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BY
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1. Introduction, notation

It is the purpose of this paper to prove the following Borsuk-Ulam-type-
theorem:

TEOREM 1. Let f" S - M be a map from the n-sphere to a compact
topological It-manifold M; let A (f) {x e ;f(x) f( x)} Then

(a) if n > k, then dim (A(f)) >__ n-- k;
(b) if n ] and f* H’ M’; Z. -- H’ S Z is zero, then A (f # 0

If one restricts to manifolds admitting a differentiable structure the theorem
may be found ia [1]; the restriction to the case M R is known as the
Bourgin-Yang-theorem (see [5] and [6] ); our line of reasoning is close to that
of Ill.
As for notation the following should be noted" All coefficient groups are
Z therefore, they shall be suppressed from the notation. H. (H*) denotes
singular homology (cohomology), and/* denotes Alexander-Spanier cohomol-
ogy in the sense of Section 6.1 of [2] (see also Section 6.4 of [2]). By dim we
understand the usuai topologicM dimension. Finally manifold is taken to
mean topological manifold, and the word closed (for a manifold) is an abbrevi-
ation for "compact and without boundary".

2. Reduction of the problem
Throughout this section and the next one M will be a closed, connected

manifold of dimension k _< n, and f S -- M will be a fixed map, taking the
south-pole into x0. On the manifold Y S M M there is an involu-
tion T given by the formula T(x, y, z) (-x, z, y); letting A(M) be the
diagonal in M M we have in Y two submanifolds S X (x0, x0) and
S" X A(M); they are both invariant under T, so they proiect to give sub-
manifolds

(SX(x0,x0))/T=pX(x0,x0) and (SXA(M))/T=PX A(M)
of the orbit manifold Y/T. --Also the map S -- Y, given by

(x) (x, f(x), f(--x)),

induces a map s P" -- Y/T; letting A(f) {x e S’; f(x) f(-x)} and
denoting by B(f) the image of A (f) under the natural map S" --, P’, we havo
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that
B(f) s-l(P X

Now let e HA(Y/T) be the Poincar-dual of the orientation class of the
submanifold P X z(M* ) of Y/T; we then have the following.

LEMMA 2.1. If 8"() z 0, then I:I"-A(B(f)) O.

Proof. The following proof is iust a rearrangement of the proof of [1,
(33.2)]. --We first show

(2.1) for every neighbourhood U of P X A(MA) in Y/T we have

e Im (HA(Y/T, Y/T U) HA(Y/T)).
To prove this assertion we let V be an open neighbourhood of P X h(M*)
with V

___
U; we then read off (2.1) from the commutative diagram

vhere v denotes duality in the sense of [2, (6.2.17)], i is the natural trans-
formation from/ to H (see [2, p. 289] ), and all the unlabelled maps are in-
.duced by appropriate inclusions.

Next we prove c is the generator of H (P) )

(2.2) for every neighbourhood V of B(f) in pn we have

C
k eIm (HA(P’*, P V) -- H(P")).Since for every neighbourhood V of B(f) in P there is a neighbourhood U of

Pn X A(MA) in Y/T with s-l(U) __c V, it is clearly sufficient to prove (2.2)
with V s-1 (U), U a neighbourhood of P X z(MA) in Y/T; and in this
case the assertion follows immediately from the commutative diagram

H*(Y/T, Y/T U) HA(Y/T)

H(, P -( U) H(P)
using (2.1) and the hypothesis thag *(,) .
Now, meh B’-(B(f)) 0; then ,-A maps to ero under the com-

position
.--1

H-(P)
_

(P) -- (B(/));

therefore, by the definition of//there is an open neighbourhood U of B(])
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in P, such that c- maps to zero under H-k(P) -- Hn-k(U), i.e. we have

(2.3) cn- eim (H-(P, U) -+ H-(P)) for some open neighbourhood
U of B(f) in P.

Using (2.3) and (2.2) with V closed and V

_
U we get that

c c.c- e Im (H(P’, U o (P V)) ---. H(P));
since Hn(P, U u (P V) H(P, P") 0 this gives the desired con-
tradiction and Lemma 2.1 is proved.

This lemma reduces the proof of Theorem 1 to a consideration of s*();
however, there is a further reduction which is only implicitly contained in [1],
but which we shall here need in an explicit form. It is stated in the next two
lemmas.

LEMMA 2.2. If k < n, and

j. H+(P X A(M)) -+ H+(Y/T, Y/T P’ X (Xo Xo) )
is non-zero, then l"- B(f O.

