THE LOGARITHMIC EIGENVALUES OF PLANE SETS

BY
JouN L. TROUTMAN

Let S be a bounded set in the complex plane (E) having the same positive
two dimensional Lebesgue measure as its closure (S). Denote the open set
complementary to S by 8, and define S*, the support of S, as follows:

S* = {2e¢8:8nA(2) has positive measure for each r > 0}

where A,(2) is the open disk of radius r-and center z.
For such sets a functional u is defined by

w() = int {2 [ [1og|z = 157 dr. i

7eni(®)

where L3(S) is the set of all complex-valued functions which are square in-
tegrable over S with || f || < 1, and 7 is Lebesgue measure in the plane.

Clearly u(S) < 0, and in an earlier paper [1], it was shown that u(8) is
negative 7ff d, the transfinite diameter of S* exceeds unity in which case the
following inequality holds:

0< —p < (24/7)logd

where A is the area of S*.

Since S ~ S* has measure zero, it follows that u(8) = u(S*); hence atten-
tion may be restricted to bounded measurable support sets S, i.e. those plane
sets for which 8 = S*. (Observe that (8*)* = §*.) Such sets which in
addition have closures with transfinite diameter exceeding unity will be called
admissible sets.

In the present paper, the dependence of u on the class of admissible sets
will be investigated. It will first be shown that u is a monotone set functional
which is continuous with respect to an appropriate type of convergence.

Next, a variational estimate for u with respect to an important class of
boundary variations is given and this formula is used to attack extremal
problems suggested by the inequality: 0 < —u < (24/7) log d. Specifi-
cally, it is proven that among all simply connected admissible domains of
given transfinite diameter and sufficiently smooth boundary, the disk is the
only one for which the value of the ratio —u/4 is stationary with respect to
the boundary variations considered. Then, by use of specific domains, it is
shown that —u/A has neither maximum nor minimum under these condi-
tions.

In [1], it was also shown that for admissible sets, p is the unique negative
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96 JOHN L. TROUTMAN
eigenvalue of the logarithmic operator L defined by
2
@ @NE = =2 [logla = 15 dre for TS

and that within appropriate normalization there is a unique eigenfunction
¥ associated with u. Specifically, ¥ may be normalized to have the following
properties:

(a) ¢ has a continuously differentiable extension to the entire complex

plane E.

(b) ¥ >0inkE.

(e) 4 is subharmonic in E [2].
(3) (d) ¢ is harmonic in S.

(e) V% = —(4/u)¢ in 8°, the interior of S.

() y¢(z) = —-—2~log l2] f Ydr + 0(—-}—> near infinity.
T s |z]
@ (I = [$Edn =1,

Monotonicity

That —u is a montone set functional follows immediately from its defini-
tion. However, using the known properties of the associated normalized
eigenfunctions, this simple monotonicity may be considerably strengthened.

TaeoreM 1 (Monotonicity ). Let S; and S, be admissible sets with Sy C S, .
Then —u(S1) < —u(S2) with equality iff S, ~ S; has zero measure.

Proof. Let ¢y, y» be the associated eigenfunctions. By definition (2),
w(Sp)e(z) = —-72—rf log |z — ¢|w(P) dry, Kk =1,2, forall zekKE.
8

After an obvious calculation,

P(Sz) _
I:I_‘(Tl) - 1:| ‘/;1 ‘h Ipz dr = ‘/;2~31 ‘h lpz dr.

Since each ¢, > 0, and S; has positive measure, the integral on the left is
positive while that on the right is non-negative and vanishes #ff S; ~ S; has
zero measure. The result follows.

