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1. Introduction

Choquet boundary theory has mainly been developed so far for ordered
Banach spaces which have a strict order unit and the order unit norm, or
equivalently for the space of continuous affine functionals on a compact convex
set in a locally convex topological linear space. However Choquet, [4], showed
that much of the theory can be extended to the case where there is no order
unit, and in particular he showed how to define conical measures and their
barycentres for such spaces. In [6] his methods were used to characterize
intrinsically the ordered Banach spaces whose duals are Banach lattices; these
spaces are cMled R-spaces.

In this paper we show how all these concepts are preserved under the con-
tinuous embedding of one ordered Banach space as a subspace of another.
Under the weak filtering condition of 3, we find that there is a very close con-
nection between the Choquet theories of the two spaces, and if the one space is
also dense in the other the two theories coincide in a certain exact sense.
In 4 this is used to provide a representation of any ordered Banach space

with a topologicM order unit as a space of extended-vMued affine functionMs
on a compact convex set. The Choquet theory of such spaces reduces to the
usual Choquet theory of a compact convex set. We then analyse a large class
of R-spaces, including all separable ones.
For a Banach lattice with a topological order unit this provides a representa-

tion as a vector lattice of extended-valued continuous functions on a compact
Hausdorff space, which is unique up to homeomorphism. We indicate how
this representation is related to that of Bernau, [3], which exists under much
weaker hypotheses.

2. The general theory

We recall some of the basic definitions and notation of the Choquet theory
for ordered Banach spaces developed in [4], [6]. An ordered Banach space is
said to be regular if it satisfies the conditions"

(i) ifx, yeVand-x < y_< xthen
(ii) if xeV and e > 0 then there is some yeV with y _> x, --x and

Ilyil < lixil +
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The stump of the positive cone V+ of V is defined s the set

IxeV’O <_ x nd Ilxll _< 1}.

If V is a regular ordered Banach space then V* is regular, nd the stump X of
the positive cone of V* is a compact convex set in the wek* topology. V is
canonically order-isomorphic nd homeomorphic with Ao(X), the space of con-
tinuous linear functionls on X. We let S be the cone of functions on X which
are the pointwise suprema of a finite number of functions of Ao(X). If
L S S then L is a vector lattice of continuous functions on X, nd in [6]
we showed how to give L a norm so that it is a normal lattice nd the naturM
iniection a V - L is an isometric order iniection. The positive elements of
L* re clled conical measures nd the stump of the positive cone of L* is
denoted P. The injection a" V -- L has a dul " L* -- V* such that
(P)

_
X; this is clled the barycentre map. We denote the set of conical

V*measures such that x e by R(x, V) nd observe that it follows
quickly from the definition of the norm in L, [6], that if x e X then
R(x, V)

_
P.

If , e P we write _< u if (, f) _< (, f) for all f e S. This mkes P into
prtially ordered set nd it is shown in [4, 6] that every element of P is domi-

ntedbyamxima.lelement. IfxeXfori 1,... ,nndx xeX
then the functional

f ---* f(xi) - + f(x,)

defined for allf e L is an element of R(x, V) P nd is clled a discrete conical
representing measure for x. In [6] we showed that the discrete conical meas-
ures are dense in R(x, V) for ll x e X.
Now suppose that V1, V2 re two regular ordered Banch spces. We cll a

one-one continuous map i" V1 -- V2 with i 1 an embedding if for ny
x e V we have 0 _< x if nd only if 0 _< ix.

THEOREM 1. Let i" V ---> V2 be an embedding between the regular ordered
Banach spaces V, V2. Then i induces a one-one lattice homomorphism
i" L -- L2 with i 1 such that if at" Vr ---> L r 1, 2, are the natural em-
beddings then ial a2 i. The maps induce dual maps

j" X---, X and j" P---> P

such that if P ---. X r 1, 2, are the barycentre maps then jt j. The
map j" P ---> P is order-preserving.

