A BORSUK-ULAM THEOREM FOR MAPS FROM A SPHERE TO A COMPACT TOPOLOGICAL MANIFOLD

 \mathbf{BY}

HANS JØRGEN MUNKHOLM

1. Introduction, notation

It is the purpose of this paper to prove the following Borsuk-Ulam-type-theorem:

THEOREM 1. Let $f: S^n \to M^k$ be a map from the n-sphere to a compact topological k-manifold M^k ; let $A(f) = \{x \in S^n; f(x) = f(-x)\}$. Then

- (a) if n > k, then dim $(A(f)) \ge n k$;
- (b) if n = k and $f^* : H^n(M^n; Z_2) \to H^n(S^n; Z_2)$ is zero, then $A(f) \neq \emptyset$

If one restricts to manifolds admitting a differentiable structure the theorem may be found in [1]; the restriction to the case $M^k = R^k$ is known as the Bourgin-Yang-theorem (see [5] and [6]); our line of reasoning is close to that of [1].

As for notation the following should be noted: All coefficient groups are \mathbb{Z}_2 ; therefore, they shall be suppressed from the notation. $H_*(H^*)$ denotes singular homology (cohomology), and \overline{H}^* denotes Alexander-Spanier cohomology in the sense of Section 6.1 of [2] (see also Section 6.4 of [2]). By dim we understand the usual topological dimension. Finally manifold is taken to mean topological manifold, and the word closed (for a manifold) is an abbreviation for "compact and without boundary".

2. Reduction of the problem

Throughout this section and the next one M^k will be a closed, connected manifold of dimension $k \leq n$, and $f: S^n \to M^k$ will be a fixed map, taking the south-pole into x_0 . On the manifold $Y = S^n \times M^k \times M^k$ there is an involution T given by the formula T(x, y, z) = (-x, z, y); letting $\Delta(M^k)$ be the diagonal in $M^k \times M^k$ we have in Y two submanifolds $S^n \times (x_0, x_0)$ and $S^n \times \Delta(M^k)$; they are both invariant under T, so they project to give submanifolds

$$(S^n \times (x_0, x_0))/T = P^n \times (x_0, x_0)$$
 and $(S^n \times \Delta(M^k))/T = P^n \times \Delta(M^k)$ of the orbit manifold Y/T .—Also the map $\bar{s}: S^n \to Y$, given by

$$\bar{s}(x) = (x, f(x), f(-x)),$$

induces a map $s: P^n \to Y/T$; letting $A(f) = \{x \in S^n; f(x) = f(-x)\}$ and denoting by B(f) the image of A(f) under the natural map $S^n \to P^n$, we have

Received June 1, 1967.

that

$$B(f) = s^{-1}(P^n \times \Delta(M^k)).$$

Now let $\varphi \in H^k(Y/T)$ be the Poincaré-dual of the orientation class σ of the submanifold $P^n \times \Delta(M^k)$ of Y/T; we then have the following.

LEMMA 2.1. If
$$s^*(\varphi) \neq 0$$
, then $\bar{H}^{n-k}(B(f)) \neq 0$.

Proof. The following proof is just a rearrangement of the proof of [1, (33.2)]. —We first show

(2.1) for every neighbourhood U of $P^n \times \Delta(M^k)$ in Y/T we have

$$\varphi \in \operatorname{Im} (H^k(Y/T, Y/T - U) \to H^k(Y/T)).$$

To prove this assertion we let V be an open neighbourhood of $P^n \times \Delta(M^k)$ with $V \subseteq U$; we then read off (2.1) from the commutative diagram

$$H_{n+k}(P^{n} \times \Delta(M^{k})) \bigcup_{H_{n+k}(Y/T)} \frac{\overline{\gamma}_{U}}{\overline{\gamma}_{U}} \xrightarrow{\overline{H}^{k}(Y/T, Y/T - V)} \xrightarrow{i} H^{k}(Y/T, Y/T - V) \\ H_{n+k}(Y/T) \xrightarrow{\overline{\gamma}_{U}} \overline{H}^{k}(Y/T) \xrightarrow{i \cong} H^{k}(Y/T)$$

where $\bar{\gamma}_U$ denotes duality in the sense of [2, (6.2.17)], i is the natural transformation from \bar{H} to H (see [2, p. 289]), and all the unlabelled maps are induced by appropriate inclusions.

