_2 \triangleleft \langle S \langle \mu', \xi \rangle, T_{\tau\lambda\xi} \rangle = X$. Clearly, *X* cannot be a 2-group since $S \langle \mu', \xi \rangle \neq T_{\tau\lambda\xi}$. Application of (2.13) yields $\mathbf{N}_{\sigma}(L_2) = X$ and *X* is of order 2⁶3. Thus X = L. We may put $x = \pi\mu$. Obviously, $\langle \pi, \mu \rangle$ is conjugate to $\langle \tau\lambda\xi, \pi\mu \rangle$ in *L*, and so $\pi \sim \pi\mu\tau\lambda\xi$ in *L*. But $(\pi\mu\tau\lambda\xi)\mu' = \tau\lambda\xi$ against our assumption. The proof is complete.

(2.15) LEMMA. We have $[\alpha, \tau \lambda] = 1$.

Proof. There are nine elements in L_2 which are conjugate to π in G. From (2.13) follows that α acts transitively on $\{\mu, \mu\xi, \xi\}$. Also $[\alpha, \pi\mu] = 1$. There remain the elements $\tau\lambda$ and $\pi\mu\tau\lambda$ which α must centralize.

3. Simplicity of G

(3.1) LEMMA. G is a simple group.

Proof. Since $\mathbf{0}(H) = 1$ and $\pi \sim \tau \sim \pi \tau$ in G we get from [15; p. 146] that $\mathbf{0}(G) = 1$. The fact that $\mathbf{N}_{\mathcal{G}}(D) = D$ together with [1; Lemma 1, p. 117] yields that G possesses no non-trivial odd order factor group. If G were not a simple group then G has a normal subgroup Y with $1 \subset Y \subset G$. Since

 $|Y| \equiv 0 \pmod{2}$ and $|G/Y| \equiv 0 \pmod{2}$ we get that π or μ is contained in Y because G has precisely two classes of involutions. Hence, $\langle \pi, \mu \rangle \subseteq Y$ and since D is generated by involutions, we get $D \subseteq Y$ against $|G/Y| \equiv 0 \pmod{2}$. The lemma is proved.

4. The centralizer of μ in G

(4.1) LEMMA. $\mathbf{C}(\mu) \cap \mathbf{N}_{G}(S)$ is generated by the elements π , μ , τ , λ , μ' , ξ , ν subject to the following relations: $\nu^{3} = 1$, $[\nu, \mu] = [\nu, \lambda] = [\nu, \xi] = 1$, $\pi^{\nu} = \pi \tau \lambda$, $\tau^{\nu} = \pi \mu \lambda$, $\mu' \nu \mu' = \nu^{-1}$.

Proof. We are going to use the results of (2.10) and (2.11). It is $|\mathbf{C}(\mu)| \cap$ $|\mathbf{N}_{g}(S)| = 64 \cdot 3$. Let ν be an element of order 3 in $\mathbf{C}(\mu) \cap \mathbf{N}_{g}(S)$. Denote by \bar{N} the subgroup of $\mathbf{N}_{\mathcal{G}}(S)$ of order 64.9 which has $S\langle \tau', \mu' \rangle$ as a Sylow 2-subgroup. We consider $N = \overline{N} \cap C(\mu)$. Clearly, $\nu \in N$. Since the conjugate class of μ in $\mathbf{N}_{q}(S)$ consists of 6 elements, since $H \leq \mathbf{N}_{q}(S)$ and since $\pi \sim \pi \lambda \sim \tau$ in $\mathbf{N}_{\mathcal{G}}(S)$ we get $[\nu, \lambda] = 1$. It follows $\mathbf{C}_{\mathcal{S}}(\nu) = \langle \mu, \lambda \rangle$ and no element in $S \setminus \langle \mu, \lambda \rangle$ normalizes $\langle \nu \rangle$. The case $\mathbf{N}(\langle \nu \rangle) \cap N = \mathbf{C}(\nu) \cap N$ is not possible since otherwise $S\langle \mu' \rangle$ would be normal in N against $\pi \sim \mu$ and $H \subseteq \mathbf{N}_{\mathcal{G}}(S)$. N contains precisely three Sylow 2-subgroups which one obtains from $S\langle \mu' \rangle$ by transforming with ν and ν^{-1} . Hence a Sylow 2-subgroup of $\mathbf{N}(\langle \nu \rangle) \cap N$ is contained in $S\langle \mu' \rangle$ and so an element in $S\langle \mu' \rangle \setminus S$ must invert v. Elements in $S\langle \mu' \rangle \setminus S$ are the four elements of order 4 with square equal to π which cannot invert ν since $[\pi, \nu] \neq 1$, the four elements with square equal to $\pi\mu$ which cannot invert ν since $[\pi\mu, \nu] = [\pi, \nu] \neq 1$, the sets of elements $K_1 = \{\mu', \mu\mu', \pi\mu\mu', \pi\mu'\}$ and $K_2 = \{\mu'\lambda, \mu\mu'\lambda, \pi\mu\mu'\lambda, \pi\mu'\lambda\}$. If $x \in K_1$ with $x^{-1}\nu x = \nu^{-1}$, then by conjugating with an element in S we obtain an element ν' of order 3 in $\langle S \langle \mu' \rangle$, $\nu \rangle$ with $\mu' \nu' \mu' = \nu'^{-1}$. The same can be done if an element in K_2 inverts ν because $[\lambda, \nu] = 1$. Hence we may assume that $\mu'\nu\mu' = \nu^{-1}$. Considering the conjugate class of μ in $\mathbf{N}_{\mathcal{G}}(S)$ and noting that $|\mathbf{C}_{s}(\nu)| = 4$, we get $(\pi\mu)^{\nu} = \pi\mu\tau\lambda$ or $\tau\lambda$. Interchanging ν and ν^{-1} if necessary we may and shall assume that $\pi^{\nu} = \pi \tau \lambda$ and $\tau^{\nu} = \pi \mu \lambda$.

