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1. Introduction
The purpose of tbis note is to define the Fourier-Stieltjes transform and

prove a uniqueness theorem for certain subalgebras of the measure algebra
M(G) of the generalized Lorentz group G. For an arbitrary semi-simple
Lie group G with finite center such a definition was given in [1] for the algebra
of measures stable for the action of K, K the compact constituent of the
Iwasawa decomposition of G. In the formulation given below this algebra
corresponds to M(x), x the trivial character of K. On the other hand, we
have limited ourselves to the generalized Lorentz group G since various aspects
of the harmonic analysis on this group needed for the definitions are well
known [5]. The main result in this paper is the fact that the Fourier-Stieltjes
transform of a measure t determines t, that is, 0 implies t 0. This
result was obtained in [1, P. 218] for the algebra M(; ), x the trivial character
of K. Our proof is similar to the one in [1] (cf. also [3, P. 680] where the same
technique is employed in a different setting). For the convenience of the
reader, we have gathered the necessary prerequisite material from [5] in a
preliminary section.

2. Preliminaries

(A) Definition of the group G. Let G be the identity component of the
orthogonal group associated with the indefinite quadratic form

--X + X - + X (n an integer >_ 2).

G is a real simple Lie group called the generalized Lorentz group. Hence G
consists of all matrices g GL (n + 1, R) such that tg.J.g J ("t"
transpose) where

Received June 1, 1967.

125



126 GARTH WARNER

and
goo go, go,,1glO gll

g,

with g00 >_ 1, det (g) 1. G admits an Iwasawa decomposition, G KA+N,
where K is the maximal compact subgroup of rotations around the x0 axis,
A+ is a one-parameter subgroup of matrices of the form

cosh sinh 0 (t R)

at |sinh cosh

l 0 I,_

(I_ denoting the unit matrix of order n 1), and N is a nilpotent group
homeomorphic to R"-1. Let M denote the centralizer of A+ in K; then
M may be identified with the rotations in the space (X,., Xa, ..., X,)
leaving fixed X0 and X115, P. 300]. If the Haar measure dg on G is suitably
normalized, one has

f f(g) dg fK fR / f(a‘ x)e"-’ d] dt dx

where g k ax(k, e K, at e A+, x e N), dk is the Haar measure on K of
mass 1 and dt, dx are the Euclidean measures in R, resp. R"-1 ([5, P. 299]).

(B) The algebras L(x). Denote by / the set of irreducible characters
of K normalized in such a way that one has

x() x x(,) J,, x kl-l )x(1) dl

("." is convolution product). Hence for each x e/ there exists an irreducible
unitary representation r in a unitary space E of finite dimension d(x) such
that

X() d(x).Tr (r(k)) (k K).

Similar normalizations and notations will be used for the set of irreducible
characters of M.

Let L L(G) denote the algebra of continuous complex-valued functions
with compact support on G, with convolution product being the multiplica-
tion. The subset L(x) of L consisting of all functions f e L such that

(i) x*f*x=I
(ii) fo f, where fo() I f(/g/-*) dk
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is a subalgebra of L and the map f --. f0 x x * f0 is a projection of L onto
L(x). Givenf e L(x), define the Abel transform Ff off by

Ff(t) e(-l)l fKfNf(ka, x)(lC-1) dlc dx.

Hence Fs is a map from the real line R to the algebra of linear operators in
the representation space E of v. Among other things, it is proved in [5,
P. 309] that

(i) L(x) is a commutative algebra for every x e/;
(ii) if F(t) =- O, thenf(g) 0.

In addition, as a consequence of the fact that the restriction to M of every
irreducible unitary representation of K decomposes into a direct sum of
pairwise inequivalent irreducible representations of M, one is able to choose
an orthonormal basis (e 1 _< p _< d(x) in E such that if

(k)e z.,q--l’() e(k)eq (k e K),
then one has for m e M,

where, for 1 <_ j , m ---. fJ(m) is an irreducible representation of M, of
dimension r, with d() rl -t- - r,. Let I be the set of integers p
such that

r - -r_ <: p <_ r -t- r
and let vJ(m) r.Tr(f(m)), m e M. In [5, P. 312] it is proved that with
respect to the basis (%) the matrix of F(t) assumes diagonal form with

F(t) e(’-)* f fN f(ka, x) x* v(k) dk dx

for p e I(e is the identity element in G).

