WALSH SERIES AND ADJUSTMENT OF FUNCTIONS ON SMALL
SETS

BY
J. J. Price

1. Introduction

D. E. Menshov proved that a measurable function finite almost everywhere
on [0, 27] can be changed on a set of measure less than ¢ to a function whose
Fourier series converges uniformly ([4]; see also [1, Chapter VI]). Recently,
B. D. Kotlyar [3] proved an analogous theorem for Walsh series. Menshov
proved also that for continuous functions the set where the adjustment is
made can be chosen to depend only on ¢ and the modulus of continuity.

In this paper, we present a different proof of Kotlyar’s theorem that con-
tains also an analogue of Menshov’s theorem on continuous functions. Ac-
tually, our result contains somewhat more. Let {p,} and {g,} be increasing
sequences of positive integers such that

(1) << Pp<@p< -, {g,/ps} 1is unbounded.
Define
(2) W = U:o—l [‘l/k : Dy é k < q:t]

where ¥, is the k-th Walsh function. We shall prove that a measurable func-
tion can be changed on a small set to a function whose Walsh-Fourier series
converges uniformly and contains only Walsh functions in W.

TueoreEM. Let f be measurable and finite almost everywhere on (0, 1] and let o
positive € be given. Then there exists a function g such that

(a) g(z) = f(x) except on a set E of measure less than ¢,

(b) the Walsh-Fourier series of g contains only Walsh functions in the set W
defined by (1) and (2) and converges uniformly.
Furthermore, suppose p(8) s a nondecreasing function defined for 6 > 0 with

limaao p(5) = 0.

Then there is a set E depending only on & and p such that (a) and (b) hold for
every continuous function f whose modulus of continuity w(8) satisfies

w(8) = p(d).
This theorem contains a previous result of the author [5].

CoroLLARY. The system of Walsh functions W defined by (1) and (2) s
total in measure on [0, 1}.
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By the theorem, any bounded measurable function can be uniformly ap-
proximated by linear combinations of Walsh functions in W except on sets of
arbitrarily small measure. That means those linear combinations are dense
in the sense of convergence in measure.

2. Definitions

Basic properties of Walsh functions. For a detailed treatment of Walsh
functions, see the paper of N. J. Fine [2]. In this section, we review several
of their properties.

For each « in the interval [0, 1), there is a dyadic expansion

2= dn(f)

n=] 2

where d,(z) = 0 or 1. The expansion is unique if the terminating form is
chosen for dyadic rationals. Define

(3) Yo(z) =1, ¢u@) = 1, if duu(@) =0,
= =1, if dpu(z) =1,
and if
N=2"42" 4 ... 4+ 2" where 0SS m <n < +++ < M,
define

(4) Yn(z) = dam(@)ra(2) -+ Pam(2).

These are the Walsh functions. They are a complete orthonormal set in
Lo, 1].

If f is an integrable function, the k-th partial sum of its Walsh-Fourier
expansion will be denoted by si(z; f).

V(n) will denote the set of linear combinations of the Walsh functions
¥i where s < 2", V(n) consists of all step functions constant on each interval
I(n,j) =[j-27", (7 + 1)27"). Ifn <k, V(n, k) will denote the set of linear
combinations of Walsh functions ¢: where 2" < ¢ < 2. V(a, k) is the
orthogonal complement of V(n) in V(k). If fe V(n, k), then

si(z;f) =0, if <27,
= f(z), if iz 2"
The dyadic interval I(n, j) can be characterized as follows.
I(n,j) = [x: du(x) = du(%), do(2) = da(&), -~ , du(x) = du(E)]
where & is any point of I(n,j). From (3),
1+ Yo-1(@)geemr(z) = 2, if di(z) = di(F),
=0, if di(z) # di(Z).
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Therefore,

xn,i(z) = 27" JTi%0 (1 4 yas(&)¥us ()
where x»,; is the characteristic function of I(n,j). Because of (4),
xn,i(3) = 27" 235 Yu(E)i(x).
Since | ¢:(x) | = 1 for every z and all <.
max, | $:(2; xa5) | = 1, Ez0.
3. Adjustment of characteristic functions
LEMMA. Let xa,; be the characteristic function of the interval
I(n’ .7) = [j'z—‘”, (.7 + 1)2_”)°
Let r and N be positive integers, N = n. Then there is a function g with the
Sollowing properties.
(a) g¢g(z) = 0 outside of I(n,j).
(b)) g(z) = xu,ij(x) except on a set of measure
(¢) geV(N,N + r).
(d) max,|g(z)| <2
(e) max,|sk(x;g)| < 2 for every k = 0.
Proof. Define
(5) EN,f = Ufi;l [av ) Br); oy = 1"2—N, ,Bv = 0y + 2-—N—'
or equivalently,

Ex, = [z :dypu(x) = dypu(z) = -+ = dyy(x) = 0]

27,

Set
g(z) =0, if zel(m,j),
= —(2"—1), if zel(n,j)nEy,,
=1, otherwise.

(a) and (d) hold by definition. g(z) differs from f(z) only on I(n,j) n Ex ,
a set of measure 27" as can be seen from (5). Thus, (b) holds. Assertions
(e) and (e) are verified directly from the Walsh series for g.