Finally, we consider the subgroup \overline{U} of $\mathbf{N}_{G}(S)$ of order 32.9 with Sylow 2-subgroup $S\langle \mu'\xi \rangle$. Put $U = \mathbf{C}(\mu) \cap \overline{U}$. Clearly, $U = \langle S\langle \mu'\xi \rangle, \nu \rangle$. From [17; Theorem 4, p. 169] we conclude that ν is inverted by an element in Usince $(S\langle \mu'\xi \rangle)' = \langle \pi\mu \rangle$ and $[\pi\mu, \nu] \neq 1$. Such an element can be found in $S\langle \mu'\xi \rangle \setminus S$. All elements of order 4 in $S\langle \mu'\xi \rangle \setminus S$ have square equal to $\pi\mu$, and so, they cannot invert ν . There remain the eight involutions of $S\langle \mu'\xi \rangle \setminus S : \mu'\xi, \pi\mu'\xi, \mu\mu'\xi, \pi\mu\mu'\xi, \lambda\mu'\xi, \pi\lambda\mu'\xi, \mu\lambda\mu'\xi, \pi\mu\lambda\mu'\xi$. Since $[\mu, \nu] =$ $[\nu, \lambda] = 1$ we have that either $\mu'\xi$ or $\pi\mu'\xi$ inverts ν . If $\pi\mu'\xi$ inverts ν then $\pi\xi$ centralizes ν and so $(\pi\xi)^{\nu} = \pi\lambda\tau\xi^{\nu} = \pi\xi$. It follows $\xi^{\nu} = \tau\lambda\xi$ against (2.14) and (2.8). We have proved that $\mu'\xi$ inverts ν and therefore $[\nu, \xi] = 1$. The proof is complete.

(4.2) LEMMA. $\mathbf{C}_{G}(\mu) = (\langle \mu, \lambda \rangle \times A) \langle \mu' \rangle$, where $A \cong A_{6}$, $A \langle \mu' \rangle \cong S_{6}$ and $\langle \pi \mu, \tau \lambda, \nu, \mu' \xi, \alpha^{\tau'} \rangle \subseteq A$. Further, $[u, \tau'] = 1, \mu^{u} = \lambda, \lambda^{u} = \mu \lambda$ and $\mu' u \mu' = u^{-1}$.

Proof. First we shall consider the normalizer of $\langle \pi, \tau \rangle$ in $\mathbf{N}_{g}(S)$. It is $\mathbf{C}_{g}(\langle \pi, \tau \rangle) = S\langle \tau' \rangle$. Hence, by (2.11), $\mathbf{N}_{g}(\langle \pi, \tau \rangle) = S\langle \tau' \rangle \langle u, \mu' \rangle = X$ and $|X| = 64 \cdot 3$.

If 3 divides $C_x(\mu)$, then $\{\mu, \pi\mu\}$ is the conjugate class of μ in X. Denote by v an element of order 3 in $C_x(\mu)$. Since no element of order 3 in $N_g(S)$ centralizes π , we get $(\pi\mu)^v = \tau\mu$ or $\pi\tau\mu$ which is not possible. It follows $|C_x(\mu)| = 32$. In a similar way one proves $|C_x(\mu\tau)| = 32$, because $\mu\tau$ is not in the centre of a Sylow 2-subgroup of X. It follows that $\mu \sim \lambda$ in X and $\mu\tau \sim \pi\lambda$ in X. The conjugate class of μ in X is $\{\mu, \pi\mu, \lambda, \mu\lambda, \tau\lambda, \pi\mu\tau\lambda\}$. Since $C_x(\lambda) \nsubseteq S\langle \mu', \tau' \rangle$, we have either $C_x(\lambda) \subseteq (S\langle \mu', \tau' \rangle)^u$ or $C_x(\lambda) \subseteq (S\langle \mu', \tau' \rangle)^{u-1}$. For the action of u on S one gets $\pi^u = \tau$, $\tau^u = \pi\tau$, $\mu^u = \lambda$, $\lambda^u = \mu\lambda$.

We know that $(\mu \tau')^u$ is equal to one of the four elements in $S\langle \tau' \rangle$ the squares of which are equal to τ . These elements are $\lambda \tau', \tau \lambda \tau', \pi \lambda \tau', \pi \tau \lambda \tau'$. We know that $\mu^u = \lambda$. It follows that $(\tau')^u$ is equal to $\tau', \tau \tau', \pi \tau', \text{ or } \pi \tau \tau'$. The set $\mathfrak{S} = \{\tau', \tau \tau', \pi \tau', \pi \tau \tau'\}$ is *u*-invariant. Hence *u* centralizes an element in \mathfrak{S}. The group $\langle \mu, \lambda \rangle$ operates transitively on \mathfrak{S} , and so, transforming *u* by an element in $\langle \mu, \lambda \rangle$, we may and shall assume that $u\tau' = \tau' u$.

We consider now $u\mu'$. We have $u\mu' \in C_x(\lambda) \cap C(\tau)$, and so

$$(u\mu')^{u^{-1}} \epsilon \mathbf{C}_X(\mu) \cap C(\pi) = S\langle \mu' \rangle.$$

Further,

$$(u\mu')^{u^{-1}} \epsilon S\langle \mu' \rangle \cap \mathbf{C}_{\mathbf{X}}(\tau') = \langle \pi, \tau \rangle \langle \mu' \rangle.$$

Clearly, $(u\mu')^{u^{-1}} \notin \langle \pi, \tau \rangle$ since otherwise $u \notin \langle \pi, \tau \rangle \langle \mu' \rangle$ against $u^3 = 1$. Considering the possibilities for $u\mu'$, we get that $(u\mu')^{u^{-1}} = \mu'$ or $(u\mu')^{u^{-1}} = \pi \tau \mu'$. If the last possibility holds then $u\mu' = \mu' \pi \tau u^{-1}$. Put $\bar{u} = \pi u$ and note that the order of πu is 3 and that \bar{u} has all the properties of u required so far. Compute $(\bar{u}\mu')^2 = \pi u\mu' \pi u\mu' = u\tau \pi \pi \tau u^{-1} = 1$. It follows that $\mu' \bar{u}\mu' = \bar{u}^{-1}$ or equivalently $(\bar{u}\mu')^{\bar{u}^{-1}} = \mu'$. Hence we may and shall assume that $\mu' u\mu' = u^{-1}$.