Proof. The dual j V -- V of i" V1 - V is positive nd of norm 1 so
we have j(X2) X. If V*+ is the positive cone of V* for r 1, 2, then
j(V is weak* dense in V+. For otherwise by the Hhn-Banach theorem
we could find some x e V with x 0 but x J(V*+) >- 0. But then we would
have ix I( >- 0 so that ix >_ O, and this is impossible as i is an embedding.
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The map j X2 -- X1 induces a dual map i L1 -- L. which is an extension of
i V1 -- V2. It is clear that i is a lattice homomorphism. Supposef e L1 and
if O. Thenf (jX.) 0 and asf is linear on the rays of V+ so f l(jV+) 0
Now f is the restriction to X1 of a continuous function defined on the cone V+

with the weak* topology andj(V*+) is dense in V+. Thereforef 0 and we
conclude that i" L1 -- L. is one-one. Now suppose that f e 51 and f < 1.
Then by the definition of the norm of L1 [6] there is some g e V1 with g >_ f,
-f and [[ g tl < 1. As i" L1 -- 52 is a -l-re map and an extension of i" V1 -- V2
so ig (if), (-if), and so as L. is a normed lattice we have if <- ig _<
Ilgll < 1. Thereforei’51 -L2hasnorm 1.
The dual j" L -- L of i" L1 -. L2 is positive and of norm 1 and so

j(P2) PI. The equation j2 fj is the dual of the equation ial a i.
We now show that j P2 -- P1 preserves order. Let ),, e P2 and _< . For
any f e S1 we have if $2 and so (f, jX) (if, X) <_ (if, ) (f, j). There-
fore jX _< j.
COROLLARY 2. If i V1 -- V2 is an embedding of the regular ordered Banach

space V onto a dense subspace of the regular ordered Banach space V2 then the
maps

j" X-- X and j" P2-- P
are one-one. For , P we have <_ if and only ifj <_ j.
For if iV1 is dense in V. we see that, as i’Ll--. L2 is an extension of

i V1 - V and the lattice operations in a normed lattice are continuous [7] so
iLl is dense in L2 and iS1 is dense in $2.
Without stronger conditions on the embedding i V1 - V. little more can be

said about the above situation. We now call a subspace L of an ordered
Banach space V a weakly filtering subspace of V when

If x L, y V, y >_ x, 0 and 0 then there exist xl L and yl V such that
y >_ x >_ x, O and y yl < .
This condition was first used for the special case of a subspace of the space of
all continuous affine functionals on a Choquet simplex by Jellett, [13]. See also
[10].

THEOREM 3. Let L be a weaklyfiltering subspace of an ordered positively gener-
ated Banach space V. Let be a positive functional on L and b a positive func-
tional on V such that <_ L. Then there exists a linear extension $ of to
Vsuch that O <_ $ <_ .

Proof. First recall [15] that a positive functional on an ordered positively
generated Banach space is continuous, and suppose for definiteness that

]1 -< 1. We define a sublinear functional p on V by

p(x) inf {(, y) O, x _< y e V}
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and observe that for 0 _< x e V we have p(x) (b, x) and for 0 _> x e V we
have p(x) O. We now assert that for all x e L we have (, x) <_ p(x).
For let e > 0 and let 0, x _< y e V satisfy (, y) < p(x) -t- e/2. Using the fact
that L is a weakly filtering subspace of V let xl e L, yl e V, yl _> xl _> x, 0 and
Y Y II < e/2. Then we have the chain of inequalities

(, x) <_ (, x) (, x)

_
(b, y) <_ (y) -el2 < p(x) + e

and as e > 0 is arbitrary so (, x) <_ p(x). We use the Hahn-Banach theorem
to obtain an extension 5 of to V such that (5, x) <_ p(x) for all x e V. If
0 >_ x e V then (5, x) <_ p(x) 0, so $ is a positive functional. If 0 _< x e V
then (, x) <_ p(x) (b, x) so 5 _< b.

