FOURIER-STIELTJES TRANSFORMS ON THE GENERALIZED LORENTZ GROUP

BY

GARTH WARNER

1. Introduction

The purpose of this note is to define the Fourier-Stieltjes transform and prove a uniqueness theorem for certain subalgebras of the measure algebra M(G) of the generalized Lorentz group G. For an arbitrary semi-simple Lie group G with finite center such a definition was given in [1] for the algebra of measures stable for the action of K, K the compact constituent of the Iwasawa decomposition of G. In the formulation given below this algebra corresponds to $M^{0}(\chi)$, χ the trivial character of K. On the other hand, we have limited ourselves to the generalized Lorentz group G since various aspects of the harmonic analysis on this group needed for the definitions are well known [5]. The main result in this paper is the fact that the Fourier-Stieltjes transform $\hat{\mu}$ of a measure μ determines μ , that is, $\hat{\mu} = 0$ implies $\mu = 0$. This result was obtained in [1, P. 218] for the algebra $M^0(\chi), \chi$ the trivial character of K. Our proof is similar to the one in [1] (cf. also [3, P. 680] where the same technique is employed in a different setting). For the convenience of the reader, we have gathered the necessary prerequisite material from [5] in a preliminary section.

2. Preliminaries

(A) Definition of the group G. Let G be the identity component of the orthogonal group associated with the indefinite quadratic form

$$-X_0^2 + X_1^2 + \cdots + X_n^2 \qquad (n \text{ an integer} \ge 2).$$

G is a real simple Lie group called the generalized Lorentz group. Hence *G* consists of all matrices $g \in GL$ (n + 1, R) such that $tg \cdot J \cdot g = J$ ("t" = transpose) where

Received June 1, 1967.

and

$$g = \begin{bmatrix} g_{00} & g_{01} & \cdots & g_{0n} \\ g_{10} & g_{11} & \cdots & g_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ g_{n0} & g_{n1} & \cdots & g_{nn} \end{bmatrix}$$

with $g_{00} \ge 1$, det (g) = 1. G admits an Iwasawa decomposition, $G = KA_+N$, where K is the maximal compact subgroup of rotations around the x_0 – axis, A_+ is a one-parameter subgroup of matrices of the form

$$a_{t} = \begin{bmatrix} \cosh t & \sinh t & 0 \\ \sinh t & \cosh t \\ 0 & I_{n-1} \end{bmatrix}$$
 (t ϵR)

 $(I_{n-1} \text{ denoting the unit matrix of order } n-1)$, and N is a nilpotent group homeomorphic to \mathbb{R}^{n-1} . Let M denote the centralizer of A_+ in K; then M may be identified with the rotations in the space (X_2, X_3, \dots, X_n) leaving fixed X_0 and $X_1[5, P. 300]$. If the Haar measure dg on G is suitably normalized, one has

$$\int_{G} f(g) \ dg = \int_{K} \int_{R} \int_{N} f(ka_{t} x) e^{(n-1)t} \ dk \ dt \ dx$$

where $g = k a_t x (k \epsilon K, a_t \epsilon A_+, x \epsilon N)$, dk is the Haar measure on K of mass 1 and dt, dx are the Euclidean measures in R, resp. R^{n-1} ([5, P. 299]).

(B) The algebras $L^{0}(\chi)$. Denote by \hat{K} the set of irreducible characters χ of K normalized in such a way that one has

$$\chi(k) = \chi * \chi(k) = \int_{\kappa} \chi(kl^{-1})\chi(l) \, dl$$

("*" is convolution product). Hence for each $\chi \epsilon \hat{K}$ there exists an irreducible unitary representation π in a unitary space E of finite dimension $d(\chi)$ such that

$$\chi(k) = d(\chi) \cdot \operatorname{Tr} (\pi(k)) \qquad (k \in K).$$

Similar normalizations and notations will be used for the set \hat{M} of irreducible characters η of M.