We turn now to the determination of $\mathbf{C}_{g}(\mu)$. Put $\overline{\mathfrak{G}} = \mathbf{C}_{g}(\mu)$ and $\overline{\mathfrak{G}}/\langle \mu \rangle = \mathfrak{G}$. In the epimorphism $\overline{\mathfrak{G}} \to \mathfrak{G}$ put $\pi \to p$, $\tau \to t$, $\lambda \to l$, $\mu' \to m$, $\xi \to z$, $\nu \to n$ and $\alpha^{\tau'} \to a$.

It is $\mathbf{C}_{\mathfrak{G}}(p) = \langle l, z \rangle \times \langle p, t \rangle \langle m \rangle = \mathfrak{T}$, where $\langle p, t \rangle \langle m \rangle$ is dihedral of order 8, $\mathbf{Z}(\mathfrak{T}) = \langle l, z, p \rangle$ and $\mathfrak{T}' = \langle p \rangle$. \mathfrak{T} is a Sylow 2-subgroup of \mathfrak{G} and $\mathbf{N}_{\mathfrak{G}}(\mathfrak{T}) = \mathfrak{T}$. Application of [17; Lemma, p. 169] yields that no two different elements of $\mathbf{Z}(\mathfrak{T})$ are conjugate in \mathfrak{G} .

Assume $p \sim t$ in \mathfrak{G} . Then there exists and $x \in \overline{\mathfrak{G}}$ such that $x^{-1}\pi x = \tau$ or $\mu\tau$. We have $|\mathbf{C}(\tau) \cap \mathbf{C}_{g}(\mu)| = |\mathbf{C}(\pi) \cap \mathbf{C}_{g}(\mu\lambda)| = 32$ against $|\mathbf{C}(\pi) \cap \mathbf{C}_{g}(\mu)| = 64$. Hence $p \sim t$ in \mathfrak{G} . Further, $p \sim m$, $p \sim lm$, $p \sim zt$, $p \sim zt$ because $(\pi\xi)^{\nu} = \pi\tau\lambda\xi$ and therefore $(pz)^{n} = ptlz$ and $(zlt)^{m} = ptlz$. Certainly, one has $p^{n} = ptl$ and $p^{a} = pmz$. Whether $p \sim zlm$ in \mathfrak{G} or not has not been decided so far.

Application of [17; Theorem 5, p. 170] yields that the transfer of \mathfrak{G} into \mathfrak{T}

is isomorphic to $\mathfrak{T}/\langle p, lt, zm \rangle$ if $p \sim zlm$ in \mathfrak{G} , or to $\mathfrak{T}/\langle p, t, l, zm \rangle$ if $p \sim zlm$ in \mathfrak{G} .

Assume by way of contradiction that \mathfrak{G} has no normal subgroup of index 4. Then \mathfrak{G} has a normal subgroup \mathfrak{M} with $[\mathfrak{G}:\mathfrak{M}] = 2$. Since $\mathfrak{G}' \subseteq \mathfrak{M}$ we get $\mathfrak{T}' \subseteq \mathfrak{M}$ and so $\langle p, t, l, zm \rangle \subseteq \mathfrak{M}$. Since $p \sim zm \sim zmp \sim zlm \sim zlmp$ in \mathfrak{G} and $z \notin \mathfrak{M}$ we get that these five elements are conjugate in \mathfrak{M} . We have

$$\mathbf{C}_{\mathfrak{M}}(p) = \langle l \rangle \times \langle p, t \rangle \langle zm \rangle = \mathfrak{F}.$$

Because of $\mathfrak{F}' = \langle p \rangle$ we get $\mathbf{N}_{\mathfrak{M}}(\mathfrak{F}) = \mathfrak{F}$ and so l, p and lp lie in three different conjugate classes of \mathfrak{M} . Consider

$$\begin{split} \mathbf{C}_{\mathfrak{M}}(p) \cap \mathbf{C}(zm) \ &= \ \mathbf{C}_{\mathfrak{M}}(p) \cap \mathbf{C}(zpm) \ = \ \mathbf{C}_{\mathfrak{M}}(p) \cap \mathbf{C}(zlm) \\ &= \ \mathbf{C}_{\mathfrak{M}}(p) \cap \mathbf{C}(zplm) \ = \ \langle l \rangle \times \langle p, zm \rangle = \ \mathfrak{F}_{1} \,. \end{split}$$

 \mathfrak{F}_1 is an elementary abelian group of order 8 and is normalized by Sylow 2-subgroups of \mathfrak{M} the commutator groups of which are $\langle p \rangle$, $\langle zm \rangle$, $\langle zpm \rangle$, $\langle zlm \rangle$, $\langle zlpm \rangle$. It follows $[\mathbf{N}_{\mathfrak{M}}(\mathfrak{F}_1):\mathfrak{F}] \geq 5$ and so 7 must divide $|\mathbf{N}_{\mathfrak{M}}(\mathfrak{F}_1)/\mathfrak{F}_1|$ from which would follow that all involutions of \mathfrak{F}_1 are conjugate against $p \sim l$ in \mathfrak{M} . We have shown that \mathfrak{G} has a normal subgroup \mathfrak{M} of index 4 and that $p \sim zlm$ in \mathfrak{G} .

We prove next that $\overline{\mathfrak{G}}$ has no non-trival normal subgroup of odd order. We have

and

$$|\mathbf{C}(\pi) \cap \overline{\mathfrak{G}}| = 64, |\mathbf{C}(\tau) \cap \overline{\mathfrak{G}}| = 32$$
$$|\mathbf{C}(\pi\tau) \cap \overline{\mathfrak{G}}| = |\mathbf{C}(\pi) \cap \mathbf{C}(\lambda)| = 32.$$

Using [15; p. 146], we get from the action of $\langle \pi, \tau \rangle$ on $\mathbf{0}(\overline{\mathfrak{G}})$ that $\mathbf{0}(\overline{\mathfrak{G}})$ is trivial. It follows from [17; Theorem 4, p. 169] that $\mathbf{0}(\mathfrak{G}) = 1$.