We now define an ideal I in an ordered vector space V as a positively gener-
ated subspace such that if 0 _< x _< y e I then x e I.

ConoRv 4. Let i" V -- V be an embedding of the regular ordered Banach
space as a dense weakly filtering subspace of the regular ordered Banach space V

V*Then the dual map j V ---> is an embedding of V as a wea* dense ideal
in V.
THEOREM 5. Let i V ---> V be an embedding of the regular ordered Banach

space V as a weakly filtering subspace of the regular ordered Banach space V..
Then the induced map j P -- P between the sets of conical measures has range
equal to all the conical measures in P. whose barycentre is in jX. Specifically
we have the formula

j{R(x, V2)/ R(jx, V)

for all x e X.. j" P. ---> P1 preserves the partial ordering and maps maximal
conical measures to maximal conical measures.

Note. A related theorem for the space of continuous affine functionals on a
Choquet simplex has been proved in [13].

Proof. It follows inductively from Theorem 3 that if xr e X1 for r 1, n
and xr jy e XI where y e X2 then there are yr e X for r 1, n with
y yandjyr xforr 1,... ,n. Now the mapj’P2Plislinear
sO

i (Z) LJ r -e.
Therefore j{R (x, V)} is compact and contains all discrete conical measures in
R (jx, Vx). As is shown in [4, 6], the set of 11 discrete conical measures is dense
iu R(jx, V) so we see that the formula of the theorem holds.

Choquet, [4], has shown that u conical measure on a regular ordered
Banaeh space V is maximal if and only if for all f e S we have

(, f) inf {(, g) "f _< g e -S}.
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NOW let/ e P2 be maximal and let f $1, g -S., if

_
g and e > 0. It follows

inductively from the fact that iV1 is a weakly filtering subspace of V, and from
the continuity of the lattice operations in a normed lattice that there exist
f e -$1, gl e -S. with if

_
if

_
g and g g < e. Therefore

(j, f) (/z,/f)

inf {(, g) if <_ g e -S}

inf {(, g) if

_
g e -iS}

inf [(ju, h) f

_
h e -$1}

and we see that j/ is a maximal conical measure.

COtOLLAtV 6. If in the situation of Theorem 5, iV1 is a dense weallyfiltering
subspace of V2 then j P2 P maps P homeomorphically and order isomorphi-
cally onto the set of conical measures in P whose barycentre is in jX.

3. Topological order units

An interesting case of the theory of the least section occurs when V1 is an
order unit norm space. The Choquet theory of these spaces is well understood,
see for example [2, 16], and it is indicated in [6] how our theory reduces to the
usual one for order unit norm spaces. Thus under the conditions of Corollary
6 the Choquet theory of V can be reduced to the Choquet theory of a compact
convex set, and in particular the maximal conical measures oft V. can be re-
garded as those which are concentrated on the extreme rays of the locally
compact positive cone of V these extreme rays can be regarded as "virtual"
extreme rays of the positive cone of V*. We now show how this situation
arises in the general case.

If V. is a regular ordered Banach space then any element 0 _< e e V. such that
e I1 1 defines an ideal

V x e V -ne

_
x

_
ne for some n}

and if we give V the order unit norm

x inf {a"

then V1 becomes a regular ordered Banach space and the injection i" V1 --. V
is an embedding of V into V:. We now define a topological order unit e in V
as a non-negative element generating the ideal V with e 1 and such that

( if x e V y V2 e > 0 and y ee >_ x, 0 then there exists some z e V1
withy >_ z >_ x, O and y zll < ;

(ii) if 0 <_ x V 0 <_ y y2 V > 0 and yl - y >_ x then there exist
x x e V .with y >_ x for i 1, 2 and x - x. - ee >_ x.

