FOURIER-STIELTJES TRANSFORMS ON THE GENERALIZED LORENTZ GROUP

BY
Garth Warner

1. Introduction

The purpose of this note is to define the Fourier-Stieltjes transform and prove a uniqueness theorem for certain subalgebras of the measure algebra $M(G)$ of the generalized Lorentz group G. For an arbitrary semi-simple Lie group G with finite center such a definition was given in [1] for the algebra of measures stable for the action of K, K the compact constituent of the Iwasawa decomposition of G. In the formulation given below this algebra corresponds to $M^{0}(\chi), \chi$ the trivial character of K. On the other hand, we have limited ourselves to the generalized Lorentz group G since various aspects of the harmonic analysis on this group needed for the definitions are well known [5]. The main result in this paper is the fact that the Fourier-Stieltjes transform $\hat{\mu}$ of a measure μ determines μ, that is, $\hat{\mu}=0$ implies $\mu=0$. This result was obtained in [1, P. 218] for the algebra $M^{0}(\chi), \chi$ the trivial character of K. Our proof is similar to the one in [1] (cf. also [3, P. 680] where the same technique is employed in a different setting). For the convenience of the reader, we have gathered the necessary prerequisite material from [5] in a preliminary section.

2. Preliminaries

(A) Definition of the group G. Let G be the identity component of the orthogonal group associated with the indefinite quadratic form

$$
-X_{0}^{2}+X_{1}^{2}+\cdots+X_{n}^{2} \quad(n \text { an integer } \geq 2)
$$

G is a real simple Lie group called the generalized Lorentz group. Hence G consists of all matrices $g \in G L(n+1, R)$ such that $t g \cdot J \cdot g=J$ (" t " $=$ transpose) where

$$
J=\left[\begin{array}{lllllll}
- & 1 & & & & \\
& & 1 & & & & \\
& & & \cdot & & 0 & \\
& 0 & & & \cdot & & \\
& & & & & & 1
\end{array}\right]
$$

Received June 1, 1967.
and

$$
g=\left[\begin{array}{llll}
g_{00} & g_{01} & \ldots & g_{0 n} \\
g_{10} & g_{11} & \ldots & g_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
g_{n 0} & g_{n 1} & \ldots & g_{n n}
\end{array}\right]
$$

with $g_{00} \geq 1, \operatorname{det}(g)=1$. G admits an Iwasawa decomposition, $G=K A_{+} N$, where K is the maximal compact subgroup of rotations around the x_{0} - axis, A_{+}is a one-parameter subgroup of matrices of the form

$$
a_{t}=\left[\begin{array}{ccc}
\cosh t & \sinh t & 0 \\
\sinh t & \cosh t & \\
& 0 & \\
I_{n-1}
\end{array}\right]
$$

(I_{n-1} denoting the unit matrix of order $n-1$), and N is a nilpotent group homeomorphic to R^{n-1}. Let M denote the centralizer of A_{+}in K; then M may be identified with the rotations in the space ($X_{2}, X_{3}, \cdots, X_{n}$) leaving fixed X_{0} and $X_{1}[5, \mathrm{P} .300]$. If the Haar measure $d g$ on G is suitably normalized, one has

$$
\int_{G} f(g) d g=\int_{K} \int_{R} \int_{N} f\left(k a_{t} x\right) e^{(n-1) t} d k d t d x
$$

where $g=k a_{t} x\left(k \in K, a_{t} \in A_{+}, x \in N\right)$, $d k$ is the Haar measure on K of mass 1 and $d t, d x$ are the Euclidean measures in R, resp. $\quad R^{n-1}$ ([5, P. 299]).
(B) The algebras $L^{0}(\chi)$. Denote by \hat{K} the set of irreducible characters χ of K normalized in such a way that one has

$$
\chi(k)=\chi * \chi(k)=\int_{K} \chi\left(k l^{-1}\right) \chi(l) d l
$$

("*" is convolution product). Hence for each $\chi \in \hat{K}$ there exists an irreducible unitary representation π in a unitary space E of finite dimension $d(\chi)$ such that

$$
\chi(k)=d(x) \cdot \operatorname{Tr}(\pi(k)) \quad(k \in K)
$$

Similar normalizations and notations will be used for the set \hat{M} of irreducible characters η of M.