The 2-group $\langle p, lt, zm \rangle$ is dihedral of order 8 and is a Sylow 2-subgroup of \mathfrak{M} . Further, $\mathbf{C}_{\mathfrak{M}}(p) = \langle p, lt, zm \rangle$, $\mathbf{0}(\mathfrak{M}) = 1$ and $\langle n, a \rangle \subseteq \mathfrak{M}$. Assume that \mathfrak{M} has a subgroup of index 2. If \mathfrak{N} is the intersection of all subgroups of index 2 of \mathfrak{M} , then $2 \leq [\mathfrak{M}:\mathfrak{N}] \leq 4$, and so $\langle p \rangle$ and $\langle p, lt, zm \rangle \subseteq \mathfrak{N}$ which is not possible. Hence \mathfrak{M} does not possess subgroups of index 2. We are in the situation to apply [6; Theorem 1, p. 553] and get that $\mathfrak{M} \cong \mathcal{A}_6$ or $\mathfrak{M} \cong PSL(2, 7)$.

Denote by $\overline{\mathfrak{M}}$ the counter image of \mathfrak{M} in $\overline{\mathfrak{G}}$. A Sylow 2-subgroup of $\overline{\mathfrak{M}}$ is $\langle \mu \rangle \times \langle \pi \mu, \tau \lambda \rangle \langle \mu' \xi \rangle$. From a result in [3] we get $\overline{\mathfrak{M}} = \langle \mu \rangle \times A$ where A is isomorphic to A_6 or PSL(2, 7). Since A char $\overline{\mathfrak{M}}$ we get $A \triangleleft \overline{\mathfrak{G}}$. Clearly, $\langle \nu, \alpha^{\tau'} \rangle \subseteq A$, and since $\langle \pi \mu, \tau \lambda \rangle \langle \nu \rangle$ is isomorphic to A_4 , also $\langle \pi \mu, \tau \lambda \rangle \langle \nu \rangle \subseteq A$. Because of $(\pi \mu)^{\tau' \alpha \tau'} = \pi \mu \mu' \xi$, it follows $\mu' \xi \in A$. Hence $\langle \pi \mu, \tau \lambda \rangle \langle \mu' \xi \rangle$ is a Sylow 2-subgroup of A.

We shall consider now $A\langle \mu' \rangle = X$. Assume that $\mathbf{C}_{\mathbf{x}}(A) = \langle y\mu' \rangle$ is of order 2 for some $y \in A$. Then $[y, \mu'] = [y, \pi\mu] = 1$ and $\nu^{-1} = y^{-1}\nu y$. Since $(y\mu')^2 = 1$ we have $y^2 = 1$. Since

$$\mathbf{C}_{A}(\pi\mu) = \langle \pi\mu, \, au \lambda \rangle \langle \mu' \xi \rangle \quad ext{and} \quad \langle \pi\mu, \, au \lambda \rangle \langle
u \rangle \langle \mu' \xi \rangle \cong S_{4} \,,$$

we obtain $y = \mu'\xi$. We must have $[y\mu', \tau'\alpha\tau'] = [\xi, \tau'\alpha\tau'] = 1$. Consequently,

$$\mathbf{L} = \xi \tau' \alpha^{-1} \tau' \xi \tau' \alpha \tau' = \xi \tau' \alpha^{-1} \mu' \xi \alpha \tau' = \xi \tau' (\alpha^{-1} \mu' \alpha) \mu \tau',$$

and so

$$\alpha^{-1}\mu'\alpha = \tau'\xi\tau'\mu = \mu'\xi\mu \sim \pi$$

which is not possible. It follows that $C_x(A) = 1$ and $A\langle \mu' \rangle$ is isomorphic to an automorphism group of A. Since a Sylow 2-subgroup of $A\langle \mu' \rangle$ has no elements of order 8, we get $A \cong A_6$ and $A\langle \mu' \rangle \cong S_6$.

We have $|\overline{\mathfrak{G}}| = 8 \cdot |A|$, and $\overline{\mathfrak{G}}/\mathbb{C}_{\overline{\mathfrak{G}}}(A) \cong S_6$ since $\overline{\mathfrak{G}}$ has no elements of order 8. It follows that $|\mathbb{C}_{\overline{\mathfrak{G}}}(A)| = 4$. Obviously, $A \cap \mathbb{C}_{\overline{\mathfrak{G}}}(A) = 1$. Since $\overline{\mathfrak{G}}/A$ is dihedral of order 8, we have to discuss the following three cases:

(1)
$$A\mathbf{C}_{\bar{\mathfrak{G}}}(A) = A\langle \mu, \mu' \rangle,$$

(2) $A\mathbf{C}_{\overline{\otimes}}(A) = A\langle \mu'\lambda \rangle$, (3) $A\mathbf{C}_{\overline{\otimes}}(A) = A\langle \mu, \lambda \rangle$.

(3) $A\mathbf{C}_{\mathfrak{G}}(A) = A\langle \mu, \lambda \rangle.$

The case (1) cannot happen, since then $AC_{\overline{\otimes}}(A) = \langle \mu \rangle \times A \langle \mu' \rangle$ against $|C_{\overline{\otimes}}(A)| = 4$. Assume that we are in the case (2). Then $C_{\overline{\otimes}}(A) = \langle y\mu'\lambda \rangle$ would be of order 4 for some $y \in A$. We have

$$[y, \mu'\lambda] = [y, \pi\mu] = [y\mu',\nu] = 1$$
 and $(y\mu'\lambda)^2 = y^2\mu \in \mathbb{C}(A),$

and so $y^2 \in \mathbf{C}(A) \cap A = 1$. It follows that $y = \mu'\xi$. Hence $\mathbf{C}_{\overline{\otimes}}(A) = \langle \xi \lambda \rangle$. Therefore $[\xi \lambda, \tau' \alpha \tau'] = 1$ which means

$$\tau'\alpha^{-1}\tau'(\xi\lambda)\tau'\alpha\tau' = \tau'\alpha^{-1}(\mu'\xi\tau\lambda)\alpha\tau' = \tau'(\alpha^{-1}\mu'\alpha)\mu\tau\lambda\tau' = \xi\lambda,$$

and therefore

$$\alpha^{-1}\mu'\alpha = \tau'\xi\lambda\tau'\lambda\tau\mu = \mu'\xi\tau\lambda\lambda\tau\mu = \mu\mu'\xi \sim \pi$$

yields a contradiction.