Example. Let V be the subspace of L[O, 1] @ L[2, 3] of measurable rune-
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tions f such that

with the norm

f dx f dx

li l] dx, If[ d

and the ordering given by saying that 0 _< f e V if and only if f >_ 0 almost
everywhere. Then V is a regular ordered Banach space and the element e
which is constantly one is a topological order unit. We note from this example
that it is not generally possible to eliminate the e > 0 from (i) and (ii) in the
above definition.

If e is a topolocial order unit in the regular ordered Banach space V2 then
e V1 -- V2 embeds V1 as a dense weakly filtering subspace of V and so all our
previous theory applies. Define B V* as

B {eV’0_< and (e) 1}

so that B is a compact convex base for the locally compact positive cone in V,
[8]. It is well known that V1 is canonically isometrically and order isomorphic
with A (B), the space of continuous affine functionals on B, in such a way that
e e Vx corresponds to the function one. j" V -- V identifies V* with a dense
ideal in V.
THEOREM 7. Let e be a topological order unit in the regular ordered Banach

space V. and let B be the natural base of the dual cone of the ideal V generated by e.
Then there is a natural one-one, linear, order-preserving map j from the positive
cone V+ to the cone of lower semi-continuous a3fine functionals on B which extends
the identification j V ----> A B). There is also a natural, one-one, linear, order
preserving map f from the positive cone L+ to the cone of regular Borel measures
on B such that if 0 <_ f e V and is a conical measure for V then

(f’) fB (jr) d(j’).

Proof. If f e V+ we define the function ff on B by

jr= sup{jg’f>_ g e Vl
sup[jg’f- ee >_ geV for some e ) 0}.

By condition (i) on e we can show that the second family of g e V filters up-
wards and converges in norm to f. Therefore jf is lower semi-continuous affine
and

(f,#) sup{(g,)’f- ee )_ geV1 for some e > 0}.

Also because of the filtering condition we see that for g e Vx we havef ee _> g
for some e > 0 if and only if jf > jg on B, and it follows that j is one-one. It
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clearly preserves order and has the properties that j(af) a(jf) for all a _> 0
and f e V+ and that j(f + g) >_ jf --t-jg for all f, g e V+
We now show that j is subadditive. Let f, g e V+ and let f -t- h e V1. For

some positive integer n we have

(f -[- ne) -[- (g + he) >_ h -[- 2ne >_ O.

By condition (ii) on e, for any e > 0 we cun find h, h e V with f + ne >_ hl,
g -F ne >_ h and

h -- h - ee >_ h -- 2ne.

Therefore f >_ (h ne), g >_ (. he) and

Therefore
(h ne) -- (h. ne) >_ h ee.

jf -F jg >_ j(h ne) -F j(h ne) >_ jh e.

As e > 0 is arbitrary and h e V1 is arbitrary subject to h

_
f 4- g so by the

definition of j(f + g) we have

jf - jg >_ j(f -F g).

The other map j’ of the theorem is the restriction of the map from L intoL
defined earlier. Our general theory tells us that the formula of this theorem
holds for all f e V. It therefore holds for all f e V+ ia consequence of the
formula

and the remarks at the beginning of the proof.
In [6] we defined an R-space as a regular ordered Banach space with the Riesz

decomposition property, and proved that an ordered Banach space is an
R-space if and only if its dual is a Banach lattice. We also investigated the
ideal structure of these spaces. Further light on their structure is thrown by
the following theorem.

THEOREM 8. An element 0

_
e V. in an R-space V is a topological order

unit if and only if e 1 and the ideal V generated by e is dense in V every
separable R-space has a topological order unit. If V is an R-space with a topo-
logical order unit e then there is a natural one-one map j’ from the set of closed
ideals of V to a sublattice of the set of closed faces of the Choquet simplex B as-
sociated with V such that i]I is a closed ideal in V then

I+ {f e V+ (jf) l(j"I) 0}.
where j on V+ is the map of the last theorem.