Next we prove $(c \text{ is the generator of } H^1(P^n))$

(2.2) for every neighbourhood V of B(f) in P^n we have

$$c^k \in \operatorname{Im} (H^k(P^n, P^n - V) \to H^k(P^n)).$$

Since for every neighbourhood V of B(f) in P^n there is a neighbourhood U of $P^n \times \Delta(M^k)$ in Y/T with $s^{-1}(U) \subseteq V$, it is clearly sufficient to prove (2.2) with $V = s^{-1}(U)$, U a neighbourhood of $P^n \times \Delta(M^k)$ in Y/T; and in this case the assertion follows immediately from the commutative diagram

$$H^{k}(Y/T, Y/T - U) \to H^{k}(Y/T)$$

$$\downarrow s^{*} \qquad \qquad \downarrow s^{*}$$

$$H^{k}(P^{n}, P^{n} - s^{-1}(U)) \to H^{k}(P^{n})$$

using (2.1) and the hypothesis that $s^*(\varphi) = c^k$.

Now, assume that $\tilde{H}^{n-k}(B(f)) = 0$; then c^{n-k} maps to zero under the composition

$$H^{n-k}(P^n) \xrightarrow{\stackrel{i}{\cong}} \bar{H}^{n-k}(P^n) \to \bar{H}^{n-k}(B(f));$$

therefore, by the definition of \bar{H} there is an open neighbourhood U of B(f)

in P^n , such that c^{n-k} maps to zero under $H^{n-k}(P^n) \to H^{n-k}(U)$, i.e. we have

(2.3) $c^{n-k} \in \text{Im } (H^{n-k}(P^n, U) \to H^{n-k}(P^n))$ for some open neighbourhood U of B(f) in P^n .

Using (2.3) and (2.2) with V closed and $V \subseteq U$ we get that

$$c^n = c^k \cdot c^{n-k} \in \operatorname{Im} (H^n(P^n, U \cup (P^n - V)) \to H^n(P^n));$$

since $H^n(P^n, U \cup (P^n - V)) = H^n(P^n, P^n) = 0$ this gives the desired contradiction and Lemma 2.1 is proved.

This lemma reduces the proof of Theorem 1 to a consideration of $s^*(\varphi)$; however, there is a further reduction which is only implicitly contained in [1], but which we shall here need in an explicit form. It is stated in the next two lemmas.

LEMMA 2.2. If k < n, and

$$j_*: H_{n+k}(P^n \times \Delta(M^k)) \to H_{n+k}(Y/T, Y/T - P^n \times (x_0, x_0))$$

is non-zero, then $H^{n-k}(B(f)) \neq 0$.

Proof. Changing f by a homotopy will change s by a homotopy; since we only have to prove that $s^*(\varphi) \neq 0$, we may, therefore, assume that f maps the lower hemisphere E^n to x_0 ; then the restriction of s to P^{n-1} imbeds P^{n-1} in the standard manner in $P^n \times (x_0, x_0)$; we then have the commutative diagram

$$P^{n-1} \xrightarrow{i_1} P^n \times (x_0, x_0)$$

$$\downarrow i_2 \qquad \qquad \downarrow i_3$$

$$P^n \xrightarrow{-8} Y/T$$

and it is sufficient to prove that $i_3^*(\varphi) \neq 0$ (since then $i_2^* s^*(\varphi) = i_1^* i_3^*(\varphi) = i_1^*(c^k \otimes 1) = c^k$, and $s^*(\varphi) \neq 0$); but $i_3^*(\varphi) \neq 0$ follows immediately from the assumptions of the lemma combined with the commutative diagram

LEMMA 2.3. If
$$k = n, f^* : H^n(M^n) \to H^n(S^n)$$
 is zero and $j_* : H_{n+k}(P^n \times \Delta(M^k)) \to H_{n+k}(Y/T, Y/T - P^n \times (x_0, x_0))$ is non-zero, then $H^0(B(f)) \neq 0$.