We are necessarily in case (3). Since $\mu \in \mathbb{C}_{\bar{\otimes}}(A)$ we get $A\mu \cap \mathbb{C}(A) = \mu$ and hence $A\lambda \cap \mathbb{C}_{\bar{\otimes}}(A) \neq \emptyset$ since $|\mathbb{C}_{\bar{\otimes}}(A)| = 4$. There exists $y \in A$ such that $y\lambda \in \mathbb{C}(A)$. It follows that $[y, \lambda] = [y, \nu] = [y, \pi\mu] = 1$. Because of

$$\mathbf{C}_{\mathtt{A}}(\pi\mu) = \langle \pi\mu, \ au\lambda, \ \mu'\xi
angle \quad ext{and} \quad \langle \pi\mu, \ au\lambda
angle \langle
u'\xi
angle \cong S_4 \ ,$$

it follows that y = 1. Hence $C_{\bar{\otimes}}(A) = \langle \mu, \lambda \rangle$. The lemma is proved.

5. The identification of G with A_{10}

(5.1) LEMMA. [u, v] = 1 and uv is of order 3. $\langle \mu', \tau' \rangle$ normalizes $\langle u, v \rangle$.

Proof. Denote by R a Sylow 3-subgroup of $\mathbf{N}_{G}(S)$ which contains u. We know that R is elementary abelian of order 9, and that $SR \triangleleft \mathbf{N}_{G}(S)$. Consider $SR\langle \tau', \mu' \rangle = X$ and compute $\mathbf{C}_{X}(u)$. It is $\mathbf{C}_{X}(u) = R(S\langle \tau', \mu' \rangle \mathbf{n} \mathbf{C}(u)) = R\langle \tau' \rangle$. Further, $R \triangleleft R\langle \mu', \tau' \rangle$. The element ν possesses precisely four conjugates in RS under RS. These are $\nu, \nu^{\pi}, \nu', \nu^{\pi\tau}$. Hence $\nu^{x} \in R$, for some x in $\{1, \pi, \tau, \pi\tau\}$. If $x = \tau$, then ν^{τ} and $\mu'\nu^{\tau}\mu'$ lie in R and hence $[\nu^{\tau}, \mu'\nu^{\tau}\mu'] = 1$ which is not possible. Therefore $x \neq \tau$. Similarly, one proves

that $x \neq \pi \tau$. It follows that x = 1 or $x = \pi$. Interchanging ν and ν^{π} if necessary, we may and shall assume $[u, \nu] = 1$.

(5.2) LEMMA. The element uv of order 3 centralizes A. Further,

 $\mathbf{N}_{G}(\langle \mu, \lambda \rangle) = (\langle \mu, \lambda \rangle \times A) \langle u, \mu' \rangle.$

Proof. Clearly,

$$u\nu \in \mathbf{N}_{G}(\langle \mu, \lambda \rangle), \qquad \mathbf{C}_{G}(\langle \mu, \lambda \rangle) = \langle \mu, \lambda \rangle \times A.$$

It follows that $u\nu$ normalizes A. The automorphism group of A is an extension of A by a four-group. Hence $u\nu$ induces an inner automorphism on A. We have $[\pi\mu, u\nu] = 1$ and since $C_A(\pi\mu) = \langle \pi\mu, \tau\lambda, \mu'\xi \rangle$, it follows that $(u\nu)^4$ induces the identity automorphism on A. Because $u\nu$ is of order 3, we obtain $[u\nu, A] = 1$.

(5.3) LEMMA. Denote by ω an element of order 5 in $A\langle \mu' \rangle$. $\mathbf{C}_{G}(\omega)$ is equal to $(\langle \mu, \lambda \rangle \langle u\nu \rangle) \times \langle \omega \rangle$ or $L \times \langle \omega \rangle$ where $L \cong A_{\mathbf{5}}$.

Proof. There is only one conjugate class of elements of order 5 in $C_{\sigma}(\mu)$. We have $C_{\sigma}(\omega) \cap C_{\sigma}(\mu) = \langle \mu, \lambda \rangle \times \langle \omega \rangle$. Let U be a Sylow 2-subgroup of $C_{\sigma}(\omega)$ containing $\langle \mu, \lambda \rangle$. Assume $\langle \mu, \lambda \rangle \subset U$. If $Z(U) \not \equiv \langle \mu, \lambda \rangle$, then 2^{3} divides $|C_{\sigma}(\omega) \cap C_{\sigma}(\mu)|$ which is not the case. Hence $Z(U) \subseteq \langle \mu, \lambda \rangle$ and μ, λ or $\mu\lambda$ is contained in Z(U). But then $|C_{\sigma}(\omega) \cap C_{\sigma}(x)|$ is divisible by 2^{3} where $x \in \{\mu, \mu\lambda, \lambda\}$. However, in G we have $\mu \sim \lambda \sim \mu\lambda$, and so, $C_{\sigma}(x) \cap C_{\sigma}(\omega)$ is conjugate to $C_{\sigma}(\mu) \cap C_{\sigma}(\omega)$ in G against $2^{3} \upharpoonright |C_{\sigma}(\omega) \cap C_{\sigma}(\mu)|$. We have proved that $U = \langle \mu, \lambda \rangle$. Put $K = O(C_{\sigma}(\omega))$. It follows from [15; p. 146] that

$$|K| \cdot |\mathbf{C}_{\mathcal{K}}(\langle \mu, \lambda \rangle)|^{2} = |\mathbf{C}_{\mathcal{K}}(\mu)| \cdot |\mathbf{C}_{\mathcal{K}}(\lambda)| \cdot |\mathbf{C}_{\mathcal{K}}(\mu\lambda)| = 5^{3}.$$

Therefore |K| = 5 and $K = \langle \omega \rangle$. It follows from (5.2) that $u\nu \in \mathbf{C}_{\mathcal{G}}(\omega)$. Hence all involutions of $\mathbf{C}_{\mathcal{G}}(\omega)$ are conjugate under $\mathbf{C}_{\mathcal{G}}(\omega)$. Application of [12; Main Theorem, p. 191] yields the lemma.