(C) Spherical functions of type x. Fix a character x and choose
such that x * 0 (see (B)). Let s be a complex number and put

x *
if g= kax, k e K, e R, x e N. Let

rx.,.,(g) (ax.,., (g) ax.,.,(kgk-) dk.
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Then the functions x,,, re spherical functions in the sense of Godement
[2] and Takahashi [5, P. 315] proved

(i) if Re(s) (n 1)/2, ,,., is positive definite;
(ii) for all g, g. e G, one has

(iii) the map

f -- ’x,,,8(f) Ja f(g)i’’n’’(g) dg

is a, homomorphism of L(x) into C; C = complex numbers.

3. Fourier-Stielties transforms
(A) The algebra M(x). The symbol M(G) will stand for the algebra

(under convolution ,) of all complex regular Borel measures on G with com-
pact support. M(G) is a normed algebra under the norm

(! i being the total wriatioa of ). Measures oa K (i.e. elements of
M(K)) will be identified with elements ia M(G) by

f (f e L(G)).

Similarly elements ia L(G) will sometimes be identified with f dg ia M(G).
If e M(G), then zo can be defined by the "weak" integral:

( being the unit mass at k). One hs

DTO. M(x) will consist of all measures e M(G) such that (i)
0 (ii) x./= =X* *

Evidently M(X) is subalgebra of M(G) and in order to determine (f)
(f e L(G)) it is enough to know (f) forf e L(X):

LEMMA 1. M(x) is a commutative algebra.

Proof. This follows at once from the fact that L(x) is commutative and
weakly dense ia M (x).

DEFINITION. Let be a measure ia M(x). Let r R, 2I such that
x * v 0, and put s (n 1)/2 -}- /- 1 r. Then the Fourier-Stieltjes
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transform is defined by

(r, ,) J: x..,(g) d(g).

Thus is a map from the Cartesian product of the line R th the finite set
of characters v such tha x * 0. Since Re(s) (n 1)/2, x,,, is
positive definite and so (r, v) . In addition, the usual arment
employing the relarity of shows that if is fixed and r r0, then

LEMMX2. Ira . , then .. Hence the map (r, y) is,
for each (r, ), a complex homomorphism of M(x).

Proof. The proof depends oa the functional equation satisfied by the
x.., (see 2, part (C)). We have

0And, since ,

The asseion is now clear.
Nex we prove that determines .
THEOaM 1. Suppose M(x) and . Then .
Proof. It is plainly enough to prove that 0 implies 0 Suppose

first that is absolutely continuous th respect to dg, that is, d f dg with
feL(x). Wehave

f. (g)/(g) dg

L L L f(ka’x) (x* n)(k)
x *

dk dt dx

L( (n--i)tif (x’ ’"* v)(k)e
2

f(ka, x)
x * v(e)

dk d dt
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Here p is any element in the set I determined by 7 (see 2, part (B)). In
[5, P. 309] it is shown that F](t) is a continuous function of with compact
support and hence for each p, Fs(t) L1(dr). Moreover the above calcula-
tion shows that for p e I (r, 7) is just the Fourier transform of Es(t)
and since (r, 7) 0 we must have Ff(t) O. Letting 7 range over the
set of characters such that x * 0, we conclude F](t) 0 which in turn
implies ] 0 (2, part (B)). Hence 0.

In order to complete the proof, let f be an approximate identity ip.. L(G),
that is, f is a sequence of functions in L(G) such that

(i)
(ii)
(iii)

fj>_O,j= 1,2,
fof(g) dg 1,j-- 1,--,...;
if C is any compact subset of G containing e, then fo-c f(g) dg ---, 0

Let x*f.
Osince

Then the arguments of the preceding paragraph imply

(, re)^ 0

and v is absolutely continuous with respect to dg. On the other hand, given
any f e L(x) we havef f -- f uniformly on compacta and so

(f) * x *f(]) (x */ */) (x * ( */)0)
_
(x * ]0) (f).

But since z 0 we must have # 0 too. This completes the proof.

Remark. The algebra M(G) admits a natural adjoint map z --* z* under
which each algebra M(X) is stable. One may view each algebra M(x)
as a set of measures possessing certain symmetry properties. It would be of
interest to know whether the algebras M(x) are symmetric in the technical
sense (cf. [4, P. 104]).
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