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Let be a bounded set in the complex plane () havin the same positive
two dimensional Lebesgue measure as its closure (). Denote the open set
complementary to by , and define *, the support of , as follows"

S* {zS" SnA(z) has positive measure for each r 0}

where A(z) is the open disk of radius r.and center z.
For such sets a functional is defined by

(S)= f {- fs f log [z- rlf(z)](r)dr, dry}
f()

where L(S) is the set of all complex-valued functions wch are square ia-
tegrable over S with f 1, and r is Lebese measure ia the plane.

Clearly (S) O, and ia aa earlier paper [1], it was shown that (S) is
negative d, the transfinite diameter of exceeds unity in which case the
following inequality holds"

0 < -- < (2A/) logd

where A is the area of S*.
Since S S* has measure zero, it follows that (S) (S*); hence atten-

tion may be restricted to bounded measurable support sets S, i.e. those plane
sets for wch S S*. (Observe that (S*)* S*.) Such sets wch in
addition have closures th transfinite diameter exceeding ity ll be called
adssible sets.

In the present paper, the dependence of on the class of adssible sets
11 be vestigated. It 11 first be shown that is a monotone set functional
which is continuous with respect to an ppropriate te of convergence.

Next, a variational estimate for th respect to an important class of
boundary variations is given and this formula is used to attack extremal
problems suggested by the inequality" 0 < < (2A/) log d. Specifi-
cally, it is proven that among all simply connected admissible domains of
given transfite diameter and sufficiently smooth boundary, the disk is the
only one for wch the value of the ratio -/A is stationary th respect to
the boundary variations considered. Then, by use of specific domains, it is
shown that -/A has neither maximum nor minimum under these condi-
tions.

In [1], it was also shown that for admissible sets, is the unique negative
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eigelvalue of the logarithmic operator L defined by

(2) (Lf)(z) _2. f log iz ’lf(i’) drr for f e L2(S)

and that within appropriate normalization there is a unique eigenfuaction
associated with z. Specifically, may be normalized to have the following

has a continuously differentiable extension to the entire complex
plane E.

(b) > 0iaE.
(c) is subharmoaic ia E [2].

(3) (d) is harmonic ia .
(e) -(4/u) ia S, the interior of S.

(f) (z) 2 logz, f dr +0 () near infinity.

(g) 1 (z) dz l.

Monotonicity
That - is a motoe set functional follows immediately from its defini-

tion. However, using the known properties of the associated normalized
eigenfunctions, this simple monotonicity may be considerably strengthened.

THEOREM 1 (Moaotonicity). Let S and S be admissible sets with S S
Then S S with equality iff S S has zero measure.

Proof. Let , be the associated eigenfunctions. By definition (2),

-E f log z <) dry, 1, 2, for all z e(S)(z) E.

After an obvious calculation,

Since each > 0, and S has positive measure, the integral oa the left is
positive while that on the right is non-negative and vanishes iff S S has
zero measure. The result follows.

Characteristic convergence and continuous dependence
The possibility of cotiuous dependence of d upo the class of

admissible sets depends, of course, upon the topologies considered. Con-
vergence of the sets ia the sense of Frchet [3] is sufficient but the following
weaker type of convergence seems to be more natural:

Let {S.} be a sequeuce of plane sets and for each n 0, 1, 2, let x.
be the characteristic function of S considered as a subset of E. Then S

properties"
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is said to converge characteristically to So iff xn -* x0 pointwise a.e. [r] as

Observe that characteristic convergence is implied by Frchet convergence,
but it is unrelated to convergence in the sense of Carathodory[4]. Unlike
either of these classical convergences, characteristic covergence does not
presee the degree of connectivity as is evident from elementary examples.
This makes it useful in the construction of counterexamples. Of more im-
portance is the following application"

THEOREM 2 (Convergence). Let S= be a sequence of admissible sets,
each ctained in a common disk A, and let be respectively the unique nega-
tive eigenvalue and associated normalized eigenfunction of the logarithmic operator
L on S, n 1, 2, .... Suppose S converges characteristically to S, (so
that S is a measurable set). Then
() exists o say;
(b) if o O, then S* is admissible, .o (S*) and cverges almost

uniformly in E to o the unique normalized eigenfuncti associated with o

Proof. Let x be the characteristic function of S n 1, 2, and x0
that of S relative to the disk A. Consider the logarithmic operators L of
integral type on the Hilbert space L(A) having as their kernels

(4) l(z,) 2 Xn(Z)Xn() log [Z " I, z ’,n 0,1,2,...

