A PATH SPACE FOR POSITIVE SEMIGROUPS

BY
I'rank B. Knicut!

1. An existence theorem

Let (E, &) be a locally compact space with countable basis and the o-field
of its Borel sets. We suppose given a real values kernel m(¢, z, A), ¢t = 0,
z e B, A €& subject to the following hypotheses.

(a) Tor each A € &, m is measurable in ({, ) over the product o-field
®% X &, where ®" denotes the Borel sets of [0, «).

(b) Tor each (¢, x), m(t, x, 4) is a non-negative finite measure on &.

(¢) m(0,z, A) = I,(x) where I, is the indicator function of 4.

(d) mt+t,z4A) = fE m(ty, x, dy)m(ty, y, A) for all &4, &, = 0 and
A € & (the semigroup property.)

If, in addition, we assume m(t, x, E) = 1, then m is “substochastic”.
There is in this case a great and well-known theory (the theory of Markov
processes) of how to define and investigate measure spaces of “paths” de-
termined by m(¢, x, E). In this paper we are concerned with showing that
a certain part of this theory having to do with finite-valued stopping times
can be directly extended to the more general case.

It should be remarked at the outset, however, that the substochastic case
is much more inclusive than its definition might indicate. This fact arises
from the existence of various methods of reduction of the general case to that
case. For example, if for some A > 0 one has m(¢, z, E) < €', ¢ = 0, then
all of our results can be easily reduced to known ones for the kernel
¢ m(t,x, A). More generally, if for some € and A > 0, m(¢, z, E) < %™,
for all £ > ¢, then under hypotheses necessary for the most part already in the
substochastic case one can reduce our problem to that case by means of the
substochastic kernels

h()

where h(z) = [7e™ m(s, x, E) ds. It can be argued as an objection to
this transformation that it introduces a distortion of the ‘“‘process’, but this
is a matter of opinion. Henece to escape from the ‘“sphere of influence” of
the substochastic case, one must be ready at least to give up the exponential
boundedness of the measures with {. There are, however, more general
transformations which may yet effect the reduction by means of (other)

m(t @, dy) h(y)
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multiplicative functionals. The limit of generality of these methods is not
known, but it seems likely that beyond a certain point it becomes prefer-
able to develop a direct approach, as is done here, rather than to reduce
matters to the substochastic case. A further discussion of this point will be
made in connection with the examples at the end of the paper.

To introduce our approach it is perhaps worthwhile to draw a connection
with the theory of branching processes. In that theory, there are many
representations of kernels m (¢, x, A) in the form

m(t,x, A) = B° 259 T.(X;(18),

where (X1, --+, Xiw) are the “branches” of the process at time ¢ and E”
denotes integration over a probability space for the process starting at z
(see [12] and [15]). Each of these branches, of which the number k(¢) is a
random variable, has associated with it a branching time n < <« and termi-
nation time §, 7 < { = o, as well as a direct lineal ancestry up to time 9
and a path of values from time 5 to {. Let me imagine that the branches
are now separated to become objects of a new refined space, except that the
lineal ancestries are included along with each branch (and thus may have to
be repeated, at least in part). There is induced on this space by the original
measure a measure in which events along the branches are weighted accord-
ing to the expected number of branches for which they occur. In this way,
one arrives at a sample space whose objects have the form (%, ¢, w(¢)) where
0 927< ¢ = oandw(t) eE for0 =t < ¢. On this sample space, there
are induced measures u” such thatfor0 = 4 < e < -+~ f,and 4y, --- , 4, €&
one has

)

(1-1> m(tn—l — lp—gy Yn-2, dyn—-l)m(tn — ta—1, Yn-1, An)
= u{(nw)ig St, < and w(t) e Ay, -+, w(ts) € An}.

e L m(tl y Ly dyl)m(tZ — 4 y Y, dy2) e
1

n—1

It is important to remark, however, that the measures u” on the o-field
generated by the sets having the form on the right of 1.1) are not thereby
uniquely determined. Indeed, sets of this form do not form a ring. There
are in general many such measures x° compatible with (1.1), and the reason
for this variety can be expressed in the phrase that a greater rate of branch-
ing can be cancelled by a more rapid rate of termination. In other words,
there may be more branches and larger total measures u” if the branches are
also shorter.

We suppose, now, that the branching and termination rates both tend to
infinity while (1.1) remains true. In the limit one would have n = ¢. Thus
we arrive at the idea of a one-parameter family of measures ui, ¢ = 0, for
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each z e £, such that for0 £ f < --- < t, £ tand
Ay, -+, Auy1 €8, 1=n< o,

(1 2) L tee fA m(t1,$, dyl)m(k - t17y17 dyZ) e

m(tn - tn——l y Yn—1, dyn)m(t - tn y Yn An+1)
= .Uj{w(tl) € Al y Tty w(tn) € An y 'LU(t) € An-{-l}'

By strict analogy with (1.1), such measures for different ¢ would be defined
on disjoint sample spaces. However, it is clear from (1.2) that they can all
be considered as defined on a single space consisting of paths in the ordinary
stochastic sense if each y7 is defined only on the o-field F(¢) generated by the
path up to time {&. We thus have the following point of departure for our
method.

DermviTioNn 1.1. Let @ = Xogecw £y and F = Xo<eco & Where each
(E, 8); is a replica of (£, &) and “X” denotes the Cartesian product, and
let {F(t) = (X0§s§z83) X (Xt<sEs),O é 4 < w,

TuroreM 1.1. For each x € E and t = 0 there is a unique measure u; on
F(t) for which (1.2) holds.

Proof. 0 =4 < -+- <1, = tarefixed and 4,1 = E, (1.2) is easily
extended to define a measure on §" considered as a sub-field of F(¢) associated
with {#, ---, t.}. Moreover, these measures are obviously consistent for
overlapping sets of coordinates. The existence of the measure u7 thus follows
from Kolmogorov’s theorem. The uniqueness is evident.

Remark. After completion of an initial version of this paper it was pointed
out to me by Professor J. L. Doob that the measures m (¢, x, E) u} are
actually Markovian on F(¢) with respect to the inhomogeneous transition
function

m(82 — 81, %1, dxz)m(t — S X2, E) .
m(t — 8,21, E) ’

p(s1, 1; 82, das) = m(t — 81,21, E) #0

= 0 otherwise.