Proof. As above we may assume that $f: S^n, E^n \to M^n, x_0$; then s factors through $Y'/T = (S^n \times (M^n \vee M^n))/T$ as shown in the diagram

$$P^{n} \xrightarrow{S} (S^{n} \times M^{n} \times M^{n})/T = Y/T$$

$$S_{1} / / / / / / (S^{n} \times (M^{n} \vee M^{n}))/T = Y'/T.$$

Consider now the diagram

where i_3 , i_4 , and i_5 are inclusions, h is the obvious homeomorphism, and p_1 is the map induced by the projection $Y' = S^n \times (M^n \vee M^n) \to S^n$. Since

$$p_1 s_1 = 1$$
 we have that $s_1^*(p_1^*(c^n)) = c^n$; let $\gamma = p_1^*(c^n)$; then

$$i_5^*(\gamma) = (p_1 i_5)^*(c^n) = h^*(c^n) = c^n \otimes 1 \in H^n(P^n \times (x_0, x_0));$$

also, precisely as in the proof of Lemma 2.2 we have that $i_3^*(\varphi) \neq 0$, i.e. $i_3^*(\varphi) = c^n \otimes 1$; now

$$i_5^*(i_4^*(\varphi) + \gamma) = i_3^*(\varphi) + i_5^*(\gamma) = c^n \otimes 1 + c^n \otimes 1 = 0,$$

so that $i_4^*(\varphi) + \gamma \in \text{Im } (j_1^*)$, where j_1 is the inclusion $Y'/T \to Y'/T$, $P^n \times (x_0, x_0)$. If we can now prove that the composition

$$H^n(Y'/T, P^n \times (x_0, x_0)) \xrightarrow{\hat{\mathcal{J}}_1^*} H^n(Y'/T) \xrightarrow{\mathcal{S}_1^*} H^n(P^n)$$

is zero, we then get that $s_1^*(i_4^*(\varphi) + \gamma) = s^*(\varphi) + c^n = 0$, from which $s^*(\varphi) = c^n \neq 0$.

We may, therefore, concentrate on proving that $s_1^* j_1^* = 0$. —To that end let t be the involution on $M^n \vee M^n$ given by

$$t(y, x_0) = (x_0, y)$$
 and $t(x_0, y) = (y, x_0);$

the projection $S^n \times (M^n \vee M^n) \to M^n \vee M^n$ induces a map

$$b: Y'/T \rightarrow (M^n \vee M^n)/t$$
,

and the map $\bar{F}: S^n \to M^n \vee M^n$, given by $\bar{F}(x) = (f(x), f(-x))$, induces a map

$$F: P^n \to (M^n \vee M^n)/t;$$

these two maps serve to make the diagram

$$(2.4) \qquad \begin{array}{c} H^{n}(Y'/T, P^{n} \times (x_{0}, x_{0})) & \xrightarrow{j_{1}^{*}} H^{n}(Y'/T) \\ & \downarrow b^{*} & \downarrow s_{1}^{*} \\ H^{n}((M^{n} \vee M^{n})/t, (x_{0}, x_{0})) & \xrightarrow{F^{*}} H^{n}(P^{n}) \end{array}$$

commutative. —Looking at the commutative diagram

where the isomorphism to the left is that induced by the obvious homeomorphism

$$(M^n \vee M^n)/t \to M^n$$

and the isomorphisms to the right are all standard isomorphisms, we see that $F^* = 0$. Consider next the commutative diagram

$$S^{n} \times M^{n}, S^{n} \times x_{0} \xrightarrow{a} (S^{n} \times (M^{n} \vee M^{n}))/T, P^{n} \times (x_{0}, x_{0})$$

$$\downarrow b' \qquad \qquad \downarrow b$$

$$M^{n}, x_{0} \xrightarrow{a'} (M^{n} \vee M^{n})/t, (x_{0}, x_{0})$$

where $a(x, y) = \operatorname{cls}(x, y, x_0), a'(y) = \operatorname{cls}(y, x_0), \text{ and } b' \text{ is projection.}$

It is easy to see that a is a relative homeomorphism; also $S^n \times x_0$ is a strong deformation retract of one of its closed neighbourhoods N in $S^n \times M^n$ (e.g. $N = S^n \times D$, D a closed disc around x_0 in M^n); hence (see e.g. [2, (4.8.9)])

$$a_*: H_n(S^n \times M^n, S^n \times x_0) \rightarrow H_n((S^n \times (M^n \vee M^n))/T, P^n \times (x_0, x_0))$$

is an isomorphism; since coefficients are Z_2 we also get that

$$a^*: H^n((S^n \times (M^n \vee M^n))/T, P^n \times (x_0, x_0)) \to H^n(S^n \times M^n, S^n \times x_0)$$

is an isomorphism. $(a')^*$ and $(b')^*$ are easily seen to be isomorphisms; and we get that

$$b^*: H^n((M^n \vee M^n)/t, (x_0, x_0))$$

 $\to H^n((S^n \times (M^n \vee M^n))/T, P^n \times (x_0, x_0))$

is an isomorphism. —Putting in " $F^* = 0$ " and " b^* iso" in the diagram (2.4) we get $s_1^* j_1^* = 0$ as desired.