From these definitions, it follows that

tn miny(a) (L,f, f)a (L,
where )a is the scalar product on L(A). Hence

or

f,L(A)

by the Schwarz inequality and definitions (4).
Since x -- x0 pointwise a.e. [r], then

dr:[l(z, ) l,(z,

(l- l)-0 pointwisea.e. [r X r]

as n, m -- , and each l is dominated by the square integrable function
log lz ’11 in the product space A X A. Therefore by the Lebesgue

theorem, it follows that the {n} =1 form a Cauchy sequence and so converge
to a unique non-positive limit which is denoted by

Let La denote the logarithmic operator of the disk A. Then

(5) t (z) (La x G)(z) all z e E.

In [1], it was proven that La is a compact operator from L(A) -+ C(K)
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for each compact set K c E. From (3 g)

f()d f d n 1,2

Hence a subsequence of the functions . b, may be chosen which converges
almost uniformly in E to a limit function which is necessarily continuous,
non-positive and superharmonic. If #0 0, little more can be said; but if
0 < 0, the limit function may be written as #0 0. z0 as defined is non-
negative and subharmonic in E. Then denoting the subsequence as
it is clear that x. b.-- x0 b0 poiatwise and boundedly

Therefore by the bounded convergence theorem

(6)

Similarly, both sides of (5) converge as 1 --* for each z e E, and so in the
limit

,0bo(Z) (Laxog,,o)(Z) _2__v fs log [z rl bo(r) drr.

Therefore b0 is an eigenfunction to the logarithmic operator on the set S
associated with the eigenvalue 0. Since it is non-negative and normalized
(6), it follows that S* is admissible, and k0 is its unique eigenfunction. The
same argument shows that every almost uniformly convergent subsequence
of the . must converge to k0, and thus it may be concluded that the entire
sequence {} converges almost uniformly to k0 in E. Observe that k0 must
also be strictly positive.

Extremal problems
In order to attack directly some of the extremal problems associated with

the logarithmic eigenvalues of plane sets, it is useful to employ variational
methods. The classical apparatus is inapplicable to the present problem,
but the basic principle of variation of functionals on which it depends remains
valid, and has been successfully applied to analogous problems in conformal
mapping and elliptic equations [5], [6]. To facilitate the analysis, we will
consider only domains having sufficiently smooth boundaries.
A bounded domain D, whose boundary consists of a finite number of twice

continuously differentiable smooth Jordan contours, and having closure of
transfinite diameter exceeding unity will be designated as "admissible".
Note that an admissible domain is an admissible set so that the terminology is
consistent.

Let D be an admissible domain,/ the open set complementary to its closure,
and OD its oriented boundary. Furthermore, let and k be its unique nega-
tive logarithmic eigenvalue and associated positive normalized eigenfunction.
For fixed e D u Z5 and with 0 < p < - d(, OD), 0 _< a < 2, let D. be the
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finite domain bounded by the curves"

{w" w z q- pe’/(z ), z eOD}.

Observe that each component of OD. is the conformal image of a unique com-
ponent of OD. Moreover as p -, 0, the associated domains D. converge to D
in the Frchet sense, and hence for p sufficiently small the transfinite diameter
of D, must also exceed unity [3]. For such p, the domain D, is also admissible
and thus possesses a logarithmic eigenvalue . and an associated eigenfunc-
tion .. We wish to relate . to as a function of p. This is accomplished
by a straightforward but lengthy modification of the technique developed in
[6], and is given in full detail in [7]. The principal device is Green’s theorem
in its various forms. There results the desired formula"

(8) O(p2)