This makes Theorem 1.1 a standard application of Kolmogorov, and it is
evidently the “underlying” reason for the existence of the martingales used
below.

2. Regular processes and stopping times

We shall develop the regularity properties of the path functions by using
the method of martingales. It is necessary to introduce three hypotheses.

Hypothests 2.1. Let C denote the bounded, continuous funections, and
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C, C C the elements with compact support. For 0 = f, f measurable over
& and t = 0, set

T.f(z) = fm(t, x, dy)f(y).

Thenforf = (f A0) + (f \V 0) € C, we have
T.f= Tt(f\/ 0) — Tt(—(f/\ 0)) ¢C,

where both terms are finite. Moreover, for f € C;, lim,,0 T, f = f in the
sense of pointwise convergence.

Remark. The last condition rules out the possibility of “branching points”
[13] but these would not be basie for our subject.

Hypothesis 2.2. m(t, x, E) is continuous in (¢, ) with respect to the
product topology, and is nowhere 0.

Remark. The non-vanishing of m is assumed only for notational conveni-
ence. Moreover, it may be a consequence of Hypothesis 2.1.

Hypothesis 2.3. Unless E is compact, for each compact K the equation
lim,.,, m(t, z, K)/m(t, x, E) = 0 holds uniformly in finite time intervals,

Remark. The role of this hypothesis is to prevent exits of the paths from
E, which would necessitate extension of the kernels to an enlarged space.

We can now prove the theorems which lead up to regularity of the paths
for uj .

TuEOREM 2.1. For A ¢ & and 0 = & = &, m(h — s, X(s), 4)/
m(ty — s, X(s), E) is a u%,-martingale, 0 < s < & .

Remark. The definition of martingale, like that of conditional probability,
is not effected if the measure u?, is normalized to have total measure 1.

Proof. For0 < s < 83 £ by, let ui, (X(s2) €dy| F(s1)) denote the indi-
cated conditional measure. It is not hard to convince oneself that in fact
this is a function of X (s;) only, and that it is given by the expression

m(s; — 81, X(s1), dy)m(te — 82, 9, E)
m(ty — 81, X(s1), B) '

Letting E3, denote expectation (or integral) with respect to u?, it follows
that for s; < &

(MR ) - [ s
- m(t1 — 81, X(S1), A)
m(t2 - 81, X(Sl), E)

z
Q.6 Uiy o

This completes the proof.
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To obtain the regularity of the paths it is useful to introduce separability
for the process. Once the necessary properties are established we can discard
the irregular paths and define the measures on a regular subset of @ for which
separability is automatic. Thus our use of separability is only in passing.
For the moment, however, we assume that if E is not compact it has been
compactified by a single point A, that for each z and ¢ the fields F(s), s =< ¢,
are completed for u7 whenever X (s) is considered for this measure, and that
X (s) is then a standard modification separable for the closed sets (see Meyer
[10, p. 57]—we can again assume in applying the definition that uf is nor-
malized). It is to be noted that since, for & < ¢, u?, is absolutely continuous
with respect to u7, on F(f;) the necessary modifications can be chosen inde-
pendent of t. Let @7 denote a countable dense separating subset of [0, t] for
pi . We assume that Q7 increases with ¢ for each z.

TaEOREM 2.2. For each (i, x), ui-almost-all paths have at most one right
(left) limit value in E at each s < t (s = t) along the set Q7 .

The following lemma will be used again later.
Lemma 2.2. ForfeC.,T.f(x) is continuous in (i, ).

Proof. Let d(z, y) be a metric on I which generates the given topology
(here we do not consider A € E), and let S.(z) denote the sphere with center
2 and radius ¢ > 0. Suppose, to the contrary, that there is a sequence
(ti, ;) — (i, z) such that | T, f(x;) — T'f(x) | > € > 0forallj. We can
assume without loss of generality that f = 0. Two cases are distinguished.

Case 1. There is a decreasing subsequence of {¢;}. We can assume in this
case that ¢; is decreasing. From Hypothesis 2.1 it follows that for ¢ > 0 and
zekE

limg,o m(¢, z, S:(x)) =1 and lim.om(t, z, K — S.(z)) = 0,

where K is any fixed compact set. Moreover, these convergences are uniform
for x in compact sets for if not a contradiction would ensue at an z-limit point
upon replacing € by ¢/2. Let K, denote the support of f. It follows that

lim infjsw T'; f(2;5)

= lim infje f f m(t, x;, dy)m(t; — b, y, do)f(x) = T, f(x).
Ky JEs

On the other hand, if for § > 0 one had lim sup;.. T:; f(z;) > T.f(x) + 6,

then for any compact K it would follow from the boundedness of m(¢, z; , E),

j=1,--,that
lim supj.mf mt, z;, dy)ym@; — ¢, y, K;) = (6)/(max, f).
E—K

By choosing K sufficiently large, however, this contradicts Hypothesis 2.3
in view of the boundedness of m(t, z; , E).
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Case 2. There is an increasing subsequence of {¢;. This case is treated
similarly, using the boundedness of m(¢;, z;, E).

From this lemma and Hypothesis 2.1 there exists a sequence {f,} of non-
negative elements of C, such that if x; ¢ xz, there are ¢ > 0, n, and disjoint
neighborhoods N (z;) and N (z,) such that for ¢ < ¢,

‘ Tifa(y)  Tifalye)
m(t7 Y1, E) m(t7 Yo, E)

> ¢ for yie N(x1), y2 € N(x2).
It is easily seen by Theorem 2.1 that
T LX)
m

(G — s, X(s), B) t}

is a countable family of uj-martingales, which accordingly have unique right
limits along Q7F at all s < ¢, ui-a.e. Let S(¢) denote the set of paths where
for some 7, k&, and n > 0, the martingale

Tj2_kt—sfn(X(s))
m(j27% ¢t — s, X(s), E)

does not have right limits along Q7 at all s < 727* t. By the absolute con-
tinuity of u3, with respect to uf, for & < & it follows that u7(S(¢)) = 0. On
the other hand, if 2; and . are distinet right (left) limit points in E along
Q7 of a path at s < t (s = t) then choosing 0 < 2%t — s < ¢, for the ¢
and n (depending on x; and ;) chosen above the corresponding martingale
obviously could not have a right limit along Q7 at s. Hence such a path
is in S(¢), and the proof is finished by an application of separability.