Remark. What is actually proved in the first part of this section is the following more general proposition:

Let M^k be a (normal, Hausdorff or something like that) topological space; suppose you have an element $\varphi \in H^k(Y/T)$ such that (2.1) holds, and such that $s^*(\varphi) \neq 0$; then $\bar{H}^{n-k}(B(f)) \neq 0$.

3. Proof of "
$$j_* \neq 0$$
"

In this section we keep the notation from Section 2; we start the section with the assumption that

(3.1)
$$j_*: H_{n+k}(P^n \times \Delta(M^k)) \to H_{n+k}(Y/T, Y/T - P^n \times (x_0, x_0))$$
 is zero, and we finish it by a contradiction.

Since H_{n+k} has compact support (in the sense of [2, 4.8.11]) we have a closed set $B \subseteq Y/T - P^n \times (x_0, x_0)$ such that $H_{n+k}(P^n \times \Delta(M^k)) \to H_{n+k}(Y/T, B)$ is zero; B is of the form B'/T, where B' is a closed subset of $S^n \times (M^k \times M^k - (x_0, x_0))$; now B' is contained in

$$S^n \times (M^k \times M^k - D \times D)$$

for some disc D around x_0 in M^k ; also we may suppose that D is an open disc, contained (properly) in some other open disc D' around x_0 in M^k . Then $B \subseteq (S^n \times (M^k \times M^k - D \times D))/T$, and from the above we have

(3.2)
$$j_*: H_{n+k}(P^n \times \Delta(M^k)) \to H_{n+k}(Y/T, (S^n \times (M^k \times M^k - D \times D))/T) \text{ is zero.}$$

Consider then $P^n \times \Delta(M^k - D)$; this is a submanifold of $P^n \times \Delta(M^k)$ with boundary; therefore, in the commutative diagram

$$H_{n+k}(P^{n} \times \Delta(M^{k} - D))$$

$$\downarrow$$

$$H_{n+k}(P^{n} \times \Delta(M^{k})) \xrightarrow{j_{*}} H_{n+k}(Y/T, (S^{n} \times (M^{k} \times M^{k} - D \times D))/T)$$

$$\downarrow$$

$$\downarrow$$

$$H_{n+k}(P^{n} \times \Delta(M^{k}), P^{n} \times \Delta(M^{k} - D))$$

(where the column is part of the exact sequence of the pair) the upper left hand group is zero; from (3.2) we then get that j'_* is not monic.

Now

$$P^n \times \Delta(M^k - D')$$

is closed and contained in the interior of $P^n \times \Delta(M^k - D)$; also

$$(S^n \times (M^k \times M^k - D' \times D'))/T$$

is closed and contained in the interior of $(S^n \times (M^k \times M^k - D \times D))/T$; hence in the diagram

$$H_{n+k}(P^{n} \times \Delta(D'), P^{n} \times \Delta(D'-D)) \xrightarrow{j''_{*}} H_{n+k}$$

$$\downarrow \cdot ((S^{n} \times D' \times D')/T, (S^{n} \times (D' \times D'-D \times D))/T)$$

$$H_{n+k}(P^{n} \times \Delta(M^{k}), P^{n} \times \Delta(M^{k}-D))$$

$$\xrightarrow{j'_{*}} H_{n+k}((S^{n} \times M^{k} \times M^{k})/T, (S^{n} \times (M^{k} \times M^{k}-D \times D))/T)$$

the vertical maps are excision-isomorphisms, and we get that

(3.3) j_*'' is not monic.

Considering next the pair-sequences of the pairs involved in (3.3) and noticing that $H_{n+k}(P^n \times \Delta(D')) = 0$ we get

$$(3.4) \begin{array}{c} j_{*}^{(3)} \colon H_{n+k-1}(P^{n} \times \Delta(D'-D)) \\ \longrightarrow H_{n+k-1}((S^{n} \times (D' \times D'-D \times D))/T) \text{ is not monic.} \end{array}$$