# + o()
where x is the characteristic function of D, and the integration along the
oriented boundary is to be interpreted in the conventional way. 6u, the lead-
ing term of (8), is the familiar first variation of t with respect to the particular
boundary variation considered.
We now wish to consider extremal problems suggested by the inequality

0 < #/A log d < 2/,r

which is known ,to hold for admissible domains [1]. The first such problem is
to extremize the ratio -/A among admissible domains of given transfinite
diameter, and to describe those domains (if such exist) for which the extremal
values are attained. A necessary condition for an admissible domain to be
extremal is that the ratio -t/A should have a stationary value with respect
to "nearby" admissible domains. In particular, it is necessary that the first
variation of -#/A should vanish for all those boundary variations of the type
(7) which preserve the transfinite diameter. From this discussion, we formu-
late and prove

THEOREM 3. The distc is the only simply connected admissible domain of
given transfinite diameter for which the ratio -/A assumes a stationary value
with respect to the boundary variations of type (7).

Proof. Let D be the domain in question, d its transfinite diameter, A its
area and , k its logarithmic eigenvalue and associated eigenfunctiom Let D,
be a domain related to D through a transformation of the type (7), and d,,
A,, and , the corresponding entities of D,
The relation between d, and d is known [8], and may be conveniently ex-

pressed as follows:

(9) log d, log d p2 Re e"[f’ (")/f()]2} + o(p)



100 JOHN L. TROUTMAN

where f(z) is the holomorphic function defined in D u D which is identically
unity in D, and which maps D conformally onto the exterior of the unit disk
with the following Laurent expansion near infinity"

(10) f(z) z/d + o(Uz).

Observe that since OD is a closed Jordan curve, the Carathodory extension
theorem implies that the mapping f may be extended to a homeomorphism of

o OD onto {w" we E, w >- 1} with if(z) 1 o on.
In order that the transfinite diameter of D. agree with that of D within

terms of order p, we must restrict a for each given " to those values for which

11 Re e"[f ()/f()]} 0.

Straightforward application of the transformation (7) to the well-known
formula

w dA. - ..
gives"

(12)
, e’ d. \+O(p4)A A -2rp2Re/ ,z"

A -t- O(p4).

The hypothesized stationarity of /A implies that

0 (A/)(/A) / A/A
or substituting from (9) and (12)

Re e" 1 ( (b2(z)- A-l)
d- 2(’)(0----$ 0

when Re e"[f’ H()] 0.
Since f is univalent in b and ]f 1, then (f/]’) is analytic b. The

preceding relations imply that the ratio

(13) ) . z o] )
is real ia D and it is obviously analytic there (since is harmonic in ).
Hence it is a constant wch we denote by k. To evaluate , we refer to (10)
and (3f) which yield the following expansions near inity"

(14) f’ (z)/f(z) 1/z + O(1/z), O/Oz C/z + O(1/z)
where C is a well-defined positive constant.
and equating coefficients of the - terms gives

Substituting these into (13)

k
1 b2(z)z d(15)

2ri .] o)
z d 2C2rA D
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Since A i/2 ) z d, the second term may be evaluated immediately. To
D

evaluate the first, we proceed indirectly. From the normalization of , its
differential equations (3d, e) and the complex Green’s identity, we have

. z dz.

Using the aaalyticity of O/Oz ia D and (14), the last term is reduced through
residue theo to C. Collecting these results and substituting into (15)
gives k -3C, and the statioaarity condition becomes

1 ($(z) d-)
d xi(), 2k0] k f() If(16) 2vi , z

for each e D u D

Since e C (E), this rdatioa together with the proven continuity of f oa
D OD and the known boundary behavior of Cauchy te integrals [9], imply
that f’() also has a continuous extension to D u OD. Oa OD, f() 1
so

i((=)) e‘+

where s is the urc length loag OD as measured from any coaveeat reference
point, and (s) is the principal branch of arg (f((s))).
From these remarks and the chain rule, we conclude that e C(OD) and

f(i(=))
(=)"

From a theorem of Kellog [10], it follows that f prodes a eomosm of
OD onto the circumference of tie unit disk. Hence{ ’(s) 1’ ((s) @ 0.