IIA
IIA

8

TaEOREM 2.3. For each (i, x) the process X (s) is right continuous in measure
with respect to u7,0 < s < t.

Proof. For 0 < h < t — s, the conditional distribution of X(s + k)
given F(s), or equivalently X(s), is

m(hy X(S),dy)m(t - (8 + h)r Y, E)
m(t — s, X(s), E) )

Since, for ¢ > 0, limy,o m(h, X(s), S.(X(s))) = 1, while the ratio of the
other two terms approaches 1 in small neighborhoods of X (s) and the total
measures are all 1 the result is now clear.

TurorEM 2.4. For each (i, x), the process X (s) is ui-a.e. bounded (i.e.
contained in some compact set) 0 < s =< &.

Proof. Let K,,n = 1, be compact sets with d(K, , & — K,41) > 0 and
K, T E, and let g. be continuous functions with 0 < ¢, < 1 and

g =1; zekK,
=0; z¢Kup.
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Since the g, increase pointwise it follows from Lemma 2.2 and Dini’s theorem
that imy.. Tsg(x) = m(s, z, E) uniformly for x ¢ K compact and 0 < s < &.
Hence for n sufficiently large, T g. is bounded away from 0 in the same
domain. On the other hand, by Hypothesis 2.3,

lim TB gn(x)

= i i < g <
P P ) 0 uniformlyin 0 = s =t

Thus we see that if S(¢) denotes the set where X (s) is unbounded in0 < s < ¢
then S(¢) = N, S.(t) where

. . T gn(X(s)) =
Sn(t) - {lnfog_sét,séot m(t - S, X(S’), E) B O} .

Setting

T (X@)
M) = = X9, By

and applying the optional sampling theorem of Doob to the martingale
—M.,(s), using finite subsets of Q7 which increase to Q7 , we deduce that for
>0,

- Sﬂf {Sup0§s§t,se0f —M”(S) > —-g} = - f gn(X(t)) dﬂatv-
{sup —M,(8) > —¢}

Letting ¢ — 0 it follows (see Loeve [9, p. 636]) that 0 = [g, g.(X (%)) dus .
However, since ¢, is bounded away from 0 in compact K for large n, this
implies that lim,., x7(S,) = 0, and hence that u7(S) = 0. This completes
the proof.

THEOREM 2.5. For each (x, t) the set of paths which are bounded in finite
time intervals, right continuous, and have left limits in 0 £ s < t, has ui-outer-
measure m(t, x, E).

Proof. 1If we define Y(s) = lim,|se% X(t) if this limit exists for all
s < t,and Y(s) = T otherwise where 7 is a fixed element of E, then by Theo-
rems 2.2-2.4 it is clear that Y (s) is a ui-standard modification of X (s) with
right continuous paths having left limits except in some pi-null set. Since
any measurable set may be defined using only countably many coordinates,
the result is now immediate.

DermniTioNn 2.1. Let & denote the subset of Q@ consisting of the functions
bounded in finite time intervals, right continuous, and having left limits.
Let §, (%), and u? be the traces and restrictions of the corresponding o-fields
and measures of Definition 1.1 to . Finally, let X (s) denote the coordinate
function for s on .

We next turn to stopping times and the strong Markov property. Even
though each u? concerns the paths only up to time ¢, it is not necessary to
assume for this purpose that the stopping times are uniformly bounded.
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The key to this difficulty consists in introducing measures u7 corresponding
to stopping times T in the same way that u? corresponds to t. However,
since we have no measure corresponding to { = o it seems necessary (unlike
in the stochastic case) either to assume that the stopping times are finite
valued, or else to restrict all assertions to the set where they are finite. The
former approach will be followed in the present section.

DErFiNITION 2.2. A non-negative measurable function T < « on (&, ¥)
is a “stopping time” if {T < #} € F(¢) for all ¢ = 0. The o-field F(¢) of
the ‘“past up to time T+’ consists of the sets S ¢ F for which
Sn{T <t} eF(T) forallt = 0.

We can now introduce the measures uz , although the definition requires a
subsequent justification.

DeriviTioNn 2.3. For each stopping time T we define uz on F(T) as the
unique measure for which the Radon-Nikodym derivative

dut/duzr = m(t — T, X(T), E)
a.e.-u; on the set {T < ¢ for all .
Remark. Itisnot asserted, however, that u7(2) < «.

To justify this definition we must establish both the existence of such a
measure on {T < t} for each ¢ and the consistency of these definitions as
¢t varies. The first point is easily seen because m (¢, x, E) is measurable in
(t, z), hence we see that on {T < &}, m™'(t — T, X(T), E) is $(T)-measur-
able and we define for S ¢ F(T')

pr(Sn {T < t}) =f

SN {r<t

) (m(t - T’ X(T), E))—l du::-
The consistency of this definition as ¢ varies is not as easily obtained. To
see what is required we note that for & < f the identity
dut, /dut, = m(& — t, X(4), E)
on F(#) is an obvious consequence of Theorem 1.1. Thus the consistency

follows if we show that

[ (m(ts — T, X(T), Bym(ts — t, X(0 ), )™ i,
8N (T< ty}

- (m(ts = T, X(T), E)™ dy.
SN {(T<ty}
For this to hold, it is in turn sufficient that the following identity of condi-
tional expectations be valid:
Ei, ((m(t, — 41, X(1), B))™ | 5(T))

_m(h — T,X(T), E) .,
= me = T X(N).E) > Twa over {T' <l
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But this is a consequence of the optional sampling theorem of Doob, in view
of Theorem 2.1, the right-continuity of X (¢), and the continuity in (¢, ) of
m(t, z, E).

We are now ready to state and establish our strong Markov property. A
yet more comprehensive form will be required in the next section.