We now assume that D is a disc around 0 of radius 1 in euclidean k-space, and that D' is a disc around 0 of radius (say) 2 in euclidean k-space. There is then a continuous map

$$\bar{R}: S^n \times (D' \times D' - D \times D) \times I \to S^n \times (D' \times D' - D \times D)$$
 given by

$$\begin{split} \bar{R}(x, y, z, t) &= (x, ((1/||y|| - 1)t + 1)y, z), & y \in D' - D, z \in \bar{D}, \\ &= (x, y, ((1/||z|| - 1)t + 1)z), & y \in \bar{D}, z \in D' - D, \\ &= (x, ((1/||y|| - 1)t + 1)y, ((1/||z|| - 1)t + 1)z), \\ & y \in D' - D, z \in D' - D. \end{split}$$

Since \bar{R} is equivariant it induces a map

$$R: (S^n \times (D' \times D' - D \times D))/T \times I \rightarrow (S^n \times (D' \times D' - D \times D))/T,$$

which is easily seen to give deformation retractions from $S^n \times (D' \times D' - D \times D))/T$ to $(S^n \times (\bar{D} \times \bar{D} \cup \bar{D} \times \bar{D}))/T$ ($\bar{D} \times \bar{D} \cup \bar{D} \times \bar{D}$))/ $\bar{D} \times \bar{D} \cup \bar{D} \times \bar{D}$) is boundary) and from $(P^n \times \Delta(D' - D))$ to $P^n \times \Delta(\bar{D})$.

Therefore, in the diagram

the vertical maps are isomorphisms, and we get

(3.5)
$$j_*^{(4)}: H_{n+k-1}(P^n \times \Delta(\bar{D}^{\cdot})) \to H_{n+k-1}((S^n \times (\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}))/T$$
 is not monic (and, hence, zero).

We have now reformulated our assumption in terms of differentiable manifolds, and we may proceed as follows:

Let N denote the normal bundle of the imbedding

$$P^n \times \Delta(\bar{D}^{\cdot}) \subseteq (S^n \times (\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}))/T$$

and let \bar{N} be the normal bundle of the imbedding

$$\Delta(\bar{D}^{\cdot}) \subseteq (\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot});$$

then from [1, (32.3)] we get

$$(3.6) w_k(N) = \sum_{\mu=0}^k c^{\mu} \otimes w_{k-\mu}(\bar{N}).$$

On the other hand Thom ([4], see also [1, pp. 84, 85]) has proved that $w_k(N)$ is the image of the orientation class of $P^n \times \Delta(\vec{D})$ under the map

$$H_{n+k-1}(P^n \times \Delta(\bar{D}^{\cdot})) \xrightarrow{j_{*}^{(4)}} H_{n+k-1}((S^n \times (\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}))/T)$$

$$\xrightarrow{\gamma_U} H^k((S^n \times (\bar{D}^{\cdot} \times \bar{D} \cup \bar{D} \times \bar{D}^{\cdot}))/T) \xrightarrow{(j_{*}^{(4)})^*} H^k(P^n \times \Delta(\bar{D}^{\cdot})),$$
so $w_k(N) = 0$, which clearly contradicts (3.6).

4. Proof of Theorem 1

- Step 1. M^k is closed and connected. Using Lemma 2.2, Lemma 2.3, and Lemma 3.1 one only has to notice that $\dim(A(f)) \ge \dim(B(f))$.
- Step 2. M^k is compact and connected but with boundary. Since the boundarv of M^k is collared in M^k (see [3, IV]) we have the usual construction of the "double of M^k " W (W consists of two copies of M^k , identified along their common boundary); applying step 1 to W we get the result.
- M is compact, but not connected. Since f maps S^n into a connectedness component of M^k , the theorem follows from the other cases.

Remark. If one knew that a compact subset of an arbitrary manifold is contained in some compact submanifold one could of course drop the assumption of compactness of M^k ; the author, however, has no knowledge concerning that point.

BIBLIOGRAPHY

- P. E. CONNER AND E. E. FLOYD, Differentiable periodic maps, Springer Verlag, Berlin, 1964.
- 2. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966.
- 3. M. Brown, Locally flat imbeddings, Ann. of Math., vol. 75 (1962), pp. 331-341.
- R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Sci. Ecole. Norm. Sup., vol. 69 (1952), pp. 109-182.
- 5. D. G. BOURGIN, On some separation and mapping theorems, Comment. Math. Helv., vol. 29 (1955), pp. 199-214.
- C.-T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobû and Dyson, I, Ann. of Math., vol. 60 (1954), pp. 262-282; II, Ann. of Math., vol. 62 (1955), pp. 271-283.

AARHUS UNIVERSITET
AARHUS, DENMARK