Characteristic convergence and continuous dependence

The possibility of continuous dependence of u and ¢ upon the class of
admissible sets depends, of course, upon the topologies considered. Con-
vergence of the sets in the sense of Fréchet [3] is sufficient but the following
weaker type of convergence seems to be more natural:

Let {S.}o be a sequence of plane sets and for eachn = 0, 1,2, --- , let x,
be the characteristic function of S, considered as a subset of E. Then S,
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is said to converge characteristically to So 4ff x» — xo pointwise a.e. [7] as
n— o,

Observe that characteristic convergence is implied by Fréchet convergence,
but it is unrelated to convergence in the sense of Carathéodory[4]. TUnlike
either of these classical convergences, characteristic covvergence does not
preserve the degree of connectivity as is evident from elementary examples.
This makes it useful in the construction of counterexamples. Of more im-
portance is the following application:

TarorEM 2 (Convergence). Let {S,}n=1 be a sequence of admissible sets,
each contained in a common disk A, and let p. , ¥r be respectively the unique nega-
tive etgenvalue and associated normalized eigenfunction of the logarithmic operator
LonS,,n =12 ..-. Suppose S, converges characteristically to S, (so
that S s a measurable set). Then

() e pa exists = o Say;

(b) #f po < 0, then S* is admissible, po = u(S*) and ¥, converges almost
uniformly in E to o , the unique normalized eigenfunction associated with uo .

Proof. Let x, be the characteristic function of S, n = 1,2, ... | and xo
that of S relative to the disk A. Consider the logarithmic operators L, of
integral type on the Hilbert space L*(A) having as their kernels

@ W) = @@ lele =gl a# 50 =012,

From these definitions, it follows that
pn = minger2ay (Lnf, fla = (Lnyn, ¥n)a
where (, )ais the scalar product on L*(A). Hence

((Lm - Ln)\[/n ’ ‘Pn)A > Mm — Mn > ((Lm - Ln)‘pmy‘l’m)A
or

1/2
i =t < oup | (B = 2500 < ([ e [t 5) = e, 00F)

FeLi(a)
by the Schwarz inequality and definitions (4).
Since x, — xo pointwise a.e. [7], then
(Im — 1) — 0 pointwise a.e. [r X 7]

as n, m — «, and each [, is dominated by the square integrable function
|log|2z — ¢]| in the product space A X A. Therefore by the Lebesgue
theorem, it follows that the {u.}»—1 form a Cauchy sequence and so converge
to a unique non-positive limit which is denoted by uo .

Let La denote the logarithmic operator of the disk A. Then

(5) Mn‘pn(z) = (LA Xn\pn)(Z) all zeE.
In [1], it was proven that La is a compact operator from L*(A) — C(K)
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for each compact set K C E. From (3 g)
f(Xn¢n)2dr=f¢f.df=1 n=12- -
A 8,

Hence a subsequence of the functions u, y¥» may be chosen which converges
almost uniformly in E to a limit function which is necessarily continuous,
non-positive and superharmonic. If yp = 0, little more can be said; but if
po < 0, the limit function may be written as woo. Yo as defined is non-
negative and subharmonic in £. Then denoting the subsequence as {¥n,},
it is clear that xa, ¥n,— Xo Yo pointwise and boundedly on A.

Therefore by the bounded convergence theorem

(6) [vhar = [ xovtar =tim [ xouvhiar =1

Similarly, both sides of (5) converge as k — o« for each z ¢ E, and so in the
limit

boa(2) = (Laxat) @) = =2 [ log |z = £ alc) drs.

Therefore ¥, is an eigenfunction to the logarithmic operator on the set S
associated with the eigenvalue uo. Since it is non-negative and normalized
(6), it follows that S* is admissible, and ¥y is its unique eigenfunction. The
same argument shows that every almost uniformly convergent subsequence
of the ¥, must converge to ¥, , and thus it may be concluded that the entire
sequence {¥,} converges almost uniformly to ¥, in E. Observe that o must
also be strictly positive.

Extremal problems

In order to attack directly some of the extremal problems associated with
the logarithmic eigenvalues of plane sets, it is useful to employ variational
methods. The classical apparatus is inapplicable to the present problem,
but the basic principle of variation of funetionals on which it depends remains
valid, and has been successfully applied to analogous problems in conformal
mapping and elliptic equations [5], [6]. To facilitate the analysis, we will
consider only domains having sufficiently smooth boundaries.