DerinitioNn 2.4. Let T be a stopping time and let X(¢), ¢ = 0 denote
X(T + t). Let Fr(t) be the o-field generated by F(T) together with the sets
{Xr(s) ed},0 = s = 1, A €& Then (see below) Fr(t) € F and X»(¢) is
measurable over Fr(t). An Xp-stopping time T is a non-negative function
on & such that {To < ¢} e Fr(¢) for all ¢, and the field F+(To) of the “past of
X7z up to time To” is the class of all S € F such that

Sn{To =< t} ¢ F(t) {forallt.

We call the process X (¢) a “strong Markov process’ if for each X,-stopping
time T which is measurable over $(T) = Fr(0) we have for each S e F(T")

(21)  Whor, (IX(T + To) e 4) 0 8) = [ m(To, X(T), 4) di.

Remark. Suppose (as will be shown) that X (¢) is a strong Markov process.
If T is a stopping time and ¢ is fixed, then T' A tis a stopping time. Moreover
To =t — (TNt is an Xra-stopping time measurable over F(T A t).
Since T 4+ To = t we have for S e F(T A t)

W UX® e} N 8) = [ me— (T AD,X(T A D, 4) dis

- m(t — T, X(T), A) dus + f LX) dui

sN{r<t

where I, is the indicator function of A, and we used the evident fact that on
the set where two stopping times are equal the corresponding measures coin-
cide. This identity may shed some light on the role of the measures uz and
the strong Markov property.

TueoreEM 2.6. Under Hypotheses 2.1-2.3, X (t) is a strong Markov process.
Proof. We introduce the X-stopping times
T, = (k+ 127" on {k27"=T< (k+ 1)277, 0=k n>0,
and also the Xr-stopping times
Tom = (k+ 1)27" on {k27" = Ty < (k+ 1)277},

which are measurable over ¥(T'). Since clearly X (T, -+ t) is measurable over
F and lim,.e X (T, + t) = X(T + t) it follows that X (T + £) is measurable
over § as asserted in Definition 2.4. Also, it is clear that m(To, X(T'), 4),
A €8, is measurable over (7). To prove the theorem it suffices to show
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that

(22)  Brur(F(X(T + T0); 8) = [ f m (T, X(T), dy)f(y) du

for each S € F(T) and non-negative function f e C, , where both sides of (2.2)
may equal + . We shall first prove a form of (2.2) with S replaced by
Sn{Ty + Tou < t} wheret, N, and M arefixed, and T replaced by T, and
To by Tom forn = N and m = M, namely

E[f(X(Ta 4 Tom))m " (t — Tn — Tom, X(Trn + Tom), E);
(2.3) Snf{Ty + ToM < 3]

- [ m(Tom, X(T), d)sy) du,
SN{TN+To, <t} VE

which becomes (2.2) with the stated replacements if we apply Definition 2.3
using the fixed . To prove (2.3) let us consider the set where T, = k27"
and To,m = ki2™™ for fixed &k and ko. Evidently on this set Ty and T,
likewise have prescribed values, hence Tx + To,x is a constant which we take
without loss of purpose to be less than t. Denoting this set by S(k, ko), re-
placing S by S n S(k, ko), and setting tri, = k27" 4+ ko 27", (2.3) may be
written in the form

E:: U(X(tk-ko))mml(t - tk,ko ) X(tk,ko)’ E)) Sn S(k) ko)]
(2.4)

- f m (ko 27, X (k 2™), dy)f(y) duemn .
SNS(k,kg) JE

If on the right we multiply and divide the integrand by the factor
m(t — tex, , ¥, £) and then use the facts that S n S(k, ko) e F(T) < F(T,)
while u7,, and pis-» coincideon S n S(k, ko), then it becomes obvious that (2.4)
holds. We now sum this equation over k and ko for which Ty — To,» < ¢
to obtain (2.3). The next step is to let first » — o and then m — . Still
confining attention to the set {Tx 4+ To,» < &} we show that

limg..., dur, = dur

in the sense of pointwise convergence of the Radon-Nikodym derivative of
these measures to 1 over this set. In fact, it follows from the consistency of
Definition 2.3 and the fact that {T, = k27"} ¢ $(T) that

dur,/dur = m(T, — T, X(T), E), ur-ae.
Letting Kr = {X(T) e K} for compact K, we have Kr ¢ $(T), and
limg.e m(T, — T, X(T),E) =1

in the sense of bounded pointwise convergence on Kr . We can now let n— o
and then m — « on the right of (2.3), and apply Fatou’s lemma on the one
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hand, and restriction to Kr followed by an application of bounded convergence
(note that f,; m(To,m , X(T,), dy)f(y) is bounded for fixed m over the given
set) and then monotone convergence as K T E on the other, to obtain the
limit

[ [ m(ry, X(1), ay)sty) d
Sn(TN+T0_M<t) E

As for the left side of (2.3) asn — « and m — «, we can proceed in the same
way using the expression

dﬂ;"+ro,m/duz'+7'o = ’H’L(Tn =+ To.m - (T -+ TO), X(T -+ T0)7 E);

and introducing the sets Kr ,r, over which the measures dur 4z, are finite and
the convergence of the above expression to 1 is bounded, to obtain the limit

14 [f(X (T + To0)); Sa{Ty + Tou < §}].

To complete the proof of the theorem, it now remains only to let N — «,
M — o,and t — «.

3. Terminated processes

In the study of Markov processes the concepts of quasi-left-continuity and
terminal times are of importance [2]. It seems likely that they can be ex-
tended to the present case, but this would take us too far afield. Among the
terminal times, however, the times of first reaching a given set are important
in various analytical problems, such as solving elliptic and parabolic partial
differential equations in a given domain, and will be treated along the same
general lines as in [1 Theorem 5.1]. It is necessary to introduce certain ex-
tensions and completions of the o-fields.

DerFiniTioN 3.1. Let F(s+) = Ny, F(t),0 = s < «, and, noting that
Definition 2.3 may be applied (with s in place of T) to define a measure
du® on F(s+) agreeing with its previous definition on F(s), let F*(s+) denote
the intersection over x ¢ K of the completions of F(s+) with respect to duj .
Similarly, let *(s) denote the analogous completion of F(s).

