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A permutation representation of a group can be defined as a homomorphism
of the given group G into a symmetric group, the group of all permutations of
a given set t. We shall call the elements of t points and refer to t as a space,
but this does not imply that any geometric notions are intended. We can
also discuss permutation representations without talking about homomor-
phisms, by actually writing down the permutation for each g in G:

ghe general po of . Nveryghing is given once one is given he funegion

eo of wo variables; i will be called an eio of G on . his function is
subee o he following requirements" for all in , and , h in G, we musg
have () , and . These two ways of treating permutation repre-
sentations are equivalent; I prefer to speak of actions because later we will also
be talMng about linear representatis.

There are three major tools that have been developed for the purpose of
studng the actions of a group G on a set . The first of these is the well
known theory of linear representations over a field, a theory developed by
Frobeus around 1900.
The second method is due to Schur, and dates from 1933: this is the method

of Schur rings [1], [3]. For the purposes of ts paper we may define Schur
rings in the following slightly simplified maer. Given a group H and a
field F, consider the group ring FH. This is the rg of formal linear combi-
nations of elements of H with coefficients in the field F, that is, the set

with coefficient-wise addition, and multiplication induced from the multiplica-
tion in H. A Schur ring is then a subring of FH, which is closed with respect
to the additional operation of coefficient-wise multiplication, the operation
defined by

a b h.

Later we shall see that this peculiar type of operation turns up naturally in
the theory of permutation representations.

There is one more method, of rather recent origin [4]. Ts is the study of
those relations between points of 2 that remain invariant under the action of
G. By studng these invariant relations, we hope to get iormation on the
action of G on . The particular case of binary relations can conveently
be represented by graphs. Graph theory has recently contributed consider-
ably to the theory of permutation groups, e.g. in the work of Si [2].
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These three methods seem quite different. It would be desirable to have a
common source, something from which they could all be derived. This is
what we want to give in this paper. To find a central concept, it will be best
to start with the classical method of linear representations;we shall try to find
out what the essential points of the theory are, and how they are used to
investigate actions.

Let me begin by describing the standard procedure that is used to introduce
linear representations into the theory of actions. Suppose we are givea aa
action of G on 2; we wish to construct a linear representation of G over some
field F, that is, a linear action of G on an F-vector space. Let V be the space
of formal linear combinations of elements of f over F,

V {v a,oo
Addition is defined in the natural manner. The action of G is extended
linearly from the basis, defining v a 0. Thus we obtain a linear action
of G on V which makes V into a representation module for G, associated with
the original action of G on

However, there is a less formal way to obtain a representation module from
the action of G on 2. Consider the set F of all functions from 2 into the field
F. These functions form a natural vector space structure. F is essentially
the same space as V, defined above; the correspondence is given by
f +- f(). Let G act on F according to the definition f() f().
It is easy to show that this function of two variables gives an action on F
equivalent to the action given on V before.

This new point of view has a number of important consequences. Functions
are more convenient objects to consider than linear combinations of points;
we may compose them, we may consider their inverses, and so on. The
functional approach also gives rise to an immediate generalization, to functions
of more than one variable. Let F be the set of functions from 2 to F. This
set again has a vector space structure, and we may define an action of G on it
as before,

fa( , ) f( ).

Thus we have associated with the given action of G on 2 a whole series of
vector spaces on which G acts, F0, F, F, (we have completed the series
by adding F0, the functions of no variables, which is the same as F, with G
acting trivially.) Note that F has dimension 12 .
The central concept in the theory of linear representations is that of G-homo-

morphisms between representation modules. So we seek to describe
Hom(F, F), the F-linear homomorphisms which are compatible with the
action of G. Let n 2 I, and m /. We may regard the elements of
F as vectors with n coordinates; the image by a homomorphism must depend
linearly oa these. Thus may be written

(f)(, ---, ) (, -.., , , .-., )f(0, ..., )
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where the sum extends over all (1, "’, v) e 12. Here is a function of
k variables with values in F, i.e. e Fro. One can show easily that is
compatible with the action of G if and only if is iavariaat in the obvious
sense:

t(, ..., g) t(t, .-., ), VgeG.