(5.4) LEMMA.
$$C_{g}(uv) = \langle uv \rangle \times W$$
 where $W \cong A_{7}$ and $A \subset W$.

Proof. It is $\mu^{\tau'} = \pi \mu$. Hence

$$\mathbf{C}_{G}(\pi\mu) = (\langle \pi\mu, \tau\lambda \rangle \times \widetilde{A}) \langle \mu' \rangle$$

and

$$\langle u\nu, \alpha, \mu, \lambda, \xi \rangle \subseteq \widetilde{A}.$$

We know that $\tilde{A} \cong A_6$. There exists an element β in \tilde{A} such that $(\beta \mu')^2 = 1$ and $[\beta \mu', u\nu] = 1$. Put

$$Y = \mathbf{C}_{\mathbf{G}}(\pi\mu) \cap \mathbf{C}_{\mathbf{G}}(u\nu).$$

The group $T = \langle \pi \mu, \tau \rangle \langle \beta \mu' \rangle$ is dihedral of order 8 and a Sylow 2-subgroup of Y. The structure of $\tilde{A} \langle \mu' \rangle$ yields $|Y| = 2^3 3^2$. Let U be a Sylow 2-subgroup of $C_{\sigma}(u\nu)$ which contains T. Suppose $T \subset U$. If $Z(U) \nsubseteq T$, then 2^4

divides |Y| which cannot happen. If $Z(U) \subseteq T$, then $Z(U) = \langle \pi \mu \rangle$ and again we get a contradiction to |Y|. Hence T = U.

Put $K = \mathbf{0}(\mathbf{C}_{G}(u\nu))$. We have

$$|K|\cdot |\mathbf{C}_{\mathbf{K}}(\langle \pi\mu, \tau\lambda\rangle)|^{2} = |\mathbf{C}_{\mathbf{K}}(\pi\mu)|\cdot |\mathbf{C}_{\mathbf{K}}(\tau\lambda)|\cdot |\mathbf{C}_{\mathbf{K}}(\pi\mu\tau\lambda)|.$$

Since $C_{\sigma}(\mu)$ does not contain subgroups of order divisible by $3 \cdot 5$, we obtain that K is a 3-group with $3 \leq |K| \leq 81$. We know that $A \subseteq C_{\sigma}(u\nu)$. Hence ω induces an automorphism on $K/\langle u\nu \rangle$. Since a 3-group of order at most 27 does not have an automorphism of order 5 which follows from [7; Theorem 12.2.2, p. 178], we know that ω stabilizes the chain $K \supseteq \langle u\nu \rangle \supset \langle 1 \rangle$. It is a consequence of [9; Lemma 7, p. 6] that ω centralizes K. Application of (5.3) yields $K = \langle u\nu \rangle$ is of order 3.

We shall now apply [6; Theorem 1, p. 553]. If $C_{\mathfrak{g}}(u\nu) = B$ has a normal subgroup of index 4, then B would have a normal 2-complement against $\omega \in B$ and $\mathfrak{O}(B) = \langle u\nu \rangle$. Put $B/\langle u\nu \rangle = \mathfrak{B}$ and $\langle u\nu \rangle A/\langle u\nu \rangle = \mathfrak{A}$. Assume that \mathfrak{B} has a subgroup \mathfrak{U} of index 2. Clearly, $\mathfrak{A} \not\subseteq \mathfrak{U}$ since 8 does not divide $|\mathfrak{U}|$. Hence $\mathfrak{U}\mathfrak{A} = \mathfrak{B}$ and $\mathfrak{U} \cap \mathfrak{A} \triangleleft \mathfrak{A}$. If $\mathfrak{U} \cap \mathfrak{A} = 1$, then $\mathfrak{B}/\mathfrak{U} \cong \mathfrak{A}\mathfrak{U}/\mathfrak{U}$ $\cong \mathfrak{A}/\mathfrak{U} \cap \mathfrak{A} = \mathfrak{A}$ yields a contradiction. If $\mathfrak{U} \cap \mathfrak{A} = \mathfrak{A}$, then $\mathfrak{A} \subseteq \mathfrak{U}$ which we had ruled out. Hence \mathfrak{B} does not have subgroups of index 2. It follows that \mathfrak{B} is isomorphic to PSL(2, q), q odd, or \mathfrak{B} is isomorphic to A_7 . In any case, \mathfrak{B} is a simple group. In the epimorphism $B \to \mathfrak{B}$ put $b \to \overline{b}$ for an element $b \in B$. We have

$$|\mathbf{C}_{\mathfrak{B}}(\bar{\pi}\bar{\mu})| = 2^{3}3 \text{ and } \mathbf{C}_{\mathfrak{B}}(\bar{\pi}\bar{\mu}) = (\langle \bar{\pi}\bar{\mu}, \bar{\tau}\bar{\lambda} \rangle \times \langle \bar{x} \rangle) \langle \bar{\beta}\bar{\mu}' \rangle$$

where $\bar{x}^3 = 1$ for an $x \in A$ and $\langle \bar{x}, \bar{\beta}\bar{\mu}' \rangle \cong S_3$ since in $\tilde{A}\langle \mu' \rangle$ a group of order 9 is not centralized by an involution. It follows that $C_{\mathfrak{B}}(\bar{\pi}\bar{\mu}) = C_{A_7}((12)(34))$ and so by the result of [13] we must have $\mathfrak{B} \cong A_7$. Since $\langle u\nu \rangle \times A \subseteq C(u\nu)$ we get from a result in [3] that $C_G(u\nu) = \langle u\nu \rangle \times W$, where $W \cong A_7$. Since A has no subgroup of index 3, it follows $A \subset W$. The proof is complete.

(5.5) LEMMA. $\mathbf{N}_{G}(\langle u\nu \rangle) = (\langle u\nu \rangle \times W) \langle \mu' \rangle$ and $W \langle \mu' \rangle \cong S_{7}$.

Proof. Put $W\langle \mu' \rangle = X$. Suppose $C_X(W) = \langle w\mu' \rangle$ is of order 2 for some $w \in W$. Then $[w\mu', W] = 1$ but no involution of G centralizes a group isomorphic to A_7 . Hence $W\langle \mu' \rangle$ is an automorphism group of W and so

$$W\langle \mu' \rangle \cong S_7$$
.