TuporEM 3.1. F*(s+) = F%(s) for 0 £ s < .

Proof. It suffices to show that for each z € £ the two fields F(s) and F(s+)
differ at most by sets of u;-measure 0. Let § > 0 be fixed, and let 0 < # <
e < St <t < o <ty 2t+6,andfy, -+ ,faeC.. Thenwe have

Yoo UL f5(X(8) | ()] = limesor Ef o[l L £5(X (85)) | $(t + &)1
= im0+ Hjil Fi(X(85))

f---f[m(tkH —t— e X(t4 o), dy) -

m(tn - tn-—l 9 yn-—k—l ] dyn—k)

m(E+ 8 = b,y Yui, B) . ]
m@ — ¢, X(t + ), B) %t 1i(yis)

= Efp ([ £:(X () | §(1)] Mits 8.,
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i.e. the limit is obtained by setting ¢ = 0, in view of Lemma 2.2. It follows
easily from this that for S ¢ F(¢ 4+ §), and hence in particular for S e F(¢+),
one has

bers(S | F(t4)) = wins(S|F(1)), uis-a.e.
It is now only routine to see that for S ¢ F(t+),
pi(8 | 5(t+)) = pi(8|5(0)), wui-ae,

since du’ys /du; = m(8, X(t), E) which is measurable over $(¢). This implies

that u7(S | F(¢)) = 0 or 1, ut-a.e., and setting So = {u7(S| F(t)) = 1} fora

particular choice of the conditional measure we see that S, is F(¢)-measurable

and pi(S n So) = ui(S), ui(Sn (E — So)) = 0, which completes the proof.
We next introduce the stopped processes.

DerinirioNn 3.2. The first passage time T to a set A €& is given by
T =inft = 0: X(t) eA; T £ ». The process Y (t) derived by stopping
X (%) upon reaching A is defined by

Y@) =X(@; t=T
= X(T); t > T.

It is known that T is an & (t+)-stopping time in the sense that
(T < 8} eF*(t+),0 < t < », and hence it is an F*(¢)-stopping time (see
[11, pp. 73 and 104] (on the latter, the necessary completion was not men-
tioned)). We define the past §*(T4), for any F*(¢)-stopping time T, as
the class of all sets S: Sn{Th < #} ¢eF*(t),0 < t £ », where we define
g*(w) as the o-field generated by U,so 5 (£), so that {T: = o} ¢ F*(»).
Since Y (t) has right continuous path functions it follows by standard argument
that it is measurable over °(t) N F*(T),0 < ¢t < . Wewishto show that
Y (t) is a strong ‘“Markov’’ process with respect to these o-fields in the same
sense as Definition 2.4. From this point on, we assume that measures u;
and uf, for finite 5 (t)-stopping times T, are extended in the obvious way
to 5*(¢) and §*(T1). For such T; we shall say that a set So is in the “past
of X (T + s) up to time ¢” if it is in the (joint) o-field generated by X (T + s),
0 < s £t Note that X(T; + s) is measurable over F(Ty + s). For S
in the past of X (T + s) up to time ¢ we define the shift 6z, of Sy by

07,(S0) = {6z, w: w € S},
where (07, w) (1) = w(Ty1 4+ ¢),0 =t < ». Clearly, 0r,(So) € F(t).

THEOREM 3.2. Let Ty be a finite F*(t)-stopping time, S € 5 (T1), and So
be in the past of X(Ty1 + s) up to timet < . Then

Wrire(Son 8) = E7, (1" (62,(80)); S).

Remark. Tt is evident that Son S e F*(T1 + t), and that u¥*" (6r,(So)) is
§*(T,) -measurable, so that the last equation is well defined.
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Proof. First of all, it is easy to check that the strong Markov property (2.1)
remains valid for S e *(T), since then S e (T + T,) and it may be re-
placed by a set in $(T) and in (T + T,) differing from it by u7 and p7r,-
measure 0. Next, it is clear that (2.1) also remains valid if

u;+ro({X(T+T0) €A} n8)

is extended to Eiir,[f(X(T+To)); 8] for feb*(8) (the non-negative,
bounded, & measurable functions) with an analogous extension of the right
side. Nowlet0 = s < - < s, =¢; A1, -+, Ane8; and set

Sk = M {X(T1+s) ed;}, 1=k =n

Applying the extended form of (2.1) successively with the stopping times
Ty + sp1, Ty + Sy, -+ -, Th in place of T one obtains

p7,+4(Sn 0 8) = pr p[{X(T1 + 1) eAs} n Span S]

= f m(t - Sp-1, X(Tl + sn~1); An) d.ua;’1+sn_l
8y—-108

= ff f m(sy, X(Tv), dy)m(ss — 81, 41, dya)
8YVAp_1 41

o M(Sp1 — Su—2y Yn—2y AYn1)M(t — Sn1, Yn-1, An) dur, .

Hence the theorem is proved for sets Sy of the form 8, , and since these gen-
erate the past of X(T1 + s) up to time ¢ the proof is now evident.

We come now to the basic theorem concerning the stopped process Y () of
Definition 3.2. \

THEOREM 3.3.  For each finite 5 (t) -stopping time Ty and S e F*(Ty) n (T
we have

Wirgorr {Y(Ti+ 1) e D} N 8] = Luﬁ(f%’)\” {Y(t) e D} dur,pr;

YyeE,De§ 0=t < .

Remarks. To see that these expressions are well-defined it is necessary to
recall that Y (¢) = Y (¢ A\ T) forallé. Applied with T constant, this theorem
states that Y (¢) is “Markovian” with respect to the ‘“transition function”
wiar{Y (1) e D} in the same sense as X () with respect to m(¢, x, D). The
proof can actually be applied with Ty £ o if S is replaced by Sn {7 < =}

and T is assumed & (T)-measurable. The restrictions placed on T, are a
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little less restrictive than their analogues of Theorem 2.6 in that F*(T)-
measurability of T is not required. On the other hand, the Ty of Theorem
2.6 has been replaced by constants. This is only for convenience, however,
as the general analogue will be easily obtained below as a corollary. Finally,
if &* denotes the intersection over all finite measures p on & of the p-completions
of & then the “transition function” wi,r{Y (f) €D} is seen, by a standard
reasoning, to be ®* X &*-measurablein (¢, y) for fixed D. Inshort, {Y (¢) e D}
is in the completion of F(¢{+) with respect to any o-finite measure, as in [11,
loe. sit], which implies &*-measurability of xixr{Y (¢) € D}, and joint measura-
bility then follows from the right continuity of the path functions and the
continuity of m(¢, z, E).