A bounded domain D, whose boundary consists of a finite number of twice
continuously differentiable smooth Jordan contours, and having closure of
transfinite diameter exceeding unity will be designated as ‘‘admissible’.
Note that an admissible domain is an admissible set so that the terminology is
consistent.

Let D be an admissible domain, D the open set complementary to its closure,
and 9D its oriented boundary. Furthermore, let x and ¢ be its unique nega-
tive logarithmic eigenvalue and associated positive normalized eigenfunction.

For fixed { e Du D and with0 < p < }d({,dD),0 < a < 2m, let D« be the
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finite domain bounded by the curves:
(7) {w:w =2+ pe(z —¢),2edD}.

Observe that each component of dDs is the conformal image of a unique com-
ponent of dD. Moreover as p — 0, the associated domains D« converge to D
in the Fréchet sense, and hence for p sufficiently small the transfinite diameter
of D« must also exceed unity [3]. For such. p, the domain D« is also admissible
and thus possesses a logarithmic eigenvalue u« and an associated eigenfunc-
tion Y« . We wish to relate u« to u as a function of p. This is accomplished
by a straightforward but lengthy modification of the technique developed in
[6], and is given in full detail in [7]. The principal device is Green’s theorem
in its various forms. There results the desired formula:

. 2 2
(8) M T H= —2mp’u Re €™ {2%” » }% dz — 2uxp(¢) (g—g)} + o(p?)
= ou + 0(p")

where x5 is the characteristic function of D, and the integration along the
oriented boundary is to be interpreted in the conventional way. oy, the lead-
ing term of (8), is the familiar first variation of x with respect to the particular
boundary variation considered.

We now wish to consider extremal problems suggested by the inequality

0< —u/dlogd < 2/

which is known to hold for admissible domains [1]. The first such problem is
to extremize the ratio —u/A among admissible domains of given transfinite
diameter, and to describe those domains (if such exist) for which the extremal
values are attained. A necessary condition for an admissible domain to be
extremal is that the ratio —u/A4 should have a stationary value with respect
to “nearby’’ admissible domains. In particular, it is necessary that the first
variation of —pu/A should vanish for all those boundary variations of the type
(7) which preserve the transfinite diameter. From this discussion, we formu-
late and prove

TueoreM 3. The disk is the only simply comnected admissible domain of
given transfinite diameter for which the ratio —u/A assumes a stationary value
with respect to the boundary variations of type (7).

Proof. Let D be the domain in question, d its transfinite diameter, 4 its
area and p, ¥ its logarithmic eigenvalue and associated eigenfunction. Let D«
be a domain related to D through a transformation of the type (7), and d«,
A+, and u« the corresponding entities of D«

The relation between d« and d is known [8], and may be conveniently ex-
pressed as follows:

(9) log dv = logd — " Re {e“[f'(£)/F( )} + o(s")
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where f(z) is the holomorphic function defined in D u D which is identically
unity in D, and which maps D conformally onto the exterior of the unit disk
with the following Laurent expansion near infinity:

(10) f(z) = z/d + o(1/2).

Observe that since 9D is a closed Jordan curve, the Carathéodory extension
theorem implies that the mapping f may be extended to a homeomorphism of
DudDonto{w: weE,|w| = 1} with | f(z) | = 1 on éD.