(5.6) LEMMA. $\mathbf{N}_{G}(\langle u\nu \rangle) \cap \mathbf{C}_{G}(\mu) = A \langle \mu' \rangle$.

Proof. We have

$$\mathbf{N}_{G}(\langle u\nu\rangle) \cap \mathbf{C}_{G}(\mu) = \langle \mu'\rangle((\langle u\nu\rangle \times W) \cap \mathbf{C}_{G}(\mu)) = \langle \mu'\rangle(W \cap \mathbf{C}(\mu)) = \langle \mu'\rangle A.$$

(5.7) LEMMA. In G we have $u\nu \sim \nu$, $u \sim \rho$ and $\nu \nsim u$.

Proof. Since $[u, \tau'] = 1$ and $\tau' \sim \pi$ in G and since all elements of order 3 in H are conjugate in H, we conclude that $\rho \sim u$ in G. We have $[\pi \mu \mu' \xi, \rho] = 1$ and $\pi \mu \mu' \xi \sim \mu$ in G. There is a Sylow 2-subgroup J of $C_G(\pi \mu \mu' \xi) \cap$

 $\mathbf{C}_{\mathbf{G}}(\rho)$ which is dihedral of order 8 and contains $\langle \pi, \pi \mu \mu' \xi \rangle$. It follows that J is a Sylow 2-subgroup of $\mathbf{C}_{\mathbf{G}}(\rho)$. If we had $\rho \sim u\nu$ in G, then J and

$$\langle \pi\mu, \ au\lambda, \ \mu' \xi
angle$$

would be conjugate in G against $\langle \pi\mu, \tau\lambda, \mu'\xi \rangle \subseteq A$. Hence $\rho \sim u\nu$ in G. Since $\langle \mu, \lambda, \xi \rangle$ centralizes ν , we get $\nu \sim \rho$ in G. Since $C_G(\mu)$ has precisely two classes of elements of order 3, it follows $u\nu \sim \nu$ in G.

(5.8) LEMMA. We have $\xi u \nu \xi = u^{-1} \nu^{-1}$, $\xi u \xi = u^{-1} \nu$ and $\nu^{\tau'} = u^{-1} \nu^{-1}$.

Proof. The element $u\nu$ centralizes A and $\mu'\xi \,\epsilon A$. We get $\mu'\xi u\nu\xi u' = u\nu$ and so $\xi u\nu\xi = u^{-1}\nu^{-1}$ and $\xi u\xi = u^{-1}\nu$. To complete the proof, one represents $\langle \mu', \tau' \rangle \langle \xi \rangle$ on $\langle u, \nu \rangle$ and uses (4.1) and (4.2).

(5.9) LEMMA. The elements α and ν of order 3 commute.

Proof. From (5.8) we conclude that $C_{\mathfrak{G}}(u\nu)$ is mapped onto $C_{\mathfrak{G}}(\nu)$ under τ' . Since $\alpha^{\tau'} \in W$, we get $[\nu, \alpha] = 1$.

(5.10) LEMMA. The involutions μ' , $\nu\mu'$, $\pi\mu\mu'$ and ξ are conjugate in $W\langle\mu'\rangle$ and are transpositions. The involution $\pi\mu\xi$ is a product of three transpositions.

Proof. We have $(\pi\mu\mu')^{\tau\lambda} = \mu'$ and $\langle \pi\mu, \tau\lambda\rangle\langle\nu\rangle\langle\mu'\rangle \cong S_4$. Hence $\nu\mu' \sim \mu'$ in $W\langle\mu'\rangle$. The element α of order 3 normalizes L_2 , $\langle \pi, \mu, \xi\rangle$ and $L_2\langle\mu'\rangle = \mathbf{C}_G(\langle \pi, \mu, \xi\rangle)$. Using the fact that $[\nu, \alpha] = 1$ one verifies that

 $(\mu')^{\alpha} \epsilon \{\mu', \mu\mu', \xi\mu', \mu\mu'\xi\}.$

Since $\pi \sim \mu \mu' \xi$, we get

$$(\mu')^{\alpha} \epsilon \{\mu', \mu\mu', \xi\mu'\}.$$

If $(\mu')^{\alpha} = \mu'$, then $(\mu\mu')^{\alpha} = \mu\xi\mu' \sim \pi$ yields a contradiction. Also $(\mu')^{\alpha} = \xi\mu'$ is not possible since then $(\xi\mu')^{\alpha} = \mu\xi\mu' \sim \pi$ which is not possible. We must have $(\mu')^{\alpha} = \mu\mu'$ and so $(\mu\mu')^{\alpha} = \xi\mu'$. Hence $\mu' \sim \mu\mu' \sim \xi\mu'$ in $(W\langle\mu'\rangle)^{\tau'}$ since $\langle \alpha, \mu' \rangle \subseteq (W\langle\mu' \rangle)^{\tau'}$. Therefore $\mu' \sim \pi\mu\mu' \sim \xi$ in $W\langle\mu' \rangle$. Now, either μ' or $\pi\mu\xi$ is a transposition in $W\langle\mu' \rangle$. Since $\pi \sim \pi\mu\xi$ in G and 5 does not divide |H| we get that μ' is a transposition and $\pi\mu\xi$ is a product of three transpositions.

(5.11) LEMMA. The group G contains a subgroup Q isomorphic to A_{10} .

Proof. From [2; Section 161] follows that S_7 contains precisely one conjugate class of subgroups isomorphic to S_6 . By S_6 we denote the symmetric group on the set $\{1, 2, 3, 4, 5, 6\}$. There exists an isomorphism φ of $W\langle \mu' \rangle$ onto S_7 which maps $A\langle \mu' \rangle$ onto S_6 . $\{\mu', \nu\mu', \pi\mu\mu', \xi\}$ is a set of transpositions in $A\langle \mu' \rangle \langle A$. Using φ , we can find a transposition $\sigma \in W\langle \mu' \rangle \backslash (W \cup A\langle \mu' \rangle)$ such that the order of $\sigma\mu'$ is 3 and $[\sigma, \nu\mu'] = [\sigma, \pi\mu\mu'] = [\sigma, \xi] = 1$. Also, we can find a transposition δ in $A\langle \mu' \rangle \langle A$ such that $[\sigma, \delta] = [\nu\mu', \delta] = 1$, $(\pi\mu\mu'\delta)^3 = (\delta\xi)^3 = 1$. Clearly, both σ and δ invert $\mu\nu$ and $[\mu, \delta] = 1$.