Before proving the theorem, it is necessary te introduce the concept of a
“regular point” and to prove two lemmas concerning it.

DerinttioN 3.3. A point z ¢ E is regular for 4 € & if
ui{(infs > 0: X(s) ed) =0} =0
for some (and hence for all) ¢ = 0.
Remark. It follows again as in [11] that
{(inf s > 0: X(s) e A) 5 0} e F*(0+) = F°(0)
which provides the meaning of the definition.

¢ or Q@ LEMMA 3.1. For each x € E, either x is regular for A or else, for all
t =0, u;{(infs>0:X(s) ed) = 0} = 0.

Proof. Let S e $(0) differ from {(infs > 0: X(s) € A) # 0} by a ui-null
set. We apply Theorem 3.2 with Ty = 0 and S = So = S. It follows that

Wi(8) = B i(8); 8] = us(S)ui(8).

Thus either uf(S) = 0 or else u5(S) = 1. In the former case,  is regular in
view of the absolute continuity of u§ with respect to u§ on §*(0). In the
latter case, since clearly wi(Q) = 1, we have wi(S) = ui(Q) and thus
ui(@ — S) = 0, completing the proof.

Let A, denote {z ¢ E: z is a regular point of A}. Then A, ¢&* as in the
remarks to Theorem 3.3, and accordingly expressions such as u; {X(?) € 4,}
are well defined. To apply the ¢ or € lemma in proving the theorem, we re-
quire

Lemma 3.2. Forz, T, and T, as before,
(T =T} and {X(T' ANT)eAud,}

differ by a set of uir,am -measure 0.
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Proof. Letusdefine Tr, = inft = 71 : X(¢) €eA; Tr, £ . Then clearly
prar{Ti < T} a{X(Ty ANT) eAnA,}
S piari{Tr, >0 n{X(T: AN T) eAud,}
= Eppr g "N (T > 01 (X(T1 A T) e A u 4y}
=0,

where for the first equality we use Theorem 3.2 after replacing {7z, > 0} by
a set So in the “past of X(Ty A T + s) up to time s = 0’’ which differs from
it by at most a set of ur, nr-measure 0, and such that 6, ,7(8So) differs from
{T > 0} by at most a set of ug " -measure 0 for u7, »r-almost-all values of
X(T:y N\ T). That such a set S, exists is clear by considering the measure on
the past of X(T1 A T) + s up to time 0+ which is generated as the sum of

wriar()  and B v ™00 p2(-).
On the other hand, we have similarly
0 = prar{T = T a{T > T1}
2 oar i AT > 05 {T £ Ty n{X(T) ¢ Aud,}]
= ppar{T S T} n{X(T) e Aud,}.

v

This completes the proof.
We are now in a position to prove the theorem. Separating the two sides
of the equality into two terms each, we must show that

pirgopr (X((Te+ ) AT) eDyn{T = T1}n8
+ wirroar i X((To +8) AT) eDyn{T > T1}n S
= Epar WiAe " "X A T) D)5 (T < Th}n §]
+ Boar WS APIX(E A T) DY {T > T n S).
In the left terms on both sides we may replace {T < T:} by
{X(T: NT)eAduA,},

in view of Lemma 3.2 and the absolute continuity of u{r,+nAr With respect to
ur, Ar - Both of these terms then reduce to

ur{X(T) eD} n{X(T: AN T)eAud,}nS.

As for the two second terms, we can write (T1 + ) AT = Tv + (¢ N\ Tx,)
on{T > Ti}. Let me supposefor a momentthat ¢ A Tr, is actually measur-
able with respect to the past of X (71 + s) up to time ¢, instead of only with
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respect to its completion. Then we could apply Theorem 3.2 to obtain
wrrorr{X(Ty + (¢ A\ Tr,)) eD}nf{T > T} n S
= B pufm™(t — A Tr), X(T1 + (¢t A Tr,)), E)I \x(ry4inryen) ;
{T > Ti}n8]
= En[BY™m™(t — i NT, X(t A T), E)[xupmeny ; {T > Ti} 0 8]
= E7,ar Winr " (X (¢ A T) eD};{T > T1}n 8],

where we use the fact that in Theorem 3.2 we may replace u7,+:(Son S) by

Ti+f(w); 8] if f(w) is non-negative and measurable over the past of
X(T1 4+ s) up to time ¢ and if we also introduce f(6r,(w)) on the right side.
To justify this step rigorously, we must replace ¢ A\ Tz, by another non-nega-
tive function which is in the past of X (71 4+ s) up to time ¢ and which agrees
with ¢ A\ T'r, except on sets of the appropriate measure 0, just as in the proof
of Lemma 3.2. Specifically, the new function must equal ¢ N\ T, , u7,+s-2-€.,
and also its shift by T3 must equal ¢t A T, uF "™ -a.e. for wr,-almost-all values
of X(Ty). The existence of such a function follows without difficulty, as in
Lemma, 3.2, and using it in an intermediary role to justify the second equality
above, the proof is complete.

CoroLLARY 3.1. The statement of Theorem 3.3 remains valid if we replace
by any non-negative, real function To measurable over F*(Ty) n F*(T).