Let L = L(G) denote the algebra of continuous complex-valued functions with compact support on G, with convolution product being the multiplication. The subset $L^{0}(\chi)$ of L consisting of all functions $f \in L$ such that

(i) $\chi * f * \chi = f$ (ii) $f^0 = f$, where $f^0(g) = \int_{\kappa} f(kgk^{-1}) dk$ is a subalgebra of L and the map $f \to f^0 * \chi = \chi * f^0$ is a projection of L onto $L^0(\chi)$. Given $f \in L^0(\chi)$, define the Abel transform F_f of f by

$$F_f(t) = e^{(n-1)t/2} \int_{K} \int_{N} f(ka_t x) \pi(k^{-1}) \ dk \ dx.$$

Hence F_f is a map from the real line R to the algebra of linear operators in the representation space E of π . Among other things, it is proved in [5, P. 309] that

- (i) $L^{0}(\chi)$ is a commutative algebra for every $\chi \in \hat{K}$;
- (ii) if $F_f(t) \equiv 0$, then f(g) = 0.

In addition, as a consequence of the fact that the restriction to M of every irreducible unitary representation of K decomposes into a direct sum of pairwise inequivalent irreducible representations of M, one is able to choose an orthonormal basis $(e_p: 1 \leq p \leq d(\chi))$ in E such that if

$$\pi(k)e_p = \sum_{q=1}^{d(\chi)} e_{qp}(k)e_q \qquad (k \in K),$$

then one has for $m \in M$,

where, for $1 \leq j \leq \mu$, $m \to f^{j}(m)$ is an irreducible representation of M, of dimension r_{j} , with $d(\chi) = r_{1} + \cdots + r_{\mu}$. Let I_{j} be the set of integers p such that

$$r_1 + \cdots + r_{j-1}$$

and let $\eta^{i}(m) = r_{j} \cdot \operatorname{Tr}(f^{i}(m)), m \in M$. In [5, P. 312] it is proved that with respect to the basis (e_{p}) the matrix of $F_{f}(t)$ assumes diagonal form with

$$F_{f}(t)_{pp} = e^{(n-1)t/2} \int_{K} \int_{N} f(ka_{t} x) \frac{\overline{\chi * \eta^{i}(k)}}{\chi * \eta^{i}(e)} dk dx$$

for $p \in I_j(e \text{ is the identity element in } G)$.

(C) Spherical functions of type χ . Fix a character χ and choose $\eta \in \widehat{M}$ such that $\chi * \eta \neq 0$ (see (B)). Let s be a complex number and put

$$\alpha_{\chi,\eta,s}(g) = \frac{\chi * \eta(k)}{\chi * \eta(e)} e^{-st}$$

if $g = ka_t x, k \in K, t \in R, x \in N$. Let

$$\zeta_{\chi,\eta,s}(g) = (\alpha_{\chi,\eta,s})^0(g) = \int_K \alpha_{\chi,\eta,s}(kgk^{-1}) dk.$$

Then the functions $\zeta_{\chi,\eta,s}$ are spherical functions in the sense of Godement [2] and Takahashi [5, P. 315] proved

- (i) if $\operatorname{Re}(s) = (n-1)/2$, $\zeta_{\chi,\eta,s}$ is positive definite;
- (ii) for all g_1 , $g_2 \in G$, one has

$$\int_{\kappa} \zeta_{\chi,\eta,s}(kg_1 k^{-1}g_2) dk = \zeta_{\chi,\eta,s}(g_1)\zeta_{\chi,\eta,s}(g_2);$$

(iii) the map

$$f \to \zeta_{\chi,\eta,s}(f) = \int_g f(g) \zeta_{\chi,\eta,s}(g) \, dg$$

is a homomorphism of $L^{0}(\chi)$ into C; C = complex numbers.