We have $\langle \sigma, \mu \rangle \subseteq \mathbf{C}_{\sigma}(\nu \mu') \cap \mathbf{C}(\pi \mu \mu') \cap \mathbf{C}(\xi) = X$. The group X is trans-

formed by $\pi \mu \tau \lambda$ onto $\mathbf{C}_{\mathcal{G}}(\nu) \cap \mathbf{C}(\mu') \cap \mathbf{C}(\xi) = \bar{X}$ since

$$\mathbf{C}(\nu\mu') \cap \mathbf{C}(\pi\mu\mu') = \mathbf{C}(\nu\pi\mu) \cap \mathbf{C}(\pi\mu\mu').$$

Obviously,

$$\mathbf{C}(\mu') \cap \mathbf{C}(\xi) = \mathbf{C}(\mu'\xi) \cap \mathbf{C}(\mu').$$

The elements μ' and $\mu'\xi$ are transpositions of $W^{\tau'}\langle\mu'\rangle$ and $[\mu', \mu'\xi] = 1$. It follows that 3 divides the order of X. Since $C_G(\nu) \cap C(\mu') \cong S_5$ by (5.7), (5.8) and (5.10), we get $\bar{X} = \langle \xi \rangle \times \langle k \rangle \langle z \rangle$, where $k^3 = z^2 = 1$ and $\langle k, z \rangle \cong S_3$ since $\xi \in Z(\bar{X})$. Since $[\mu, \alpha] \neq 1$, we get that the order of $\mu \sigma$ is either 3 or 6. Denote by $\bar{\sigma}$ the element $\sigma^{\pi\mu\tau\lambda}$. Suppose that the order of $\mu\bar{\sigma}$ is 6. Then $\langle \mu\bar{\sigma} \rangle \triangleleft \bar{X}$ and $(\mu\bar{\sigma})^3 = \xi$. Since $\xi^{\pi\mu\tau\lambda} = \xi$ and $(\mu\alpha)^3 = \xi$, it follows from $[\mu\sigma, \pi\mu\mu'\delta] = 1$ that also $[\xi, \pi\mu\mu'\delta] = 1$ and so $[\xi, \delta] = 1$ against $1 \neq \delta\xi$ and $(\delta\xi)^3 = 1$. It follows that $\mu\sigma$ is of order 3.

Put $u\nu = M_1$, $\mu = M_2$, $\sigma = M_3$, $\mu' = M_4$, $\nu\mu' = M_5$, $\pi\mu\mu' = M_6$, $\delta = M_7$ and $\xi = M_8$. For the M_i we have obtained the following relations:

$$1 = M_1^3 = M_{i+1}^2 = (M_i M_{i+1})^3 = (M_i M_j)^2$$

where $i, j = 1, 2, \dots, 8, j > i + 1$.

It follows from [4; chapter XIII] that $\langle M_1, M_2, \cdots, M_8 \rangle = Q \cong A_{10}$.

(5.12) LEMMA. G = Q.

Proof. From (4.2) and the fact that Q contains precisely two classes of involutions, and because $C_{G}(\mu)$ is isomorphic to $C_{A_{10}}((12)(34))$, we obtain that Q contains the centralizer in G of each of its involutions. Assume that Q is properly contained in G. Since by (3.1) the group G is simple, we get $\bigcap_{g \in G} Q^g = 1$. Application of a lemma in [14] yields that the number of conjugate classes of involutions of G is one against (2.11). We have proved that Q = G and so $G \cong A_{10}$. The proof of Theorem B is complete.

References

- 1. R. BAER, Classes of finite groups and their properties, Illinois J. Math., vol. 1 (1957), pp. 115-187.
- 2. W. BURNSIDE, Theory of groups of finite order, 2nd edition, Dover, New York, 1955.
- W. GASCHÜTZ, Zur Erweiterungstheorie der endlichen Gruppen, J. Reine Angew. Math., vol. 190 (1952), pp. 93-107.
- 4. L. E. DICKSON, Linear groups, with an exposition of the Galois field theory, Dover, New York, 1958.
- 5. G. GLAUBERMAN, Central elements in core-free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
- 6. D. GORENSTEIN AND J. H. WALTER, On finite groups with dihedral Sylow 2-subgroups, Illinois J. Math., vol. 6 (1962), pp. 553-593.
- 7. M. HALL, JR., The theory of groups, Macmillan, New York, 1959.
- D. HELD, A Characterization of the alternating groups of degrees eight and nine, J. Algebra, vol. 7 (1967), pp. 218-237.
- 9. ———, Gruppen beschränkt Engelscher Automorphismen, Math. Ann., vol. 162 (1965), pp. 1–8.

- Z. JANKO, A characterization of the Mathieu simple groups, I, J. Algebra, vol. 9 (1968), pp. 1-19.
- 11. D. E. LITTLEWOOD, The theory of group characters and matrix representations of groups, 2nd edition, Oxford University Press, Oxford, 1958.
- M. SUZUKI, On characterizations of linear groups, I, Trans. Amer. Math. Soc., vol. 92 (1959), pp. 191-204.
- 13. , On finite groups containing an element of order four which commutes only with its powers, Illinois J. Math., vol. 3 (1959), pp. 255-271.
- 14. J. G. THOMPSON, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 383-437.
- 15. H. WIELANDT, Beziehungen zwischen den Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe, Math. Zeitschr., vol. 73 (1960), pp. 146–158.
- W. J. WONG, A characterization of the alternating group of degree eight, Proc. London Math. Soc. (3), vol. XIII (1963), pp. 359–383.
- 17. H. ZASSENHAUS, Gruppentheorie, 2nd edition, Vandenhoeck & Ruprecht, Göttingen.

Monash University Clayton, Victoria Australia