In order that the transfinite diameter of D« agree with that of D within
terms of order p°, we must restrict « for each given ¢ to those values for which

(11) Re {¢“[f'($)/F()} =

Straightforward application of the transformation (7) to the well-known

formula
7 _
A* = § %(';D, w dw
gives: .
X 4 _ o 2 ﬁ dz 4
(12) A A = —2mp" Re {21ri ﬁp o f} + 0(p%)

=84 + 0(p").
The hypothesized stationarity of u/A implies that
0= (A/u)d(u/A) = ou/u — 04/A
or substituting from (9) and (12)

] 1 W) —A™Y . <a¢)2} _
Ree {—2;: - —7-§— dz 2HXD(§) 5?_ =0

when Re ¢“[f'(£)/f(5)]" = 0. 3
Since f is univalent in D and | f| = 1, then (f/f’)’ is analytic in D. The
preceding relations imply that the ratio

i [FOT{% §, ¥ e 0 ()]}

is real in D and it is obviously analytic there (since ¢ is harmonic in D).
Hence it is a constant which we denote by k. To evaluate k, we refer to (10)
and (3f) which yield the following expansions near infinity:

(14)  f(2)/f(z) = 1/ +0(1/2"),  3/oe = C/z + 0(1/2")

where C is a well-defined positive constant. Substituting these into (13)
and equating coefficients of the {™* terms gives

S T S TV I 5 — 2,0
(15) k= 2m.£p¢(z)zdz 21I'A_¢;DZdz 2uC
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Since A = /2 ﬁ z dz, the second term may be evaluated immediately. To
D

evaluate the first, we proceed indirectly. From the normalization of ¢, its
differential equations (3d, e) and the complex Green’s identity, we have

1= [ v@a, = [ [5"’; (2#(2)) — 229 W]
- [[2 @en +ud(:())]
i v i o (Y

Using the analyticity of d¢/dz in D and (14), the last term is reduced through
residue theory to muC®. Collecting these results and substituting into (15)
gives k = —3uC? and the stationarity condition becomes

1 [ ) —4ah . { (aw) C'f(s“))2\
ae) I he zmt = e@n2G) ~ ) )

foreach f e Du D

Since ¥ ¢ C*(E), this relation together with the proven continuity of f on

D u 4D and the known boundary behavior of Cauchy type integrals [9], imply
that f/(¢) also has a continuous extension to D u dD. OndD, | f(¢) | =

So .
f(8(s)) = ™

where s is the arc length along dD as measured from any convenient reference
point, and ®(s) is the principal branch of arg (f((s))).
From these remarks and the chain rule, we conclude that ® ¢ C*(dD) and

o FGE)
(a7) #(8) = Fretey © (O

From a theorem of Kellog [10], it follows that f provides a diffeomorphism of
aD onto the circumference of the unit disk. Hence | ®'(s) | = |f* (¢(s) | + 0.
Therefore, we may apply the Plemelj formula [9] to (16) to get

1) e -4t = {2206 ] —s[cfE v ]}

The left hand side of this expression is real as is

AN,
[ T© ()} (see (17)).

<[] -

Hence
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2
The ratio (f—f, —!> is analytic in D and is now seen to be real and continuous
on 8D. Near infinity, it has the expansion C* + 0(1/¢). Thus it is identi-
cally equal to C* in D and (18) becomes

(19) Pe(s) — 4™ = u (2 '<s>)
Moreover
(20) W (o) = 5[t i 2 (o |

where n; is the normal to dD at { which is directed toward the interior of D.
Equating real and imaginary parts of (19) gives

@ e - a7t =4[(Z ) - (2 aon)]

and
2 42 -
(22) s (£(s)) s (¢(s)) =0

From Green’s identity applied to D and the differential equation for ¢ in
this region (3e) we have

f W s = —fv”wdr;=§f¢dr,<o.
9. D MuJD

p 0Ny

Therefore 8y/dn; cannot vanish identically on 8D and so from (22), and the
continuity of (dy/dng)(¢(s)), there must be an interval s, < s < & in which
dy/ds = 0. Hence ¢ is constant in this neighborhood as is

(/am)" = —(4/w(£(s)) — A7] (from (21))

Thus, either ¢ is constant on D, or the interval of constancy terminates, say
at s; . In the latter case, there is an interval s; < s < 8 in which dy/ds = 0,
and (from (22)) dy¢/dn; = 0. This implies that dy/on is discontinuous at
1, since it is constant and non-zero for s < s, and so furnishes a contradic-
tion to the assumed smoothness of the boundary. Hence, the first alterna-
tive holds and so both ¥ and dy/dn are constant on dD.