Therefore, we may apply the Plemelj formula [9] to (16) to get- 2’(s) --3 C’(s)
The left hand side of this expression is real as is

r’() (see (17)).

Hence ., 12= ii (=) =o.
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The ratio (0 is analytic in/ and is nw seen t be real and cntinuus

on OD. Near infinity, it has the expansion C W 0(1/). Thus it is identi-
cally equal to C in/ and (18) becomes

(19)

Moreover

O# 1[ #((s) i O# ](20) ’(s) - d
ds - ((s))

where nr is the normal to OD at which is directed toward the interior of D.
Equating real and imaginary parts of (19) gives

(21) b((s))--A-[(db )’ (0b )’]= ((s)) ((s))

0 (r(s)) 0(z2) 0 (r() ) -= o

From Green’s identity applied to D and the differential equation for # in
this region (3e) we have

Therefore O/Ont cannot vanish identically on OD and so from (22), and the
continuity of (0/0nt)((s) ), there must be an interval s0 < s < s in which
d/ds O. Hence is constant in this neighborhood as is

(O#/On) -(4/g)[#((s)) A-1 (from (21))

Thus, either # is constant on OD, or the interval of constancy termites, my
at s. In the latter case, there is an inteal s < s < s wHch d#/ds O,
and (from (22)) O#/Onr O. This imphes that O#/On is scontinuous at
s, since it is constant and non-zero for s < s, and so furshes a contradic-
tion to the assumed smoothness of the boundary. Hence, the first Mterna-
rive holds and so both # and O#/On are constant on OD.
The proof of the theorem is completed tough the follong lemma wch

is of interest in itself"

LEMMA. If D is any admissible domain for which both and O#/On are
cstant the outer boundary compent OD, then OD, is a circle.

Proof. With #, g, A as above, we have near ty:

o/oz c/z + o(/z’)
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where from (3f) and the differential equation (3e)

C= -1 f)bdr
or, if we let De be the finite domain bounded by ODe, and recall that is
harmonic in D -/), we have

(23) C V2b dr 4--- ,.-ds
by Green’s identity applied to
On the other hand, by residue theory and (14),

C 1
z d

2i . Oz ]
z dz

where z’ z(s) is the ut tangent vector to OD.

 or o er, o.O.., O z’o 
(as in (20)), and by hypothesis, both and O/On are constant there, so

4 \On/"
Thus

(24 C
8ri \On] ,

where As is the area of Do.
Since C > 0, we see that Ob/On must be a non-zero constant on

ODe. Equating (23) with (24) yields

[/, 11
ds LA, .. . 4r

where Le is the length of ODe.
Hence the curve ODe satisfies the isoperimetric equality with respect to its
enclosed area, and this, as is well known [11], implies that ODe is a circle.

This concludes the proof of the theorem, since by hypothesis, the extremal
domain D is simply connected and so ODe OD. The methods used are also
applicable in the case where the stationary domain is multiply connected (and
admissible). They show that the outer boundary component is always a
circle, but furnish no information as to the presence, number or shape of
other components of the boundary, However, further insight into the ex-
tremal problem is supplied through study of the ratio -/A log d for certain
classes of admissible domains.

Let D be the open annulus with inner radius rl and outer radius r. centered
at the origin.
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Introducing
u (2/X/)I z I, uk (2/%/:)rk (k 1, 2)

(25) xI,(u) Kl(ul)Io(u) + I(ul)Ko(u)

where I and K are modified Bessel functions [12], it is simple to verify that
for any real number, a, the function

b(z) a(u),

a,(u),

ag(u) log lz I/log r,,

0 < Izi < r,,

rl_< lzi_< r,

Izl _>_ r.,

is continuous everywhere, harmonic ia/), satisfies Ak + (4/)k 0 in D,
and near infinity has the development

(z) kloglzl + 0(1/I z ).

Moreover b is continuously differentiable everywhere under the following
condition

(26) u g(ux)Io(u) + I(u)go(u) log r.

which determines v for given r and r. Green’s identities applied to the
functions and log lz ] for fixed " e D, yield after a familiar limiting
process:

(z)
2 [ loglz 1 #(’) dr:.