Before we prove this theorem we shall need a lemma on ideals ia R-spaces
which is of the same type as the results in [6].
LEMMA 9. If I is an ideal in an R-space V then its closure I is also an ideal



ORDERED BANACH SPACES 183

and if 0 <_ f I we can write

where 0 <_ f,, e I and :--1 f,, < .
Proof. We first show that I is positively generated.

If f ei we can certainly find eI such that :_,[[]] < and:=f f. Now for euch n let f. g, h, where g, e I and h. e V with
h < 2 ]]. By the Riesz decomposition property we obtain . e V with

and then see that/ce I and II/-]1 < 2 11 ] ]l. Now as _:..1 It/c. < so
:__/c, k e i converges and as =t==1f _< --1 k. for all m so by the
closedness of V+ we have =t=f _< k.
Now let0_< 1 _<feI. Then we have

Using the Riesz decomposition property we can write l -t- ml where
0<_ 11_< l,kand

0 < <
Proceeding inductively we see that we can write

where 0 _< 1. _< l,/ and

o < <

and

Finally as 0 g l g k e I so 1, e I. This both proves that i is an ideal and
on putting f gives us the formul of the lemma.

Proof of theorem. For 0 _< e e V. to be a topological order unit it is clearly
necessary for V1 to be dense in V2. Conversely suppose this is the case. We
prove a strengthened form of condition (i) on e. Let y e V2, x V1, y _> x, 0
and e > 0. By the lemma there exists 0 e V with 0 <: _< y and Y I1 < e.
By u simple use of the Riesz decomposition property we can now find z e V with
x, co_<z_<y. Then0, x_<z_<yand[Iz--yll <e. A strengthened form of
condition (ii) on e is immediate from the Riesz decomposition property.

Let V be a separable R-space. Then if e is a countable dense set in V+

then
e a =i e/2 e

is a topological order unit for some a > 0, using the previous criterion.
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If e is a topological order unit in the R-space V then V1 is a simplex space
and the base B of V+ is a Choquet simplex. See [5], [9], [11]. The facial
structure of Choquet simplexes is described in [11]. If I is a closed ideal in
V then I n V1 is a closed ideal in V and so corresponds to a face jPI of B. In
fact I I n V by the lemma so we see that j’P is a one-one map. To prove
that the set of closed faces j"I which arise in this way is a sublattice of the
lattice of all faces in B it is sufficient to prove that if I, J are closed ideals in
V then

(I n J) n V (I n V) n (J n V)
and

(I + J)n V (I n Vx) + (J n Vx)

since it is shown in [6] that the sum and intersection of two closed ideals in an
R-space are closed ideals. The first equation is trivial and it is also obvious
that the right-hand side of the second equation is contained in the left-hand
side, both sides representing ideals in V. Now let 0 _< f e (I + J) n V.
As in Theorem 5.3 of [6] we see that we can write f g + h where 0 _< g e I
and 0 _< h e J. As V1 is an ideal so g e I n Vx and h e J o. V. As (I + J) n V
is an ideal it is positively generated and this concludes the proof of the second
equation.

For 0 _< e V we have by the definition of j"I that f I if and only if
(#f)l(j"I) o. Now using the lemma and the definition of jf for 0 _< f e V
it is clear that the formula of the theorem holds.. Bctnctch Iottices

For a Banach lattice V. it is more natural to present this theory in a rather
different form, although the situation is essentiMly the same as that of Theorem
8. An element 0 <_ e e V with II e 1 is a topological order unit if and
only if for all 0 _< f e V., limnf/ ne f. The ideal V generated by e is a
Kakutani M-space [13] under the order unit norm and the Choquet simplex B
has a closed boundary 2 and we can identify

V A(B) C()

by [1]. If j V1 - C(2) is this identification then the representation j of V+
of Theorems 7, 8 is essentiMly the same as the map j from V+ to the cone of
lower semi-continuous functions on 2 given by

j(f) sup, {j(f / ne)

and this map j is also one-one, linear, and preserves the lattice operations of
V+ Now for any 0 _< f e V. we have]

(jr) / n jf / j(ne) j(f ne) e C(2).