The proof of the theorem is completed through the following lemma which
is of interest in itself:

LemMA. If D is any admissible domain for which both ¢ and dy/on are
constant on the outer boundary component 8D, , then 8D, 18 a circle.

Proof. With ¢, u, A as above, we have near infinity:
/o2 = Clz + 0(1/2%)
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where from (3f) and the differential equation (3e)

1[ 1 2
7|'—p, DlpdT—ELledT

or, if we let D, be the finite domain bounded by 4D, , and recall that ¢ is
harmonie in D, ~ D, we have

1 2 1 61,0
2 = e——
(23) 47 Jp, Vi dr = C 4n o, ON ds
by Green’s identity applied to D, .

On the other hand, by residue theory and (14),

.1 )
0_27'2%»,<52>Zdz_2m% < z)'m

where 2’ = 2’(s) is the unit tangent vector to 4D, .

W, _L(dy .oy
Moreover, on 8D, , 8z =5 (ds 3 5%>

(as in (20)), and by hypothesis, both ¢ and 8y/dn are constant there, so
<) =35
3z T 1\on
Thus
- fua- 00
(24) ¢ 8wt ((m) D, @ dz = 47 \on

where A, is the area of D, .
Since ¢ > 0, we see that dy/9n must be a non-zero constant on
dD,. Equating (23) with (24) yields

4. 41r|:fab, —I =Zfi

where L, is the length of dD, .
Hence the curve 0D, satisfies the isoperimetric equality with respect to its
enclosed area, and this, as is well known [11], implies that dD, is a circle.

This concludes the proof of the theorem, since by hypothesis, the extremal
domain D is simply connected and so 4D, = dD. The methods used are also
applicable in the case where the stationary domain is multiply connected (and
admissible). They show that the outer boundary component is always a
circle, but furnish no information as to the presence, number or shape of
other components of the boundary. However, further insight into the ex-
tremal problem is supplied through study of the ratio —u/A log d for certain
classes of admissible domains.

Let D be the open annulus with inner radius 7, and outer radius r, centered
at the origin.
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Introducing

u = (2/v/—u)lz|, we = (2/v/ —u)ne (k=1,2)
(25) \If(u) = K1(u1)I0(u) + Il(ul)Ko(u)

where I, and K, are modified Bessel functions [12], it is simple to verify that
for any real number, a, the function

Y(2) = a¥(wm), 0<|z| <,
= a¥(u), n<|z| <,
= a¥(uy)log|z|/logr., |2| = 72,

is continuous everywhere, harmonic in D, satisfies A% 4+ (4/u)¢ = 0in D,
and near infinity has the development

¥(2) = kloglz| + 0(1/|2]).

Moreover ¢ is continuously differentiable everywhere under the following
condition

Ki(u) I (ue) — In(ur) Ki(us) 1
(26) uz[ Ki(ua)Io(us) 4+ I(ur) Ko(us) ]

"~ log
which determines u for given r; and r,. Green’s identities applied to the
functions ¢ and log |z — ¢| for fixed ¢ e D, yield after a familiar limiting
process:

wp(z) = —?rfl)bglz—fldf(f) drg.

Hence p is the unique negative logarithmic eigenvalue of D which exists
iff 7., the transfinite diameter of the annulus, exceeds unity (see (26)), and
¢ is the unique positive eigenfunction associated with u, providing @ > 0 is
chosen to fulfill the normalization

2 ug
(27) 1= f Vdr = — wf w¥(w) du.
D 2 uy
TueOREM 4. There is no admissible domain of given transfinite diameter for
which the ratio —u/A s maximal.