Let $L=L(G)$ denote the algebra of continuous complex-valued functions with compact support on G, with convolution product being the multiplication. The subset $L^{0}(\chi)$ of L consisting of all functions $f \in L$ such that
(i) $x * f * x=f$
(ii) $f^{0}=f$, where $f^{0}(g)=\int_{K} f\left(k g k^{-1}\right) d k$
is a subalgebra of L and the map $f \rightarrow f^{0} * \chi=\chi * f^{0}$ is a projection of L onto $L^{0}(\chi)$. Given $f \in L^{0}(\chi)$, define the Abel transform F_{f} of f by

$$
F_{f}(t)=e^{(n-1) t / 2} \int_{K} \int_{N} f\left(k a_{t} x\right) \pi\left(k^{-1}\right) d k d x
$$

Hence F_{f} is a map from the real line R to the algebra of linear operators in the representation space E of π. Among other things, it is proved in [5, P. 309] that
(i) $L^{0}(\chi)$ is a commutative algebra for every $\chi \in \hat{K}$;
(ii) if $F_{f}(t) \equiv 0$, then $f(g)=0$.

In addition, as a consequence of the fact that the restriction to M of every irreducible unitary representation of K decomposes into a direct sum of pairwise inequivalent irreducible representations of M, one is able to choose an orthonormal basis ($e_{p}: 1 \leq p \leq d(\chi)$) in E such that if

$$
\pi(k) e_{p}=\sum_{q=1}^{d(x)} e_{q p}(k) e_{q}
$$

then one has for $m \in M$,

$$
\left(e_{p q}(m)\right)=\left[\begin{array}{llllllll}
f^{1}(m) & & & & & & & \\
& \cdot & & & & & & \\
& & \cdot & & & & & 0 \\
& 0 & & & f^{i}(m) & & & \\
& & & & & & & \\
& & & & & \\
& & & & & & & \cdot
\end{array}\right]
$$

where, for $1 \leq j \leq \mu, m \rightarrow f^{j}(m)$ is an irreducible representation of M, of dimension r_{j}, with $d(\chi)=r_{1}+\cdots+r_{\mu}$. Let I_{j} be the set of integers p such that

$$
r_{1}+\cdots+r_{j-1}<p \leq r_{1}+\cdots+r_{j}
$$

and let $\eta^{j}(m)=r_{j} \cdot \operatorname{Tr}\left(f^{j}(m)\right), m \in M$. In [5, P. 312] it is proved that with respect to the basis (e_{p}) the matrix of $F_{f}(t)$ assumes diagonal form with

$$
F_{f}(t)_{p p}=e^{(n-1) t / 2} \int_{K} \int_{N} f\left(k a_{t} x\right) \overline{\frac{\chi * \eta^{j}(k)}{\chi * \eta^{j}(e)}} d k d x
$$

for $p \in I_{j}(e$ is the identity element in $G)$.
(C) Spherical functions of type χ. Fix a character χ and choose $\eta \in \hat{M}$ such that $\chi * \eta \neq 0$ (see (B)). Let s be a complex number and put

$$
\alpha_{\chi, \eta, s}(g)=\frac{\overline{\chi * \eta(k)}}{\chi^{* \eta(e)}} e^{-s t}
$$

if $g=k a_{t} x, k \in K, t \in R, x \in N$. Let

$$
\zeta_{\chi, \eta, s}(g)=\left(\alpha_{\chi, \eta, s}\right)^{0}(g)=\int_{K} \alpha_{\chi, \eta, s}\left(k g k^{-1}\right) d k
$$

Then the functions $\zeta_{x, \eta, s}$ are spherical functions in the sense of Godement [2] and Takahashi [5, P. 315] proved
(i) if $\operatorname{Re}(s)=(n-1) / 2, \zeta_{\chi, \eta, s}$ is positive definite;
(ii) for all $g_{1}, g_{2} \in G$, one has

$$
\int_{K} \zeta_{\chi, \eta, s}\left(k g_{1} k^{-1} g_{2}\right) d k=\zeta_{\chi, \eta, s}\left(g_{1}\right) \zeta_{\chi, \eta, s}\left(g_{2}\right)
$$

(iii) the map

$$
f \rightarrow \zeta_{\chi, \eta, s}(f)=\int_{G} f(g) \zeta_{\chi, \eta, s}(g) d g
$$

is a homomorphism of $L^{0}(\chi)$ into $C ; C=$ complex numbers.