Hence if we denote the set of iavariant functions of m variables by Fro(G),
each o in Home(F, Fh) gives rise to a function e F(G), and cortversely;
moreover this correspondence is linear in t. We formulate this as our first
theorem.

THEOREM I. Home(F, Fk) --F F+k(G).

We have found a concept closely connected to the theory of linear repre-
sentations; these invariant functions are our proposed unifying idea. We shall
now see how they are connected to the theory of iavariartt relations and to
Schur rings. Let us first try to describe the space F(G). By defiaitiort

f e F,(G) = f( ..., ) f( ..., ,,), V e G.

Thus f is irtvariartt if artd only if f is constant ort the orbits of G on m. This
immediately tells us how many linearly independent irtvariaat functions there
are; since the characteristic functions of the orbits form a basis, we must have

THEOREM II. The dim’ension, over F, of F,,(G) is equal to the number of
G-orbits in ".

Iavariartce of functions cart be expressed irt a slightly different way, if we
consider level surfaces of the functions in F. The irtvariance condition
simply means that whert f takes a certain value ort a point (, ,) of,
it takes the same value ort all the G-images of that point, that is"

THEOREM III. f e F,(G) if and only if every level surface of f in " is in-
variant under G.

Any subset of fm is a relatiort betweert m points. Thus Theorem III gives
the corresportdeace betweert irtvariant functions artd irtvariartt relatiorts.
We are led to the connectiot between Schur’s method artd iavariaat func-

tions when we consider the special case of Home(Fz, F) where/ 1.
Home(Ft, Ft) has a natural ring structure given by compositiort of functions,
e e’ (f) e(e’ (f)). This ring multiplicatiort induces a similar multiplication
irt F(G), through the correspondence given by Theorem I. Going back to
the proof of that result, we find

(1) f, g eFt(G) :=, h(, ) _,, f(, )g(, )eFt(G).

The new operation thus defined ort F(G) can be iderttified with matrix multi-
plication. With this result irt mind, we cart now describe how Schur’s method
is related to irtvariaat functions.

Let G be a group acting on t, and suppose there is a subgroup H

_
G which
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can be put in a natural 1-1 correspondence with the points of l]. This can be
done whenever H acts regularly on 2, i.e. when there is exactly one element of
H carrying a given point of 2 into any other point. Whenever that is the case,
we can switch from 2 to H, as follows: fix a point o in 12; then for x in H, replace
o by x. Under this identification, F2 becomes the set of functions from
H X H to F. Now let f e F2(G) then by the identification and invariance of
f, f(l, ,2) f(ohi, o2) f(oalh o); f(l, f;2) ](hlh-1) where (h) is a
function of a single variable from H to F. The multiplication on F.(G)
defined by (1) can be carried over to/2(G); doing the calculation, we find

(2) ]1, ]. e (G) h,n ]l(xh-).(h) e .(G).
This is an expression of a familiar form, closely related to the group ring FH.
Forf eFt(G), let f* ,,](x)x efH, and let S (F(G))*. Then it is
easy to check that (2) becomes

(3) f, f*e S f* f*e S, the product in the group ring FH.

Since the invariant functions form a commutative ring under pointwise
multiplication and addition, this shows that S is a Schur ring. Hence the
theory of Schur rings can be used to investigate the G-invariant functions of
two variables in the special case when G contains a transitive regular subgroup.

This unification of the three maior methods offers promise for the future;
it involves concepts that are very simple and general in nature, and can be
carried over to topological groups. In the theory of multiply transitive
groups, invariant functions should prove particularly useful. For example,
if one studies a precisely fivefold transitive group, there is no non-trivial
invariant relation between five points, but there are non-trivial invariant
relations between six points, so Homo(F, F) is a non-trivial ring.
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