Proof. Tt suffices to prove the result with S replaced by Sn{T, = ¢},
since the desired statement then follows by letting ¢ — «. Thus we can as-
sume that T is bounded by ¢ over S. Next, we remark that since Y (71 + s),
0 = s =< t, has right continuous path functions, it is jointly measurable in (s, w)
over ®" X &r,(t) where Ty, (t) denotes the past of Y (T 4+ s) up to time ¢.
It follows from this that Sn{Y(T: + To) ¢ D} is in the joint o-field of
F*(Ty) n $5(T) and F5 (). Let us introduce in place of this joint o-field
a product o-field (F*(Ty) n §*(T)) X Fr,(t) over & X O, and measures
&%r,+0 A7 o0 the product which agree with those on the joint ¢-field for corre-
sponding sets. More precisely, we proceed as in Theorem 3.2 to extend Theo-
rem 3.3 to intersections Son S for SoeFr (t) and SeF(Ti) n F(T).
Since {Y(T1 + s) e D} isin F(Ty + s) n F(T), 0 £ s < t, this extension is
carried out just as before. We use the same values for gz, +nrr on Sy X S
as are thus obtained for Son 8. These definitions now determine their ex-
tension to the product o-field uniquely in accordance with the right side of
Theorem 3.3, where { Y (t) € D} is replaced by the section in 57,(t) (of a given
set in the product o-field at the given point in the first space @) shifted by
Ti. The mapping of any product-measurable set S onto its diagonal
{w: (w, w) €S} is then measure-preserving from @'z, 1yar 10 wir,+oar , and it
is onto the joint o-field. Since this method is not new, the details may be left
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to the reader. It is obvious that the section at w corresponding to
Sn{Y(T1 + To) €D} is simply {Y(T1 + To) € D} or the null set, depending
on whether the point w in the first space is in S or not, where 74 4 Tois a
function of thisw. The corollary now follows from the definition of g%z, 157,
and the fact that the diagonal mapping is measure preserving.

DeriNrrioN 3.4. Let T} f(z) = ESrf(X(t N\ T)), for feb™(8).

In other words, T is the semigroup of the process X () stopped on reaching
A, except that no function space is assumed to remain stationary under its
application. Since the measures u;,r need not be finite (as can be seen by
considering in R* a process of outward radial translation along a sequence of
radii chosen from # = 0 with different probabilities, and having different trans-
lation rates and different variations of mass, each radial mass reaching its
maximum upon arrival at A = {zi + 23 = 1} and then decreasing rapidly),
this is only to be expected. T} f(z) can nevertheless be regarded as the
solution with the same generating mechanism as T, f(x) outside of A and the
boundary values prescribed by fon A.

The final matters which we wish to consider involve the ‘“harmonic” and
“excessive” functions for T7 .

TaEOREM 3.4. Let 0 =< f be &-measurable, and suppose that either

() Tif=f< ®»,0=tor

b) TWf=f=2 o, Tif < o fort > 0,and imu,oT:f = f.

Then if (a) holds T} f = f, while if (b) holdsthenT{ f £ f £ o, T, f < «
fort > 0, and lim,,o T} f = f.

Remark. It is easy to check that under (a) or (b) f(X(s))/m(t — s, X (s),
E) is a uj-martingale or supermartingale, respectively. It is thus plausible
that the theorem should follow by optional stopping of these processes at 4.
However, such an approach involves knowing that the processes are right
continuous in s, and this is not obvious. The proof in [7] involves quasi-left-
continuity, and thus is not presently available here. It is therefore necessary
to use a direct method, based on the following lemma and its proof.

Lemma 3.3. Under (a) or (b) aboe, E7 f(X(T)) = f(z) for all x ¢ E>
where E7 ts computed over {T < «} as in Definition 2.3.

Proof. It obviously suffices to prove the lemma, for ¢ T, in place of T, if
a is permitted to be an arbitrary positive number. Next, if there is an in-
creasing sequence f, of non-negative functions with limit f for each of which the
lemma holds, then it also holds for f by Fatou’s lemma. We show that f is
such a limit with f, = f8° ¢ T, g,dt,0 < g, , and that the lemma holds for
these f, . Indeed, for &, | 0let

gn = &0 (f — T, f).

—1 —at

Then it is easy to compute that f, = &, [¢" e * T, f dt which does increase to
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f as required (it may be + « at certain x under b)). But for f, we have the
decomposition

fay) =f0 e T, go(x) dt
- f " B (gn(X () ) db + f " B (g (X () Tsm) db
= f ) ¢ B} [ga(X () (1<r)] dt + f ) ¢ B [EXPga(X(t—T)); T <t dt
0 0

- f " B [gn (X () L1nem] dt

0

+ E7 [fT CUEED g (X(t = T)) dt; T < ]

_ f " B (g (X (1)) o] dt

0
+ E [e—” f e EY g (X(4) dt; T < ).
0

The last term is simply E% f,(X(T)) for the semigroup ¢ ** T, , and since the
next to last term is non-negative the proof is complete.

Returning to the proof of the theorem, if we use T' A ¢ in the lemma in
place of T we obtain T} f < f. It remains to prove the reverse inequality
under (a), and the convergence to f as ¢ — 0 under (b). For the former, we
observe that the next to last term in then bounded by

t t
fo e Togn(a) ds = e,(1 — e“"‘”)f0 edsflx) T (1 —e)f(x) asn— .
Since f, T f it follows that

f(@) — T7 f(2) = limaao (1 — ¢ *)f(2) =0,

as required. As for the later, if f(x) < <« then it suffices to show that the
same term is small for small ¢, uniformly in ¢ and n: &, < t. Since

t &n t+ey,
f €T ga(z) ds = &, (f e T, fds — f e'“"Tsfds>
0 0 t

the result follows. If f(z) = o, however, we must prove that the last term
above tends to © ast | 0and n— o, with T' A ¢in place of . This term
exceeds

E; [e“"‘ f OB g,(X(8));t < T ]
0

which increases to [o ¢ * E3 go(X(s)) ds as t — 0+ unless « is a point of
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A uA,. Thelastintegralisf, , whence the result in this case. Ifxed u4d,,
then we have f, immediately, and the proof is complete.

The next, and last, theorem establishes the existence and uniqueness of the
solutions of T} f = f with non-negative boundary values on A.

TaEOREM 3.5. (i) If 0 = f is &-measurable, and if T} f(x) satisfies (a)
or (b) of Theorem 3.4, then f(x) = or = E7[f(X(T)); T < ] respectively at
any x € E for which lim,.., E7 [f(X(t));t < T} = 0.