Proof. Changiag f by a homotopy will change s by a homotopy; since we
only have to prove that s*(q) O, we may, therefore, assume that f maps
the lower hemisphere E- to x0 then the restrictioa of s to P’- imbeds pn-1
in the standard maauer in P" X (x0, x0); we rhea have the commutative
diagram

p._l i ;p X (xo,x0)

Pn ,,> Y/T
"* "* 8"and it is sufficient to prove that a (q) 0 (siace then . () i* *a ()

(cA (R) 1 c, and s*(q) O); but ,a () 0 follows immediately from
the assumptioas of the lemma combiaed with the commutative diagram

H.+(Y/T, Y/T P" X (xo, x)) R(P X (x., x))

//.+(P" X a(M))

H.+(Y/T) 7

H(P (0,0)

LEmvu 2.3. If k n, ]* H"(M ) H"( S’* ) is zero and

j, H+(P X A(M)) H,+(Y/T, Y/T P" X (x,xo))
is non-zero, then I(B() ) O.
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Proof. As above we may assume that f’S’*, EL -- Mn, xo then s factors
through Y’/T (S X (M" M’*) )/T as shown in the diagram

p, s M,( X XM3/T rl

(S X (M V .M))/T Y’/T.

Consider now the disgrm

P x (o, o)

where i,, i, and i, are ielusions, h is he obvious homeomorphism, and
is the map induced by ghe proieetio Y’ S" (M" V M’) -- S’. 8inee

p 1 we have that (p* )) c’ leg (e’) then

"* e" ’ //(P X (. .))

also, precisely a in the proof of Lemma 2.2 we have ghat , (,) 0, i.e., () (R) 1; now
* C

n
C"*(4*() -t-’) () + *(’) (R) 1 + (R) 1 O,

SO %ha% *() + ’ ,Im (ff’), where j is %he inclusion Y’/T--- Y’/T,
Pn X (x0, x0). If we esn now prove %h he composition

n<Y’/r, e <z0, 0>> n<r’/r) s,
is zero, we %hen ge% %h% s*(*() -4- ’) s*(p) + c 0, from which
s*() c O.
We may, %herefore, eoneen%m%e on proving %hs% sx 3x O. ---To %hs end

le% t be %he involution on M V M" given by

t(y, xo) (xo,y) and t(xo,y) (y, xo);

the projection S" X (M" /M’) -- M" /M" induces a map

b" Y’/T ----> (M / M’)/t,

and the map " S’* ----> M’* /M’, given by /(x) (f(x),$(--x)), induces
a map

F" P" (M" V M")/t;
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these two maps serve to make the diagram

H"(Y’/T, P’ X (Xo xo)) H’*(Y’/T)

(2.4) b*
F* HnH’*((M" V M’)/t, (Xo, x0)) (P)

--Looking at the commutative diagramcommutative.

H (S, so)

o
H (S,

H" (M, x0) H (;, S-’)

F*. H p-)H ((M M)/, (x0, x0)) (P,

where the isomorphism to the left is that induced by the obvious homeo-
morphism

(M’ V M")/t ---. M’,

and the isomorphisms to the right are all standard isomorphisms, we see that
F* 0. Consider next the commutative diagram

a Sn M pnS X M S" X xo X (M" V ))IT, X (xo, Xo)

M’, xo (M’* V M")/t, (xo,

where a(x, y) cls (x, y, x0), at(y) cls (y, x), and b’ is projection.
It is easy to see that a is a relative homeomorphism; also S X x is a strong

deformation retract of one of its closed neighbourhoods N in S X M (e.g.
N S X D, D a closed disc around x0 in M’); hence (see e.g. [2, (4.8.9)])

a. H(S X M’,S X xo)H,((S X (M’V M’))/T,P X (x0, x0))

is an isomorphism; sce coefficients are Z we also get that

a* H’((S X (M’V M))/T,P X (x,x))H’(S X M,S" X xa)
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is an isomorphism. (a’)* and (b’)* are easily seen to be isomorphisms; and
we get that

b* H"( (M" / M")/t, (Xo, xo))

---* H((S" X (M / M’))/T, P’ X (xo,xo))

is an isomorphism. --Putting in "F* 0" and "b* iso" in the diagram (2.4)
$ .$

we get sl 31 0 as desired.

Remark. What is actually proved in the first part of this section is the
following more general proposition"

Let M be a (normal, Hausdorff or something like that) topological space;
Hsuppose you have an element e (Y/T) such that (2.1) holds, and such

that s*() 0; then ]-(B(f)) O.