We can conclude that each function if" --4 [0, o] is actually continuous.
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Moreover as (jr, ) is finite for a weak*-dense family of measures on so ff is
finite on an open dense subset of

If 2 is any compact Hausdorff space then the set (2) of all continuous
functions f 2 -- [-- o, which are finite on an open dense set is a lattice but
not generally a vector space. (2) is a sublattice of the vector lattice D(2)
of all finite continuous functions defined on open dense sets with the obvious
operations and identification of two functions which are almost everywhere
equal. By a vector sublattice of (2) we shall mean a vector sublattice of
D (2) each element of which is in (2). By an ideal in () we shall mean a
vector sublattice L of (2) such that if 0 _< f _< g e L and f e (2) then f e L.

THEOREM 10. If V is a Banach lattice with a topological order unit, for ex-
ample a separable Banach lattice, then each topological order unit e defines a
compact Hausdorff space and a faithful representation j of V as an ideal in
(). The space is independent of the unit e up to homeomorphism and there
is a one-one correspondence between the closed ideals of V and a sublattice of the
set of closed subsets of . V* may be identified with an ideal in M(), the dual
of C(a).

Proof. We shall not prove those parts of this theorem which are obvious
corollaries of previous theorems though in fact simple direct proofs for this
special case can often be produced.

If j V+ -- (2) is as defined above then we extend j to V by defining

j(f) j(f V O) j(-r V O)

and see quickly that this is a faithful representation of V as a vector sublattice
of (2). Now let 0 <_ f <_ jg where f e () and 0 _< g e V. We have
g lims (g f he) and so there is a sequence ms of integers such that
mn+i ms and

g A ,n.+, g A e < oo,

:Now

As

(jg) A m+ (jg) A ms (jg) A ms+l} V ms m,

>_ (f A m+) V m ms

(f A m+) (f A m)

>0.

(f A m.+) (f A m) e C()

so we can find unique h e V with

jh (f A m,+l) (f A m,)
und this h. satisfies

0g h (gAm,+e) (gAm, e).
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Therefore -0 h < and the sum

_,’oh,, heV
converges.

jh / m j(h / me)

j limN {me/ =0 h}

j limN 3-1{u/ (f/ m+l)

j lim 3
-1(f/ m)

=f/m.
Therefore jh f and we have shown that jV is an ideal in (2).
As in Theorem 8 we see that there is a one-one correspondence between the

set of closed ideals in V and a certain sublattice of the set of closed ideals in
C(2). As the closed ideals in C(2) correspond exactly to the closed subsets of
2 so we get a natural one-one correspondencej between the set of closed ideals
in V and a sublattice of the set of closed subsets in 2, as in Theorem 8. Let
K 2 be a closed regular set, that is a closed subset of 12 with K int K. Let
I V be the closed ideal given by

I {feV" ]fl / ]gl 0 for all geV such that supp(jg) _intK}.

Then we can show that jttI K, so that the family of sets ffI where I are
closed ideals in V, contains all regular closed sets.
We can now identify the points of 2 with the maximal increasing filtering

families of proper closed ideals of V. We say a set K 2 is in C if it consists
of all the maximal filtering families containing a particular closed ideal of V.
Then the family forms a base for the closed sets of the topology of 2, so
that is indeed independent of the unit e e V.

Finally V* can be identified with an ideal in M(2) as in Corollary 4 and
Theorem 7. This concludes the proof.

We now indicate how this representation is related to that of Bernau, [3],
obtained under more general conditions by purely algebraic methods. It
is easy to show that his polar subspaces are precisely those closed ideals I
such that j"I are closed regular subsets of 2. The space Bernau constructs is
the Stone space of the complete Boolean algebra of regular closed subsets
of 2, [12], and there is a natural map ) -- 2. Bernau’s representation
is obtained by lifting our representation from 2 to . If V is order-complete
then , is a homeomorphism and the representations coincide.
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