Hence is the unique negative logarithmic eigenvalue of D which exists
iff r, the transfillite diameter of the annulus, exceeds unity (see (26)), and
b is the unique positive eigenfunction associated with , providing a > 0 is
chosen to fulfill the normalization

(27) 1= fo ," dr u(u) du.
2

THEOREM 4. There is no admissible domain of given transfinite diameter for
which the ratio -/A is maximal.

Proof. In view of the fact that the transfinite diameter of an annulus is
equal to its outer radius, it is sufficient to show that there exist admissible
annuli of any given outer radius for which the value of the ratio -#/A log d
is as near to 2/r as desired. In fact we will show that for the annuli centered
at the origin,
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To establish this useful result, we consider the defining equation (26) which
may be rewritten as follows"

IKI(Xu)II(u) II(Xu)KI(u) 1 1(28) u
K(XU)Io(u) + Ia(Xu)Ko(u) log

where rl/r, u 2r//- (the subscript on u. is suppressed). From
monotonicity, we know that -u is a decreasing function of rl, and since
-t/A is bounded and A --, 0 as rx --, r, it follows that -- 0
as rl --+ r2.
From the known asymptotic approximations for the modified Bessel func-

tions, [12], viz

(29) I(u) e//--u; K(u) e-"’V/-/2u, p O, 1

for large positive u, we obtain the following asymptotic approximation for the
left hand side of (28)"

FL_-- / --_j ( x).

Therefore

liml.r taah u(1 X) limrl (u tanh u(1 X))/u 0
or

(30)

Next, consider the ratio- 4
A log r ru(1 X) log r

4
u(i + x)

However,

lin,_. u(1 X) O.

4 FKt(Xu)I(u) I(Xu)K(u)’
u( x-) L + I(Xu)Ko(u)

fK(Xu)[uI(u) XuI(Xu)] I(Xu)[uK(u) XuK(Xu)]1
(u Xu)[g(,u)I-)) - /---0()] J
[uI,(u)]’= ulo(u)

[uKx(u)l’ -uKo(u)
[12]

so by the law of the mean, and monotonicity of the Bessel functions we obtain

A log r
> ( + x)L K(XU)Io(u) --F I(Xu)go(u)

For large u, the bracketed term in the foregoing inequality is asymptotic to
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and in view of (30),

lim
1 -t-e(1-x) 1.

rlr 1 + e2u(1-x)

Collecting these facts, we see that for rl sufficiently near r2,

2> x /(x),-- Alogr 1-l-
where

Therefore

as asserted.

lim,l,. -/A logr. 2/r

Hence there can be no doubly connected domain of given transfinite diameter
for which the ratio -/A log d is maximal, and since by Theorem 2, -/A
may be approximated as closely as desired by domains (or admissible sets) of
any desired connectivity, it follows that there is no admissible set of prescribed
connectivity and transfinite diameter for which -#/A log d is mammal.
A similar argument establishes

THEOREM 4’. There is no admissible domain of given transfinite diameter
for which the ratio -/A is minimal.

Proof. Let d be the given transfinite diameter and for h, w > 0, consider
the admissible domain D (h, w) obtained by smoothing the corners on the set

{z" Izl < 11 u {z’0_< Rez < w, 0_< iXmzl < h}

in any prescribed manner. For fixed h > 0, the transfinite diameter D (h, w)
is an increasing continuous function of w which exceeds w/4. (The continuity
follows from the identification of the transfinite diameter with the exterior
mapping radius [3].) Hence for each integer n 1, 2 there exists a w
<_ 4d for which the domain D, (=- D(1/n, w,)) has transfinite diameter d.
The sequence Dn converges characteristically to the unit disk which is not
an admissible set. Therefore by Theorem 2, n, the eigenvalue of D, ap-
proaches zero. Since A, the area of Dn, exceeds unity it follows that -,/A,,

0; i.e. there exist admissible domains of given transfinite diameter for
which the ratio -/A is as small as desired.
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