3. Proof of "j, 0"

In this section we keep the notation from Section 2; we start the section
with the assumption that

(3.1) j. H,+(P" X A(M))--H+(Y/T, Y/T- P X (x0,x0))iszero,

and we finish it by a contradiction.
Since H+ has compact support (in the sense of [2, 4.8.11]) we have a

closed set B Y/T P" (x0, x0) such that H,,+(P’* A(M))
H+(Y/T, B) is zero; B is of the form B’/T, where B’ is a closed subset of
S X (M M (x0, x0)); now B’ is contained in

S" X (M XM-D XD)

for some disc D around x0 in M; also we may suppose that D is an open disc,
contained (properly) in some other open disc D’ around x0 in M. Then
B

___
(S X (M M D X D))/T, and from the above we have

j. "H+(P X A(M))--
(3.2)

H+(Y/T, (S X (M X M D X D))/T) is zero.

Consider then P A(M D); this is a submanifold of P" zX(M)
with boundary; therefore, in the commutative diagram

H,+(P X A(M D))

H,+(P" X A(M)) H+(Y/T, (S X (M X M D D))/T)

g,,+(P A(M), P X A(M D))

(where the column is part of the exact sequence of the pair) the upper left
hand group is zero; from (3.2) we then get thatj is not monic.
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Now

P X A(M*

is closed and contained in the interior of P X z(M D ); also

( S’* X (M M D’
is closed and contained in the interior of (S X (M X M* D X D))/T;
hence in the diagram

H,+(P" A(D’), P" X A(D’ D)) 3_4* H,,+

I.((S’* X D’ X D’)/T,(S" X (D’ D’ D D))/T)

H,,+(P X A(M), P’ X A(M D) I
o!

:3,;H+((S XM X M)/T, (S X (M XM-D D))/T)

the vertical maps are excision-isomorphisms, and we get that

(3.3) 3. is not monic.

Considering next the pair-sequences of the pairs involved in (3.3) and
noticing that H,+(P" A(D’) 0 we get

j(.)" H,+,_I(P" X A(D’ D

H,,+,_I( (S X (D’ X D’ D D))/T) is not monic.

We now assume that D is a disc around 0 of radius 1 in euclidean k-space,
and that D’ is a disc around 0 of radius (say) 2 in euclidean k-space. There
is then a continuous map

[" S’ X (D’ X D’ D XD) X I---> S’* X (D’ X D’ D XD)

giver by

[(x,y,z,t) (x, ((1/11 y 1)t -t- 1)y, z), y eD’- D,z,D,
(x, y, ((1/I z 1)t + 1)z), y e D, z e D’ D,

(x, ((1/il y il 1)t + 1)y, ((1/ll z II 1)t + 1)z),

y .D’ D,z .D’ D.

Since/ is equivariant it induces a map

R" (S" X (D’ X D’ D X D))/T X I-- (S X (D’ X D’ D X D))/T,

which is easily seen to give deformation retractions from
S’* X (D’ X D’ D X D))/T to (S X (D" X/) u/) X D’))/T (- is closure,
is boundary) and from (P" X A(D’ D) to P" X h(/)’).
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Therefore, in the diagram
,,.(4)

H.+-(P X A(D’)) * H.+_((S X (D" X D D X D’))/T)

j(,,)H,,+_(P" X A(D’ D)). H,,+_ ((S" X (D’ X D’ D X D))/T)
the vertical maps are isomorphisms, and we get

(3.5) j(.4) H.+k_l(p X A(/)’))-H+_I((S X (/)’X/)u/) X D’))/T
is not monic (and, hence, zero ).
We have now reformulated our assumption in terms of differentiable

manifolds, and we may proceed as follows"
Let N denote the normal bundle of the imbedding

P" X A(b’) c:: (S" X (JO’X D u D X b’))/T,
and let be the normal bundle of the imbedding

a(b’)

_
( x b x b);

then from [1, (32.3)] we get

(3.6) wk(Y) --o d’ (R) w,_,().
On the other hand Thorn ([4], see also [1, pp. 84, 85]) has proved that w(N)
is the image of the orientation, class of P X A(/)’) under the map

j(.4)
S.+_(P X A(D’)) > H.+_((S X (D" X Du D X D’))/T)

(j())*H’((S X (D" X Do b X D’))/T),, H’(P" X A(D’)),
so w(N) 0, which clearly contradicts (3.6).

4. Proof of Theorem
Step 1. M is closed and connected. Using Lemma 2.2, Lemma 2.3, and

Lemma 3.1 one only has to notice that dim(A (f)) >_ dim(B(f)).

Step 2. M is compact and connected but with boundary. Since the bound-
ary of M is collared in Mk (see [3, IV] we have the usual construction of the
"double of M’’ W (W consists of two copies of M, identified along their
common boundary); applying step i to W we get the result.

Step 3. M is compact, but not connected. Since f maps S" into a connected-
ness component of M, the theorem follows from the other cases.

Remark. If one knew that a compact subset of an arbitrary manifold is
contained in some compact submanifold one could of course drop the assump-
tion of compactness of M; the author, however, has no knowledge concerning
that point.
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