(ii) Conversely, let 0 < f be defined and &*-measurable over A u A,. Then
flx) = E7 [f(X(T)); T < ] is well defined and we have, for all z ¢ E,
TY f(z) = f().

Proof. The proof of (i) is immediate, since
f(@) = or = Ti f(z) = B7lf(X(T)); T = 1+ BT [f(X(@®)); T > 4]
= E7[f(X(T)); T < =]

To prove (ii) we must use Theorem 3.3 when D e &* instead of D € &, or equiva-
lently, in its integral form with f measurable over &* instead of over §&. Such
a D may be replaced by D e & for which {Y (T + t) e D} and {Y(Ty + t) ¢ D}
differ by ur,+nr-measure 0, and for which {Y (¢) e D} and {Y (¢) ¢ D} differ

by uf 5" -measure 0 for u%, r-a.e. value of Y(T: A T), justifying the gen-

eralization.
Set

g(z) = f(z); zedud,.
= 0; otherwise
Then for #i < & we have by Theorem 3.3 and Lemma, 3.2,
Yar §(Y (1)) = Eiypr BERNAA(X(T)); T <t — til.

As t; — o the left side increase to f(z), while by the monotone convergence
theorem the right side increases to T, f(2), Q.E.D.

4. Examples and remarks

The foregoing theorems have indicated that part of the theory of Markov
processes can be extended directly to more general positive semigroups. At
the same time, they have revealed a certain limitation—namely, they do not
provide any way to extend results involving ¢ — . Such problems may be
treated in a sense, however, if the kernels can be reduced to stochastic ones
by a suitable transformation. Even if the result is only substochastic, as in
the case of the h-path transformation when T, h < h, it affords a simpler
method than that above. Also, whether or not such an A is available, there
may be a Markov process Z (t) and a multiplicative functional 917(¢) such that
the “semigroup’” may be represented in the form 7', f(z) = E*(M(¢)f(Z(1))).
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Example 1. Let Z(t) be Brownian motion in R, let
V(z) = 0; lz| =1
=loglaz|; |z|>1,
and define, for f ¢ b+(R) ,

146 = 5[ (o0 [ V260) ds) 52100 |.

We can show that this semigroup is defined from a kernel m(¢, x, A) satisfying
all of our hypotheses, but which is not exponentially bounded and thus cannot
be reduced by the h-path method. In fact, all of the properties are evident
[see 14] except two: that T.l(x) < « for all ¢, and that for all
A> 0, T, 1(z) > e for ¢ sufficiently large. To show the former, note that
by Jensen’s inequality

B exp fo “Vz(s) ds < (L) fo " exp tV(Z(s)) ds

< FF(1/0) fot 14 | 2(s) |' ds < .

On the other hand, if we replace V(z) by V(x) A (A + ¢) for € > 0, which
will not increase 7T'; 1(z), and then consider e~ *® T, 1(z), for which the corre-
sponding Visnow V (x) A (A + &) — (A 4+ &), then since this function van-
ishes for all large z it is easy to see that the corresponding ¢ ‘™7, 1(z) will
not approach 0 exponentially fast, but only at a rate of the order of

26 b —‘CI?2 ) ¢ —.'1}2 —1/2
l—mﬂ 7t—dx —\I/—z_ﬂ/‘cexp?t—daz = 0 (2xt)™",

which represents the mass remaining for all ¢ > ¢ > 0 in the region where
V = 0. Thus T,(z) > €' for large t.

It is natural to inquire as to the generality of such representations of semi-
groups by Markov processes and multiplicative functionals. Let us conclude
with three examples of the following variety. In the first, such a representa-
tion is evident, but M (¢) is of unbounded variation. In the second, a repre-
sentation is again clear, but 9M(¢) is a (random) step function. In the third,
although it is evident what should be taken as Z(t), it does not seem possible
to define 9M(¢) to depend only upon the paths of Z(¢).

Ezample 2. Let T.f(z) = h(z)f(x + t)h " (x + t) where z ¢ R' and h(z)
is a fixed, strictly positive, continuous function, which may be of unbounded
local variation. The process Z(t) is evidently right translation with unit
speed, and 9N (t) = h(x)h " (x 4 t) for the path starting at z.

Example 3. Let m(x, A) be a measure on & for each x, measurable in « for
each A, with m(z, E) bounded, positive, and [ m(x, dy)f(y) continuous for
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bounded continuous f. Consider the semigroup

© k
1) = ™ 3 O [ [, ) - mCyacs, df )
where A > 0 is fixed. The hypotheses are clearly satisfied. An underlying
sub-Markovian process may be obtained by replacing each m(x, A) with
m(x, E) > 1bym(z, A)/m(z, E). In this case the multiplicative functional
would be constant except at the “jumps” of the process, and there it would be
multiplied by m(X (i—), E) when m(X (t—), E) > 1.

Example 4. Here we describe a situation in which there is an underlying
Markov process but the definition of a suitable multiplicative functional to
define the “larger” semigroup may pose insuperable difficulties. For a given
Markov process X (1) and additive functional A (¢), (not assumed positive),
let 0 = m(x) be a bounded &-measurable function, and let py, p2, -+ be a
sequence of independent, exponentially distributed random wvariables inde-
pendent of X (¢). A particle moves along the path of X (¢), and at time
Ty = inf¢t > 0: A(f) = py its “mass” is multiplied by m(X(T1)). It then
proceeds as before until at time 7y = inf¢ > Ti: A(f) — A(Th) = pp its
“mass’ is multiplied by m(X(T,))), and it continues in this manner indefi-
nitely. The semigroup is defined by integration with respect to the distribu-
tion of total “mass’ of the particle, the semigroup property being evident from
the description. Evidently there is no intrinsic difficulty in satisfying the
hypotheses on m (¢, , A). The attempt to introduce a multiplicative func-
tional to represent the semigroup by means of X (t), however, leads to the
expression exp [o (m(X(s)) — 1) dA(s). Here the integral will not be well
defined without further restrictions on A4 (¢), and otherwise there would appear
to be no multiplicative funectional available to define the semigroup.
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