(6) g(z) = 27[Ii% (1 + as(@)ai(2)) (1 — TTEZTT (1 4 v (2))).
This is so since
27" I (1 + ¢ (Bae(2)) = xa,i(2)
and for similar reasons,
A+ (@) = 2on.(a)

where ¢x,, is the characteristic function of Ex,. The product (6) can be
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expanded with the use of (4). All terms ¥i(z), ¢ < 27, cancel out and
g(x) = 27" 2312*1;—1 a; Yi(x)

where a; = =1 or 0 and exactly 2"*" — 2" of these coefficients are nonzero.
Consequently, g ¢ V(N, N 4+ r) and

max, | a(z;g) | S 27" 2 |ai| = 272" —2%) = 2" — 1.

This completes the proof of the lemma.
Because the integer N may be chosen arbitrarily large, the leraoma enables

us to adjust a sequence of characteristic functions, each time using a new
block of Walsh functions.

4. Proof of the theorem

It will suffice to prove the theorem for continuous functions. A measura-
ble function finite almost everywhere agrees with a continuous function
except on some set of measure less than ¢/2. That continuous function may
then be modified on a set of measure less than ¢/2.

We start with ¢ > 0, a Walsh subsystem W defined by (1) and (2), and a
function p(8). Let f be any continuous function whose modulus of continuity
satisfies w(8) = p(8). f can be expressed as the sum of a uniformly con-
vergent series of step functions.

(7) f(@) = 2 frl).

For each r, f, can be taken to be a dyadic step function, i.e. constant on each
interval I(n, , j) for some n, . The sequence {n,} can be taken to increase so
fast that the partial sums of the series (10) converge to f(z) as rapidly as
desired. Choose {n,} such that

(8) maXxsz lfr(m) I < 2—21" r> 0.

Once p(8) is given, {n.} can be selected independent of f.

Now arrange all the dyadie intervals I(n,,j) r 2 0,0 = j < 2™, into one
sequence. Take first all intervals I(no, j), then all intervals I(n,, j), ete.
Define

My = Z:—o 2n,, r _—>= 0, Moy = 0.
Then according to this enumeration,
I=1n,k) if t=pmpa+k<upu.

Let x: be the characteristic function of ;. Equation (7) may be written
as follows:

(9) f(z) = Z:‘Lo ai xi(x)

where {a:} is a suitable sequence of constants. This series converges uni-
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formly. Because of (8)
(10) las] < 27" if py S4< pr.

We now apply the lemma to modify each of the characteristic functions
x: . Let m be an integer such that

e 277 < .
Suppose p,—1 £ 7 < g . There is a function g; with the following properties.
(a) gi(z) = 0 outside of I .
(b) gi(xz) = xi(x) except on a set I; of measure 27"~
(¢) gieV(N:,Ni+ r+ m) where N; > N,_; + r + m and g; is a linear
combination of Walsh functions in W.

(d) max,|gi(z)| <27
(e) max, |s(z;g:) | <27

r—m

By the lemma, there is a function ¢; satisfying (a), (b), (d), (e), and be-
longing to V(N, N + r + m) where N may be taken arbitrarily large. By
property (1) of the system W, there is an index »; and an integer N; such that

P2V <2Vt <g, Ni>Ney+r+m
Choose N = N, and (¢) will be satisfied.
With (9) in mind we define
(11) g(z) = Doioaigx).
The series (11) converges uniformly; for a fixed z, g:(z) = O for all indices 4,
pr—1 = 2 < p. , with one exception and for that index
I a gi(x) I < 2—2r.2r+m = 2—-r+.m

because of (10) and (d).
We assert that g is the desired modification of f. First observe that g(z) =
f(x) except on the set

E=ULI.
Since | 71| = 2" s S < b,
IE ‘ = :°=0 Z'}LM,_I II: l = :°=0 2"'(2-‘”,—1——»2)

= Z:;o 27" = Z:Lm 2—' <e.

The set E depends on &, W, and p(§), but not on f.

By (e), each function g; is a linear combination of a block of Walsh fune-
tions in W (the blocks are disjoint). Therefore, the series (11) is easily
converted into a Walsh series involving only functions in W. That Walsh
series is the Walsh-Fourier series of g since a subsequence of its partial sums
converges uniformly to g(x).

It remains to show that s;(z; g) — g(z) uniformly. Because of uniform
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convergence in (11),

(@5 9) = im0 ai 81(@; g4).
From (e),

si(x; 9:) = 0, if k< 2%,
= gi(z), if k= 2V,
Now for some 7, 2%/ < k < 2%+, Hence
(2 9) = 2210 aigi(z) + a;8(w; 5)-
For some 7, pp—1 £ § < pr. Then from (10) and (e),
| o sz g5) | < 27727 = 277,
Ask — »,j— « and so,
1004 gi(T) = Dm0 i gi(x) = g(x)
uniformly. Asj — «,r— « and so

a; s (x;9;) — 0

uniformly. Therefore sy(z; g) — g(z) uniformly and the theorem is proved.
We remark that the theorem and corollary are true if we agsume in (1) only
that {g, — p,} is unbounded. The proof, though simple, is somewhat tedious

and will be omitted.
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