Proof. In view of the fact that the transfinite diameter of an annulus is
equal to its outer radius, it is sufficient to show that there exist admissible
annuli of any given outer radius for which the value of the ratio —u/4 log d
is as near to 2/7 as desired. In fact we will show that for the annuli centered
at the origin,

lim, or, —u/Alogd = 2/x.
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To establish this useful result, we consider the defining equation (26) which
may be rewritten as follows:

Ki(Zwu)I(uw) — LOw)K(w) | 1
(28) “[ RO T T LW K ]

B log T2
where N = 11 /ry, u = 2r; /4/—p (the subseript on u, is suppressed). From
monotonicity, we know that —pu is a decreasing function of »,, and since
—u/A is bounded and 4 — 0 as r; — ry, it follows that y > O and sou — «
asr —> 7.
From the known asymptotic approximations for the modified Bessel func-
tions, [12], viz

(29) I(w) ~ e"/v/2ru; Kp(u) ~ € "“\/x/2u, p=01

for large positive u, we obtain the following asymptotic approximation for the
left hand side of (28):

6—)\u eu - e)\u e—u
e——)\ueu + e)\ue—u

] = u tanh u(1 — \).

Therefore
lim,,,, tanh u(1 — \) = lim, ., (w tanh (1 — \))/u =0

or
(30) lim, ., (1 — A) = 0.
Next, consider the ratio
- _ 4 _ 4 [K1()\u)11(u) - IlO\u)Kl(u):l
Alogr, wur(l — N)logr. wu(l — N2) | KiQw)lo(w) + Ii(Mu)Ko(u)
4

mu(l + )

) {Kl()\u) [uli(u) — Muli(\u)] — LOw) [uKy(u) — )\uKl(Au)]}
(u — M)[K:Qu)Io(u) + Li(vu)Ko(u)]

However, [ul;(w)] = ulo(u)
[uKi(u)l' = —uKo(w)
so by the law of the mean, and monotonicity of the Bessel functions we obtain

—r oA [Kl(xu)lo(xu) + Il()\u)Ko(u)]
A 10g T2 1r(1 -+ )\) K1()\’M)Io(u) + I]_()\’U,)Ko(u) )
For large u, the bracketed term in the foregoing inequality is asymptotic to

_l B e—)\u exu + \/5\‘ eku e 1+ eu(l—)\)
,\/X e—Meu + eMug—u 1 + e2u(1—N)

[12]
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and in view of (30),

(1=))
. 14é
risrg 1 4 240N

Collecting these facts, we see that for r, sufficiently near r,,

2>——u 4 N\

1.

T = Alogr > 71 +>\f()\)’
where lim, ., f(A) = 1.
Therefore lim, ,,, —p/A logry = 2/7

as asserted.
Hence there can be no doubly connected domain of given transfinite diameter
for which the ratio —u/A log d is maximal, and since by Theorem 2, —u/A4
may be approximated as closely as desired by domains (or admissible sets) of
any desired connectivity, it follows that there is no admissible set of preseribed
connectivity and transfinite diameter for which —u/A log d is maximal.

A similar argument establishes

TueoreM 4. There is no admissible domain of given transfinite diameter
for which the ratio —u/A is minimal.

Proof. Let d be the given transfinite diameter and for 2, w > 0, consider
the admissible domain D (h, w) obtained by smoothing the corners on the set

{z:]2] <1Juf{z:0< Rez<w,0<|Imz| < A}

ip any prescribed manner. For fixed b > 0, the transfinite diameter D (h, w)
is an increasing continuous function of w which exceeds w/4. (The continuity
follows from the identification of the transfinite diameter with the exterior
mapping radius [3].) Hence for each integer n = 1, 2 -+, there exists a w,
< 4d for which the domain D, (= D(1/n, w,)) has transfinite diameter d.
The sequence D, converges characteristically to the unit disk which is not
an admissible set. Therefore by Theorem 2, u,, the eigenvalue of D,, ap-
proaches zero. Since 4,, the area of D, exceeds unity it follows that —u./A.
— 0; le. there exist admissible domains of given transfinite diameter for
which the ratio —u/A is as small as desired.
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