3. Fourier-Stieltjes transforms

(A) The algebra $M^{\circ}(\chi)$. The symbol $M(G)$ will stand for the algebra (under convolution *) of all complex regular Borel measures on G with compact support. $M(G)$ is a normed algebra under the norm

$$
\|\mu\|=\int_{g} d|\mu|(g)
$$

($|\mu|$ being the total variation of μ). Measures ν on K (i.e. elements of $M(K)$) will be identified with elements in $M(G)$ by

$$
f \rightarrow \int_{K} f(k) d \nu(k) \quad(f \in L(G))
$$

Similarly elements in $L(G)$ will sometimes be identified with $f d g$ in $M(G)$. If $\mu \in M(G)$, then μ^{0} can be defined by the "weak" integral:

$$
\mu^{0}=\int_{K} \varepsilon_{k} * \mu *\left(\varepsilon_{k}-1\right) d k
$$

(ε_{k} being the unit mass at k). One has

$$
\left(\mu_{1}^{0} * \mu_{2}\right)^{0}=\left(\mu_{1} * \mu_{2}^{0}\right)^{0}=\mu_{1}^{0} * \mu_{2}^{0} .
$$

Definition. $M^{0}(\chi)$ will consist of all measures $\mu \in M(G)$ such that (i) $\mu=\mu^{0}$; (ii) $\mu=\chi * \mu * \chi$.

Evidently $M^{0}(\chi)$ is a subalgebra of $M(G)$ and in order to determine $\mu(f)$ ($f \in L(G)$) it is enough to know $\mu(f)$ for $f \in L^{0}(\chi)^{*}$.

Lemma 1. $\quad M^{0}(\chi)$ is a commutative algebra.
Proof. This follows at once from the fact that $L^{0}(\chi)$ is commutative and weakly dense in $M^{0}(\chi)$.

Definition. Let μ be a measure in $M^{0}(\chi)$. Let $r \in R, \eta \in \hat{M}$ such that $\chi * \eta \neq 0$, and put $s=(n-1) / 2+\sqrt{-1} r$. Then the Fourier-Stieltjes
transform $\hat{\mu}$ is defined by

$$
\hat{\mu}(r, \eta)=\int_{G} \zeta_{x, \eta, s}(g) d \mu(g)
$$

Thus $\hat{\mu}$ is a map from the Cartesian product of the line R with the finite set of characters η such that $\chi * \eta \neq 0$. Since $\operatorname{Re}(s)=(n-1) / 2, \zeta_{\chi, \eta, s}$ is positive definite and so $|\hat{\mu}(r, \eta)| \leq\|\mu\|$. In addition, the usual argument employing the regularity of μ shows that if η is fixed and $r_{j} \rightarrow r_{0}$, then

$$
\hat{\mu}\left(r_{j}, \eta\right) \rightarrow \hat{\mu}\left(r_{0}, \eta\right)
$$

Lemma 2. If $\sigma=\mu * \nu$, then $\hat{\sigma}=\hat{\mu} \cdot \hat{\nu}$. Hence the $\operatorname{map} \mu \rightarrow \hat{\mu}(r, \eta)$ is, for each (r, η), a complex; homomorphism of $M^{0}(\chi)$.

Proof. The proof depends on the functional equation satisfied by the $\zeta_{x, \eta, s}$ (see 2, part (C)). We have

$$
\begin{aligned}
\hat{\sigma}(r, \eta) & =(\mu * \nu)^{\wedge}(r, \eta) \\
& =\int_{G} \int_{G} \zeta_{X, \eta, s}\left(g_{1} g_{2}\right) d \mu\left(g_{1}\right) d \nu\left(g_{2}\right)
\end{aligned}
$$

And, since $\mu=\mu^{0}$,

$$
\begin{aligned}
\int_{G} \zeta_{\chi, \eta, s}\left(g_{1} g_{2}\right) d \mu\left(g_{1}\right) & =\int_{G} \zeta_{\chi, \eta, s}^{0}\left(g_{1} g_{2}\right) d \mu\left(g_{1}\right) \\
& =\int_{G} \int_{K} \zeta_{\chi, \eta, s}\left(k g_{1} k^{-1} g_{2}\right) d \mu\left(g_{1}\right) \\
& =\int_{G} \zeta_{\chi, \eta, s}\left(g_{1}\right) \zeta_{\chi, \eta, s}\left(g_{2}\right) d \mu\left(g_{1}\right)
\end{aligned}
$$