3. Fourier-Stieltjes transforms

(A) The algebra $M^{\circ}(\chi)$. The symbol M(G) will stand for the algebra (under convolution *) of all complex regular Borel measures on G with compact support. M(G) is a normed algebra under the norm

$$\|\mu\| = \int_{g} d |\mu| (g)$$

 $(|\mu|$ being the total variation of μ). Measures ν on K (i.e. elements of M(K)) will be identified with elements in M(G) by

$$f \to \int_{\kappa} f(k) \, d\nu(k) \qquad (f \, \epsilon \, L(G)).$$

Similarly elements in L(G) will sometimes be identified with f dg in M(G). If $\mu \in M(G)$, then μ^0 can be defined by the "weak" integral:

$$\mu^{0} = \int_{K} \varepsilon_{k} * \mu * (\varepsilon_{k-1}) dk$$

 $(\varepsilon_k \text{ being the unit mass at } k)$. One has

$$(\mu_1^0 * \mu_2)^0 = (\mu_1 * \mu_2^0)^0 = \mu_1^0 * \mu_2^0.$$

DEFINITION. $M^{0}(\chi)$ will consist of all measures $\mu \in M(G)$ such that (i) $\mu = \mu^{0}$; (ii) $\mu = \chi * \mu * \chi$.

Evidently $M^0(\chi)$ is a subalgebra of M(G) and in order to determine $\mu(f)$ $(f \in L(G))$ it is enough to know $\mu(f)$ for $f \in L^0(\chi)$.

LEMMA 1. $M^{0}(\chi)$ is a commutative algebra.

Proof. This follows at once from the fact that $L^{0}(\chi)$ is commutative and weakly dense in $M^{0}(\chi)$.

DEFINITION. Let μ be a measure in $M^{0}(\chi)$. Let $r \in \mathbb{R}$, $\eta \in \hat{M}$ such that $\chi * \eta \neq 0$, and put $s = (n-1)/2 + \sqrt{-1} r$. Then the Fourier-Stieltjes

128

transform $\hat{\mu}$ is defined by

$$\hat{\mu}(r, \eta) = \int_{G} \zeta_{\chi,\eta,s}(g) \ d\mu(g).$$

Thus $\hat{\mu}$ is a map from the Cartesian product of the line R with the finite set of characters η such that $\chi * \eta \neq 0$. Since $\operatorname{Re}(s) = (n - 1)/2$, $\zeta_{\chi,\eta,s}$ is positive definite and so $|\hat{\mu}(r, \eta)| \leq ||\mu||$. In addition, the usual argument employing the regularity of μ shows that if η is fixed and $r_j \to r_0$, then

$$\hat{\mu}(r_j,\eta) \rightarrow \hat{\mu}(r_0,\eta).$$

LEMMA 2. If $\sigma = \mu * \nu$, then $\hat{\sigma} = \hat{\mu} \cdot \hat{\nu}$. Hence the map $\mu \to \hat{\mu}(r, \eta)$ is, for each (r, η) , a complex homomorphism of $M^0(\chi)$.

Proof. The proof depends on the functional equation satisfied by the $\zeta_{\chi,\eta,s}$ (see 2, part (C)). We have

$$\begin{aligned} \hat{\sigma}(r,\eta) &= (\mu * \nu)^{\wedge} (r,\eta) \\ &= \int_{\mathcal{G}} \int_{\mathcal{G}} \zeta_{\chi,\eta,s} (g_1 g_2) d\mu (g_1) d\nu (g_2). \end{aligned}$$

And, since $\mu = \mu^0$,

$$\int_{g} \zeta_{\chi,\eta,s} (g_{1} g_{2}) d\mu (g_{1}) = \int_{g} \zeta_{\chi,\eta,s}^{0} (g_{1} g_{2}) d\mu (g_{1})$$
$$= \int_{g} \int_{K} \zeta_{\chi,\eta,s} (kg_{1} k^{-1}g_{2}) d\mu (g_{1})$$
$$= \int_{g} \zeta_{\chi,\eta,s} (g_{1}) \zeta_{\chi,\eta,s} (g_{2}) d\mu (g_{1}).$$

The assertion is now clear.

Next we prove that $\hat{\mu}$ determines μ .

THEOREM 1. Suppose μ_1 , $\mu_2 \in M^0(\chi)$ and $\hat{\mu}_1 = \hat{\mu}_2$. Then $\mu_1 = \mu_2$.