The assertion is now clear.
Next we prove that $\hat{\mu}$ determines μ.
Theorem 1. Suppose $\mu_{1}, \mu_{2} \in M^{0}(\chi)$ and $\hat{\mu}_{1}=\hat{\mu}_{2}$. Then $\mu_{1}=\mu_{2}$.
Proof. It is plainly enough to prove that $\hat{\mu}=0$ implies $\mu=0$ Suppose first that μ is absolutely continuous with respect to $d g$, that is, $d \mu=f d g$ with $f \in L^{0}(\chi)$. We have

$$
\begin{aligned}
\hat{\mu}(r, \eta) & =\int_{G} \zeta_{\chi, \eta, s}(g) d \mu(g) \\
& =\int_{G} \zeta_{\chi, \eta, s}(g) f(g) d g \\
& =\int_{K} \int_{R} \int_{N} f\left(k a_{t} x\right) \frac{\overline{(\chi * \eta)(k)}}{\chi * \eta(e)} e^{-s t} e^{(n-1) t} d k d t d x \\
& =\int_{R}\left\{e \frac{(n-1) t}{2} \int_{K} \int_{N} f\left(k a_{t} x\right) \frac{\overline{(\chi * \eta)(k)}}{\chi^{* \eta(e)}} d k d x\right\} e^{-\sqrt{-1} r t} d t \\
& =\int_{R} F_{f}(t)_{p p} e^{-\sqrt{-1} r t} d t
\end{aligned}
$$

Here p is any element in the set I_{j} determined by η (see 2, part (B)). In [5, P. 309] it is shown that $F_{f}(t)$ is a continuous function of t with compact support and hence for each $p, F_{f}(t)_{p p} \in L^{1}(d t)$. Moreover the above calculation shows that for $p \in I_{j} \hat{\mu}(r, \eta)$ is just the Fourier transform of $E_{f}(t)_{p p}$ and since $\hat{\mu}(r, \eta)=0$ we must have $F_{f}(t)_{p p}=0$. Letting η range over the set of characters such that $\chi * \eta \neq 0$, we conclude $F_{f}(t) \equiv 0$ which in turn implies $f=0$ (2, part (B)). Hence $\mu=0$.

In order to complete the proof, let f_{j} be an approximate identity in $L(G)$, that is, f_{j} is a sequence of functions in $L(G)$ such that
(i) $f_{j} \geq 0, j=1,2, \cdots$;
(ii) $\int_{G} f_{j}(g) d g=1, j=1,=, \cdots$;
(iii) if C is any compact subset of G containing e, then $\int_{a-c} f(g) d g \rightarrow 0$ as $j \rightarrow \infty$.

Let $\nu_{j}=\chi * f_{j}^{0}$. Then the arguments of the preceding paragraph imply $\mu * \nu_{j}=0$ since

$$
\left(\mu * \nu_{j}\right)^{\wedge}=\hat{\mu} \hat{\nu}_{j}=0
$$

and ν_{j} is absolutely continuous with respect to $d g$. On the other hand, given any $f \in L^{0}(\chi)$ we have $f_{j} * f \rightarrow f$ uniformly on compacta and so
$\mu * \nu_{j}(f)=\mu * \chi * f_{j}^{0}(f)=\mu\left(\chi * f_{j}^{0} * f\right)=\mu\left(\chi *\left(f_{j} * f\right)^{0}\right) \rightarrow \mu\left(\chi * f^{0}\right)=\mu(f)$. But since $\mu * \nu_{j}=0$ we must have $\mu=0$ too. This completes the proof.

Remark. The algebra $M(G)$ admits a natural adjoint map $\mu \rightarrow \mu^{*}$ under which each algebra $M^{0}(\chi)$ is stable. One may view each algebra $M^{0}(\chi)$ as a set of measures possessing certain symmetry properties. It would be of interest to know whether the algebras $M^{0}(\chi)$ are symmetric in the technical sense (cf. [4, P. 104]).

References

1. R. Gangolli, Isotropic infinitely divisible measures on symmetric spaces. Acta Math., vol. 111 (1964), pp. 213-246.
2. R. Godement, A theory of spherical functions I, Trans. Amer. Math. Soc., vol. 73 (1952), pp. 496-556.
3. S. Helgason, Duality and Radon transform for symmetric spaces, Amer. J. Math., vol. 85 (1963), pp. 667-692.
4. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
5. R. Takahashi, Sur les Representations Unitaires des Groupes de Lorentz Generalises, Bull. Soc. Math. France, vol. 91 (1963), pp. 289-433.