Proof. It is plainly enough to prove that $\hat{\mu} = 0$ implies $\mu = 0$ Suppose first that μ is absolutely continuous with respect to dg, that is, $d\mu = f dg$ with $f \in L^0(\chi)$. We have

$$\begin{split} \hat{\mu}(r,\eta) &= \int_{g} \zeta_{\chi,\eta,s}\left(g\right) d\mu\left(g\right) \\ &= \int_{g} \zeta_{\chi,\eta,s}\left(g\right) f(g) \, dg \\ &= \int_{K} \int_{R} \int_{N} f(ka_{t} x) \, \overline{\frac{(\chi * \eta)(k)}{\chi * \eta(e)}} \, e^{-st} e^{(n-1)t} \, dk \, dt \, dx \\ &= \int_{R} \left\{ e \, \frac{(n-1)t}{2} \int_{K} \int_{N} f(ka_{t} x) \, \overline{\frac{(\chi * \eta)(k)}{\chi * \eta(e)}} \, dk \, dx \right\} e^{-\sqrt{-1}rt} \, dt \\ &= \int_{R} F_{f}(t)_{pp} \, e^{-\sqrt{-1}rt} \, dt. \end{split}$$

Here p is any element in the set I_j determined by η (see 2, part (B)). In [5, P. 309] it is shown that $F_f(t)$ is a continuous function of t with compact support and hence for each p, $F_f(t)_{pp} \epsilon L^1(dt)$. Moreover the above calculation shows that for $p \epsilon I_j \hat{\mu}(r, \eta)$ is just the Fourier transform of $E_f(t)_{pp}$ and since $\hat{\mu}(r, \eta) = 0$ we must have $F_f(t)_{pp} = 0$. Letting η range over the set of characters such that $\chi * \eta \neq 0$, we conclude $F_f(t) \equiv 0$ which in turn implies f = 0 (2, part (B)). Hence $\mu = 0$.

In order to complete the proof, let f_j be an approximate identity in L(G), that is, f_j is a sequence of functions in L(G) such that

(i) $f_j \ge 0, j = 1, 2, \cdots;$

(ii) $\int g f_j(g) dg = 1, j = 1, = , \cdots;$

(iii) if C is any compact subset of G containing e, then $\int_{a-c} f(g) dg \to 0$ as $j \to \infty$.

Let $v_j = \chi * f_j^0$. Then the arguments of the preceding paragraph imply $\mu * v_j = 0$ since

$$(\mu * \nu_j)^{\hat{}} = \hat{\mu}\hat{\nu}_j = 0$$

and ν_j is absolutely continuous with respect to dg. On the other hand, given any $f \in L^0(\chi)$ we have $f_j * f \to f$ uniformly on compacta and so

$$\mu * \nu_j(f) = \mu * \chi * f_j^0(f) = \mu(\chi * f_j^0 * f) = \mu(\chi * (f_j * f)^0) \to \mu(\chi * f^0) = \mu(f).$$

But since $\mu * \nu_j = 0$ we must have $\mu = 0$ too. This completes the proof.

Remark. The algebra M(G) admits a natural adjoint map $\mu \to \mu^*$ under which each algebra $M^0(\chi)$ is stable. One may view each algebra $M^0(\chi)$ as a set of measures possessing certain symmetry properties. It would be of interest to know whether the algebras $M^0(\chi)$ are symmetric in the technical sense (cf. [4, P. 104]).

References

- 1. R. GANGOLLI, Isotropic infinitely divisible measures on symmetric spaces. Acta Math., vol. 111 (1964), pp. 213-246.
- 2. R. GODEMENT, A theory of spherical functions I, Trans. Amer. Math. Soc., vol. 73 (1952), pp. 496-556.
- S. HELGASON, Duality and Radon transform for symmetric spaces, Amer. J. Math., vol. 85 (1963), pp. 667–692.
- 4. W. RUDIN, Fourier analysis on groups, Interscience, New York, 1962.
- 5. R. TAKAHASHI, Sur les Representations Unitaires des Groupes de Lorentz Generalises, Bull. Soc. Math. France, vol. 91 (1963), pp. 289-433.

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON