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1. An existence theorem
Let (E, g) be locally compact space with countable bsis nd the a-field

of its Borel sets. We suppose given a real values kernel re(t, x, A), >- O,
x e E, A e g subject to the following hypotheses.

(a) For each A e g, m is measurable in (t, x) over the product a-field
+ X g, where (+ denotes the Borel sets of [0, ).

(b) For each (t, x), re(t, x, A) is a non-negative finite measure on g.

(c) re(O, x, A) I.(x) where I is the indicator function of A.
(d) m(t + t x, A) f m(t x, dy)m(t y, A) for all t, t >= 0 and

A e (the semigroup property.)

If, in addition, we assume re(t, x, E) -< 1, then m is "substochastic".
There is in this case a great and well-known theory (the theory of Markov
processes) of how to define and investigate measure spaces of "paths" de-
termined by re(t, x, E). In this paper we are concerned with showing that
a certain part of this theory having to do with finite-valued stopping times
can be directly extended to the more general case.

It should be remarked at the outset, however, that the substochastic case
is much more inclusive than its definition might indicate. This fact arises
from the existence of various methods of reduction of the general case to that
case. For example, if for some A > 0 one has m(t, x, E) .< e’t, >= O, then
all of our results can be easily reduced to known ones for the kernel
e-tm(t, x, A). More generally, if for some e and A > O, re(t, x, E) < e(-)
for ll > e, then under hypotheses necessary for the most prt lredy in the
substochstic cse one cn reduce our problem to that cse by means of the
substochastic kernels

m(t,x, dy)h(y)
(x)

where h(x) f e- re(s, x, E) ds. It cun be urgued as n objection to
this transformation thut it introduces a distortion of the "process", but this
is u mtter of opinion. Hence to escape from the "sphere of influence" of
the substochstic case, one must be ready ut least to give up the exponential
boundedness of the measures with t. There re, however, more general
trunsformtions which my yet effect the reduction by means of (other)
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multiplicative functionals. The limit of generality of these methods is not
known, but it seems likely that beyond a certain point it becomes prefer-
able to develop a direct approach, as is done here, rather than to reduce
matters to the substochastic case. A further discussion of this point will be
made in connection with the examples at the end of the paper.
To introduce our approach it is perhaps worthwhile to draw a connection

with the theory of branching processes. In that theory, there are many
representations of kernels re(t, x, A) in the form

m(t, x, A) E v’(,)
z.,= r.(x(t)),

where (X1, ..., Xk(,)) are the "branches" of the process at time and E
denotes integration over a probability space for the process starting at x
(see [12] and [15]). Each of these branches, of which the number k(t) is a
random variable, has associated with it a branching time v < oo and termi-
nation time i’, v "( <_- o, as well as a direct lineal ancestry up to time v
and a path of values from time v to i’. Let me imagine that the branches
are now separated to become objects of a new refined space, except that the
lineal ancestries are included along with each branch (and thus may have to
be repeated, at least in part). There is induced on this space by the original
measure a measure in which events long the branches are weighted accord-
ing to the expected number of branches for which they occur. In this way,
one arrives at a sample space whose objects have the form (7, , w(t) where
0 _-< V < ’--< andw(t) eEforO =< < ’. On this sample space, there
are induced measures such that for 0 tl <: t < t and A, A e

one has

f. m(h, dy)m(t. dye.)X tl, yl,
n--1 "A

(1.1) m t,,_ t,_ y,,_: dy,_)m t,, t,,_ y,,_ A,,

u*{ (7, ’, w)’v -< t < and w(t) A1, ..., w(t,,) A,,}.

It is important to remark, however, that the measures u on the a-field
generated by the sets having the form on the right of 1.1) are not thereby
uniquely determined. Indeed, sets of this form do not form a ring. There
are in general many such measures u compatible with (1.1), and the reason
for this variety can be expressed in the phrase that a greater rate of branch-
ing can be cancelled by a more rapid rate of termination. In other words,
there may be more branches and larger total measures u if the branches are
also shorter.
We suppose, now, that the branching and termination rates both tend to

infinity while (1.1) remains true. In the limit one would have i’. Thus
we arrive at the idea of a one-parameter family of measures t, >_ 0, for



544 FRANK B. KNIGHT

each x E, such that for 0 _<_ tl < < t =< and

A1, ...,AleS, 1 =< n < ,
f m(tl, x, dye)m(&- t, y, dye.)(1.2)

m(& t,,_, y,_, dy,)m(t & y A+)

u7{w(t) A, ..., w(&) A, w(t) A+}.

By strict nlogy with (1.1), such measures for derent would be defined
on disjoint sample spces. However, it is clear from (1.2) that they cn M1
be considered s defined on single spce consisting of pths in the ordinury
stochustic sense if each u is defined only on the z-field if(t) generated by the
path up to time t. We thus huve the following point of departure for our
method.

DEFINITION 1.1. Let X0<E, und ff X0.< 3 where each
(E, 3), is u replic of (E, 3) und "X" denotes the Crtesiun product, and
let V(t) (Xot8) X (Xt<E), 0 < .
TnEOnEM 1.1. For each x E and 0 there is a unique measure on

(t) for which (1.2) holds.

Proof. If0 t & are fixed and A+ E, (1.2) iseasily
extended to define mesure on g considered us sub-field of if(t) associated
with {tl, -.., &}. Moreover, these measures are obviously consistent for
overlapping sets of coordinates. The existence of the measure thus follows
from Kolmogorov’s theorem. The uniqueness is evident.

Remark. After completion of n initial version of this pper it was pointed
out to me by Professor J. L. Doob thut the measures E(t, x, E) T ure
uctually Mrkovin on if(t) with respect to the inhomogeneous transition
function

p(s x s dx) m(s s x dx)m(t s x E)
m(t st, x E)

m(t s,x,E) 0

0; otherwise.

This mukes Theorem 1.1 stundurd application of Kolmogorov, nd it is
evidently the "underlying" reson for the existence of the murtingles used
below.

2. Regular processes and stopping times

We shall develop the regularity properties of the path functions by using
the method of mrtingles. It is necessary to introduce three hypotheses.

Hypothesis 2.1. Let C denote the bounded, continuous functions, and
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Cc c C the elements with compact support. For 0 =< f, f measurable over
5, and >= 0, set

Ttf(x) f re(t, x, dy)f(y).
J

Then for f (f/k 0) -k (f k/0) e Cc we have

Ttf Tt(f k/O) Tt(-(f /k O) eC,
where both terms are finite. Moreover, for f e C, limt0 Tt f f in the
sense of pointwise convergence.

Remark. The last condition rules out the possibility of "branching points"
[13] but these would not be basic for our subiect.
Hypothesis 2.2. re(t, x, E) is continuous in (t, x) with respect to the

product topology, and is nowhere 0.

Remark. The non-vanishing of m is assumed only for notational conveni-
ence. Moreover, it may be a consequence of Hypothesis 2.1.

Hypothesis 2.3. Unless E is compact, for each compact K the equation
limx_ re(t, x, K)/m(t, x, E) 0 holds uniformly in finite time intervals,

Remark. The role of this hypothesis is to prevent exits of the paths from
E, which would necessitate extension of the kernels to an enlarged space.

We can now prove the theorems which lead up to regularity of the paths
for gt.

THEOREM 2.1. For A e and 0 <= tl <= t2, m(tl s, X(s), A)/
m(t2- s, X(s), E) is a t-martingale, 0 <- s <= t.

Remark. The definition of martingale, like that of conditional probability,
is not effected if the measure g is normalized to have total measure 1.

Proof. For 0 <= s < s -< t, let g (X(s) e dyl (s)) denote the indi-
cated conditional measure. It is not hard to convince oneself that in fact
this is a function of X(s) only, and that it is given by the expression

m(s s, X(sl), dy)m(t. s., y, E)
m(t. s X(s), E)

Letting E. denote expectation (or integral) with respect to t it follows
that for s. _-< t

(m(h s2,.X(s.), A) (81)1 f m(t s ,y,A)m(s2 s,X(s),dy)E \-( s2 (s) E) m(t2 sl, X(s), E)

m(t s, X(s), A)
m(t2 s, X(s), E)

a.e. ut

This completes the proof.
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To obtain the regularity of the paths it is useful to introduce separability
for the process. Once the necessary properties are established we can discard
the irregular paths and define the measures on a regular subset of t for which
separability is automatic. Thus our use of separability is only in passing.
For the moment, however, we assume that if E is not compact it has been
compactified by a single point 4, that for each x and the fields (s), s =< t,
are completed for whenever X(s) is considered for this measure, and that
X(s) is then a standard modification separable for the closed sets (see Meyer
[10, p. 57]mwe can again assume in applying the definition that t is nor-
malized). It is to be noted that since, for tl < t., u is absolutely continuous
with respect to tl on (tl) the necessary modifications can be chosen inde-
pendent of t. Let Q denote a countable dense separating subset of [0, t] for
t. We assume that Q increases with for each x.

THEOREM 2.2. For each (t, x), -almost-all paths have at most one right
(left) limit value in E at each s s <= t) along the set Q

The following lemma will be used again later.

LEMMA 2.2. For f e Co, T f(x) is continuous in (t, x).

Proof. Let d(x, y) be a metric on E which generates the given topology
(here we do not consider A e E), and let S(x) denote the sphere with center
x and radius s > 0. Suppose, to the contrary, that there is a sequence
(tj, x.) -- (t, x) such that Ttj f(x) Ttf(x) > s > 0 for all j. We can
assume without loss of generality that f _>- 0. Two cases are distinguished.

Case 1. There is a decreasing subsequence of {t.}. We can assume in this
case that t. is decreasing. From Hypothesis 2.1 it follows that for e > 0 and
xeE

limt_o m(t, x, S(x) 1 and limt._,o m(t, x, K S(x) O,

where K is any fixed compact set. Moreover, these convergences are uniform
for x in compact sets for if not a contradiction would ensue at an x-limit point
upon replacing by /2. Let Kf denote the support of fi It follows that

lim inf T,. f(x)

lim inf., f f m(t, xi, dy)m(t t, y, dx)f(x) >= Tt f(x).
oK

On the other hand, if for 8 > 0 one had lim sup. Tti f(xi) > Tt f(x) + ,
then for any compact K it would follow from the boundedness of re(t, x., E),
j 1, ..-, that

lira sup.--, f_ re(t, x, dy)m(t t, y, K) >= (8)/(max f).

By choosing K sufficiently lrge, however, this contradicts Hypothesis 2.3
view of the boundedness of re(t, xj, E).
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Case 2. There is an increasing subsequence of {t.}. This case is treated
similarly, using the boundedness of m(tj, xj, E).
From this lemma and Hypothesis 2.1 there exists a sequence {fn} of non-

negative elements of Cc such that if xl x2 there are e > 0, n, and disjoint
neighborhoods N(xl) and N(x2) such that for < e,

Tt f,(yl) Tt f,(y) > e for yl e N(x), y e N(x2).
re(t, y E) re(t, y E)

It is easily seen by Theorem 2.1 that

ru(t- ,,((: E)’
0 -< -<

is a countable family of u-martingales, which accordingly have unique right
.limits along Q at all s < t, t-a.e. Let S(t) denote the set of paths where
for some j, k, and n > 0, the martingale

T-_sf,,(X(s))
m(j2-k s, X(s), E)

does not have right limits along Q at all s <: j2-k t. By the absolute con-
tinuity of z with respect to t for t < t2 it follows that zT(S(t)) 0. On
the other hand, if x and x are distinct right (left) limit points in E along
Qofapathats < (s =< t) then choosing0 <j2-kt s < e, forthee
and n (depending on xl and x) chosen above the corresponding martingale
obviously could not have a right limit along Q at s. Hence such a path
is in S(t), and the proof is finished by un application of sepurability.

THEOE 2.3. For each t, x) the process X s) is right continuous in measure
with respect to , 0 <- s < t.

Proof. For 0 < h < t- s, the conditional distribution of X(s + h)
given if(s), or equivalently X(s), is

m(h, X(s), dy)m(t (s + h), y, E)
m(t s, X(s), E)

Since, for e > 0, lim0 m(h, X(s), S(X(s))) 1, while the ratio of the
other two terms approaches 1 in small neighborhoods of X(s) and the total
measures are all I the result is now clear.

THEOREM 2.4. For each (t, x), the process X(s) is 7-a.e. bounded (i.e.
contained in some compact set) 0 <= s <= t.

Proof. Let K,, n >_- 1, be compact sets with d(K,, E Kn+) > 0 and
K, ]’ E, and let g, be continuous functions with 0 -<_ g, _-< 1 and

g, 1; xeK,

0; xtK.+.
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Since the g increase pointwise it follows from Lemma 2.2 and Dini’s theorem
that limn_ Tsgn(x) re(s, x, E) uniformly for x e K compact and 0 -< s _<_ t.
Hence for n sufficiently large, Ts g is bounded away from 0 in the same
domain. On the other hand, by Hypothesis 2.3,

lim
Tg,,(x)

0 uniformly in 0 <- s-< t.
-. m(s, x, E)

Thus we see that if S(t) denotes the set where X(s) is unbounded in 0 <- s _<-
then S(t) S(t) where

Setting

S nf0<.<t,
Tt_, g,(X(s) a\

m(t s, X(s), E)

Tt_,g,,(X(s))M,,(s)
m(t s, X(s), E)

and applying the optional sampling theorem of Doob to the martingale
-M,(s), using finite subsets of Q which increase to Q, we deduce that for

--M.(s) > --v} < f g,,(X(t)) d;.#t {sup0_<8<t,8t
SUp--Mn(s)

Letting -- 0 it follows (see Loeve [9, p. 636]) that 0
However, since g, is bounded away from 0 in compact K for large n, this
implies that lim, t(S,) 0, and hence that t(S) 0. This completes
the proof.

TIEOnEM 2.5. For each (x, t) the set of paths which are bounded in finite
time intervals, right continuous, and have left limits in 0 <= s <= t, has -outer-
measure m(t, x, E).

Proof. If we define Y(s) limtCs.t X(t) if this limit exists for all
s t, and Y(s) otherwise where is a fixed element of E, then by Theo-
rems 2.2-2.4 it is clear that Y(s) is a t-standard modification of X(s) with
right continuous paths having left limits except in some t-null set. Since
any measurable set may be defined using only countably many coordinates,
the result is now immediate.

DEFINITION 2.1. Let denote the subset of It consisting of the functions
bounded in finite time intervals, right continuous, und having left limits.
Let if, if(t), and be the traces and restrictions of the corresponding z-fields
and measures of Definition 1.1 to . Finally, let X(s) denote the coordinate
function for s on .
We next turn to stopping times and the strong Markov property. Even

though each concerns the paths only up to time t, it is not necessary to
assume for this purpose that the stopping times are uniformly bounded.
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The key to this difficulty consists in introducing measures corresponding
to stopping times T in the same way that corresponds, to t. However,
since we have no measure corresponding to it seems necessary (unlike
in the stochastic case) either to assume that the stopping times are finite
valued, or else to restrict all assertions to the set where they are finite. The
former approach will be followed in the present section.

DEFINITION 2.2. A non-negative measurable function T < on (, 5:)
is a "stopping time" if {T < t} e (t) for all >= 0. The C-field () of
the "past up to time T+" consists of the sets S e for which
Sn{T< t} e(T) for allt>- 0.

We can now introduce the measures t, although the definition requires a
subsequent justification.

DEFINITION 2.3. For each stopping time T we define t on fi;(T) as the
unique measure for which the Radon-Nikodym derivative

d;;/dr m( T, X T) E)

a.e.- on the set/T t} for all t.

Remarl. It is not asserted, however, that () < .
To justify this definition we must establish both the existence of such a

measure on {T < t} for each and the consistency of these definitions as
varies. The first point is easily seen because re(t, x, E) is measurable in

(t, x), hence we see that on T < t}, m-1 (t T, X(T), E) is if(T) -measur-
able and we define for S e ff (T)

n {T <: t}) f (m(t- T,X(T),E))-1 du
fl T<t}

The consistency of this definition as varies is not as easily obtained. To
see whut is required we note thut for t < h the identity

d,7/,7 (t t,, X(t,), E)
on if(h) is un obvious consequence of Theorem 1.1. Thus the consistency
follows if we show that

N IT < tx}
(m(h T,X(T),E)m(t. t,X(t ),E))- d;7

N {T < I}
(m( t. T, X(T), E) )-x d.

For this to hold, it is in turn sufficient that the following identity of condi-
tional expectations be valid:

E. ((m(t. t,X(t),E))- (T))
m(t T, X(T), E)
m(t T, X(T), E) a.e. - over {T < t}.
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But this is a consequence of the optional sampling theorem of Doob, in view
of Theorem 2.1, the right-continuity of X(t), and the continuity in (t, x) of
m(t, x, E).
We are now ready to state and establish our strong 5arkov property. A

yet more comprehensive form will be required in the next section.

DEFINITION 2.4. Let T be a stopping time and let Xr(t), >-_ 0 denote
X(T + t). Let 7r(t) be the z-field generated by if(T) together with the sets
{Xr(s) eA},0 =< s -<_ t, AeS. Then (see below) fir(t) c 7 andXr(t) is
measurable over 7it(t). An Xr-stopping time To is a non-negative function
on such that {To -<_ t} e 7r(t) for all t, and the field 7r(T0) of the "past of
Xr up to time To" is the class of all S e 7 such that

Sn{T0_-< t} eTr(t) forallt.

We call the process X(t) a "strong NIarkov process" if for each Xr-stopping
time To which is measurable over 7(T) 7r(0) we have for each S e 7(T)

+r0 (IX(T + To) A} S) fm(To, X(T),A) dr.

Remarlc. Suppose (as will be shown) that X(t) is a strong Markov process.
If T is a stopping time and is fixed, then T/% is a stopping time. Moreover
To (T/ t) is an XrAt-stopping time measurable over 7(T / t).
SinceT+ To twehaveforSeT(T/kt)

t ([X(t) e A} 1 S) fsm(t- (T/k t),X(T/k t), A)

fs m(t- T,X(T),A)dur -5 f I(X(t)) d#

where I is the indicator function of A, and we used the evident fact that on
the set where two stopping times are equal the corresponding measures coin-
cide. This identity may shed some light on the role of the measures and
the strong 5/[arkov property.

THEOREM 2.6. Under Hypotheses 2.1-2.3, X(t) is a strong Markov process.

Proof. We introduce the X-stopping times

Tn (]-5 1)2 on {k2 <-_ T < (/ + 1)2-n}, 0 =< k, n > 0,

and also the Xr-stopping times

T0,, (] -t- 1)2 on {]c2 -<_ To < (/ -5 1)2-1,

which are measurable over 7(T). Since clearly X(Tn + t) is measurable over
7 and lim X(T -5 t) X(T -5 t) it follows that X(T + t) is measurable
over 7 as asserted in Definition 2.4. Also, it is clear that re(T0, X(T), A),
A e 5, is mensurable over 7(T). To prove the theorem it suffices to show
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that

(2.2) E+ro(f(X(T + To)); S) fsf m(To, X(T), dy)f(y) dtr

for euch S e if(T) und non-negative function f e C, where both sides of (2.2)
my equM . We shall first prove u form of (2.2) with S replaced by
S (T + TO.M t} where t, N, nd M are fixed, nd T repluced by T and
To by To. for n => N and m => M, nmely

E[f(X(T, + To.,))m-(t- T,- To.,, X(T,-t- To.), E);

(2.3) S n TN + To,M < t}

fE m(To,,,X(T,,), dy)f(y)

which becomes (2.2) with the stated replacements if we apply Definition 2.3
using the fixed t. To prove (2.3) let us consider the set where T /c2
and To, ]02 for fixed ] and k0. Evidently on this set TN and T0,
likewise have prescribed values, hence T TO,M is a constant which we take
without loss of purpose to be less than t. Denoting this set by S(k, ]c0), re-
placing S by S n S(k, ko), and setting t. /2 -t- ]Co 2-, (2.3) may be
written in the form

Ei [f(X(t.o) )m-(t t.o X(t.o) E); S S(k, /Co)]
(2.4)

! !

If on the right we multiply nd divide the integrand by the factor
m(t t. y, E) und then use the facts thut S S(], ko) if(T) ff(T.)
while, and-, coincideon S S(/, k0), then it becomes obvious that (2.4)
holds. We now sum this equation over/ and k0 for which T To.
to obtain (2.3). The next step is to let first n -- und then m -- . Still
confining attention to the set T + T0, t} we show that

lim d, d
in the sense of pointwise convergence of the Radon-Nikodym derivative of
these measures to 1 over this set. In fact, it follows from the consistency of
Definition 2.3 and the fact that T ]2-} e ff (T) that

dr,/dr m( T, T, X T) E) r-a.e.
Letting Kr {X(T) e K} for compact K, we have Kr e if(T), and

lim m(T T, X(T), E) 1

in the sense of bounded pointwise convergence on Kr. We can now let n --and then m -- on the right of (2.3), and apply Fatou’s lemma on the one
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hand, and restriction to Kr followed by an application of bounded convergence
(note that fE m(T0,m, X(Tn), dy)f(y) is bounded for fixed m over the given
set) and then monotone convergence as K E on the other, to obtain the
limit

m(To X(T), dy)f(y)
TN-To,M<}

As for the left side of (2.3) as n -- and m - , we can proceed in the same
way using the expression

dtr+ro.m/dU+ro m( Tn 4- To,,, T + To), X( T + To), E)
and introducing the sets Kr +To over which the measures drier+To are finite and
the convergence of the above expression to 1 is bounded, to obtain the limit

Er+ro[f(X( T + To) S n TN + To. " t} ].
To complete the proof of the theorem, it now remains only to let N --M-- , and t--- .

3. Terminated processes
In the study of Markov processes the concepts of quasi-left-continuity and

terminal times are of importance [2]. It seems likely that they can be ex-
tended to the present case, but this would take us too far afield. Among the
terminal times, however, the times of first reaching a given set are important
in various analytical problems, such as solving elliptic and parabolic partial
differential equations in a given domain, and will be treated along the same
general lines as in [1 Theorem 5.1]. It is necessary to introduce certain ex-
tensions and completions of the z-fields.

DEFINITION 3.1. Let if(s+) lt>8 if(t), 0 -<_ s <: , and, noting that
Definition 2.3 may be applied (with s in place of T) to define a measure
du on if(s-l-) agreeing with its previous definition on if(s), let ff*(s+) denote
the intersection over x e E of the completions of ff(s+) with respect to
Similarly, let ff*(s) denote the analogous completion of if(s).
THEOREM 3.1. F*(s-t--) ff*(s) for 0 <- s < .
Proof. It suffices to show that for each x e E the two fields if(s) and if(s-i-

differ at most by sets of u-measure 0. Let i > 0 be fixed, and let 0
< t__< t<t+ < <t-<_ t-l-ti, andf,-.. ,feC. Then we have

Ei+ [IIf(x(t) if(t-l-)] lim0+ Ei+[XX’]-- f(x(t) ( + )]

lim0+ I]1 f(x(t)

f... t- x(t / dye)...

m(t t,_ y__ dy,_)

+ IIm(- e, X(t-b e), E)
Et+ [II--f(X(t)) (t)] t,+



A PATH SPACE FOR POSITIVE SEMIGROUPS 553

i.e. the limit is obtained by setting 0, in view of Lemma 2.2. It follows
easily from this that for S e (t + ), and hence in particular for S e (t-),
one has

t+,(S if(t-t-)) t+,(S if(t) ), +,-a.e.
It is now only routine to see that for S e if(t-t-),

t(S :(t+)) t(S ff (t)), #-a.e.,

since dt+/dt m(, X(t), E) which is measurable over if(t). This implies
that #(SI if(t)) 0 or 1, t7-u.e., and setting S0 {t(SI if(t)) 1} for
particular choice of the conditional measure we see that So is if(t) -measurable
and t(S n So) t(S), t(S n (E So) 0, which completes the proof.
We next introduce the stopped processes.

DEfINiTiON 3.2. The first passage time T to set A e is given by
T inft _>- 0" X(t) eA; T <- . The process Y(t) derived by stopping
X(t) upon reaching A is defined by

Y(t) X(t); =< T

=X(T); t> T.

It is known that T is an ff*(tW)-stopping time in the sense that
T -< t} e ff*(t+), 0 -<_ < , and hence it is an ff*(t) -stopping time (see

[11, pp. 73 and 104] (on the latter, the necessary completion was not men-
tioned)). We define the past ff*(T1), for any ff*(t)-stopping time T1, as
the class of all sets S" Sn/T1 -< t} eff*(t),0 -< t-< , where we define
if*( as the z-field generated by [J t_0 ff*(t), so that T e if*( ).
Since Y(t) has right continuous path functions it follows by standard argument
that it is measurable over ff*(t) l ff*(T), 0 <- < . Wewish to show that
Y(t) is a strong "Markov" process with respect to these z-fields in the same
sense as Definition 2.4. From this point on, we assume that measures
and t, for finite *(t)-stopping times T, are extended in the obvious way
to ff*(t) and ff*(T1). For such T we shall say that set S0 is in the "past
of X(T + s) up to time t" if it is in the (joint) z-field generated by X( T1 -t- s),
0-<_ s =< t. Note thatX(T+ s) is measurable over ff*(T+ s). For So
in the past of X(T s) up to time we define the shift 0r, of So by

0(S0) 0, . S0},

where (0rl w) (t) w(T - t), 0 <= < . Clearly, 0r,(S0) e (t).

THEOREM 3.2. Let TI be a finite *(t)-stopping time, S e T), and So
be in the past of X(T + s) up to time < . Then

+t(Son S) Er,(t(r’)(Or,(So)); S).

if*Remark. It is evident that So n S e (T -t- t), and that tt
(r’) (Or, (So)) is

ff*(T)-measurable, so that the last equation is well defined.
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Proof. First of all, it is easy to check that the strong Markov property (2.1)
remains valid for S e (T), since then S e (T + To) and it may be re-
placed by a set in if(T) and in ff(T + T0) dering from it by and +r0-
measure 0. Next, it is clear that (2.1) also remains valid if

+ro({X(TWTo) cA} n S)

is extended to E+ro[f(X(T+To)); S] for f eb+() (the non-negative,
bounded, -mesurble functions) with n nMogous extension of the right
side. Now letO s < < s t;A, .-.,Ae;ndset

S= ={X(T + s) A }, 1 =< <= n.

Applying the extended form of (2.1) successively with the stopping times
T + s_, T + s_, T in place of T one obtains

f m(t- s._x, X(T + s_), A) d,+,_

dy2)
n--1 A

m(s,_ s,_2, y_, dy,_)m(t s,_x, y,_, A,) dtt

Hence the theorem is proved for sets S0 of the form S,, and since these gen-
erate the past of X(T + s) up to time the proof is now evident.
We come now to the basic theorem concerning the stopped process Y(t) of

Definition 3.2.
THEORE 3.3. For eachfinite *(t)-stopping time T and S e ff*(T) n ff*( T)

we have

Y(T1AT)

yeE, DeS, 0 <-_ <
Remarlcs. To see that these expressions are well-defined it is necessary to

recall that Y(t) Y(t A T) for all t. Applied with T1 constant, this theorem
states that Y(t) is "Markovian" with respect to the "transition function"
t^r{Y(t) eD} in the sme sense as X(t) with respect to re(t, x, D). The
proof can actually be applied with T1 -<_ if S is replaced by S n Tx <
und T is assumed fi;*( T) -measurable. The restrictions placed on T are a
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little less restrictive than their analogues of Theorem 2.6 in that ff*(T)-
measurability of T is not required. On the other hand, the To of Theorem
2.6 has been replaced by constants. This is only for convenience, however,
us the general analogue will be easily obtained below us corollary. Finally,
if 3" denotes the intersection over all finite measures on 3 of the -completions
of , then the "transition function" t/r(Y(t) e D} is seen, by standard
reasoning, to be 63+ X 3*-measurable in (t, y) for fixed D. In short, Y(t) e D}
is in the completion of if(t-t-) with respect to any z-finite measure, as in [11,
loc. sit], which implies 3*-measurability of/#t^r/Y(t) D}, and joint measura-
bility then follows from the right continuity of the pth functions and the
continuity of m(t, x, E).

Before proving the theorem, it is necessary tc introduce the concept of a
"regular point" and to prove two lemmas concerning it.

DEFINITION 3.3. A point x e E is regular for A e if

((inf s > O" X(s) A) 0} 0

for some (and hence for all) __> 0.

Remarlc. It follows again as in [11] that

if*(inf s > O" X(s) e A) 0} e (0-t-) (0)

which provides the meaning of the definition.

or LEMMA 3.1. For each x e E, either x is regular for A or else, for all
>- 0, 7{(inf s > 0" X(s) e A) 0} 0.
Proof. Let 3 e if(0) differ from (inf s > 0" X(s) e A) 0} by -null

set. We apply Theorem 3.2 with T 0 and S S0 S. It follows that

() E [(); 1 ()().

Thus either g() 0 or else g() 1. In the former case, x is regular in
view of the absolute continuity of g with respect to g on if*(0). In the
latter case, since clearly g(t2) 1, we have g() g(i2) and thus
g(i2 ) 0, completing the proof.

Let A denote {x e E" x is regular point of A}. Then A e 8", as in the
remarks to Theorem 3.3, and accordingly expressions such as g{X(t) A}
are well defined. To apply the or t2 lemma in proving the theorem, we re-
quire

LEMMA 3.2. For x, T, and T as before,

T <- T and {X(T/ T) eAuA}

differ by a set of (^) -measure O.



P. Let us define nf () . Then learly

where for the first equality we use Theorem 3.2 after replang 0 by
a set in the "past of ( ) up o tme 0" which differs from
by at most a set of A-measure 0, and such that A(0) dffers from

0 by at most a set ofA-measure 0 for -almost-all values of
( ). That such a set exists is lear by onsderng the measure on
the past of( ) up to tme 0 which is generated as the sum of

On the other hand, we have smlarly

0 zr{T T} n {T > T}

a Er [(rr){T > 0};{T T} n {X(T) e A uA }l

r{T T}n{X(T) eAuA}.

This completes the proof.
We are now in a position to prove the theorem. Sepruting the two sides

of the equulity into two terms each, we must show that

+ r+)r {X((T + t) A T) eD} n{T > r }n S

x(A){ D} {T > T}nS].

In the left terms on both sides we my replce {T T by

{X(T A T) A u A },

in view of Lemm 3.2 nd the bsolute continuity of +,)AT with respect %o

r. Both of these terms then reduce to

{X(T) eD} n {X(T A T) eA uA}

As for the two second terms, we cn write (T + $) A T T + ($ A Try)
on T > T }. Let me suppose for momentth% A Tr is ctully mesur-
ble with respect %o the pst of X(T + s) up to time t, instead of only with
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respect to its completion. Then we could apply Theorem 3.2 to obtain

where we use the fact that in Theorem 3.2 we may replace +(S0 n S) by
Er+[f(w); S] if f(w) is non-negative and measurable over the past of
X(T s) up to time and if we also introduce f(r (w)) on the right side.
To justify this step rigorously, we must replace t/ T by another non-nega-
tive function which is in the past of X(T -F s) up to time and which agrees
with t/ Trl except on sets of the appropriate measure 0, just as in the proof
of Lemma 3.2. Specifically, the new function must equal t/ Tr, ,+t-a.e.,
and also its shift by T must equal t/ T, (r-a.e. for ,-almost-all values
of X(T). The existence of such a function follows without difficulty, as in
Lemma 3.2, and using it in an intermediary role to justify the second equality
above, the proof is complete.

CoRollarY 3.1. The statement of Theorem 3.3 remains valid if we replace
by any non-negative, real function To measurable over if*(TI) *( T).

Proof. It suffices to prove the result with S replaced by S n{T0 -< },
since the desired statement then follows by letting -- . Thus we can as-
sume that To is bounded by over S. Next, we remark that since Y(T s),
0 <- s -< t, has right continuous path functions, it is jointly measurable in (s, w)
over 6+ X ff[.(t) where firth(t) denotes the past of Y(T s) up to time t.
It follows from this that S Y(T-b To)eD} is in the joint a-field of
ff*(T) *(T) and firth(t). Let us introduce in place of this joint a-field
a product a-field (ff*(T1) ff*(T)) X ffrrl(t) over X fi, and measures
/7T+t)AT on the product which agree with those on the joint a-field for corre-
sponding sets. More precisely, we proceed as in Theorem 3.2 to extend Theo-
rem 3.3 to intersections S0 n S for S0 e fir if*r(t) and S e (T) n *(T).
Since Y(T + s) e D} is in ff*(T + s) n ff*(T), 0 -< s -< t, this extension is
carried out just as before. We use the same values for /7(T+)AT on So X S
as are thus obtained for So n S. These definitions now determine their ex-
tension to the product a-field uniquely in accordance with the right side of
Theorem 3.3, where {Y(t) e D} is replaced by the section in firth(t) (of a given
set in the product a-field at the given point in the first space ) shifted by
T. The mapping of any product-measurable set S onto its diagonal
{w" (w, w) e S} is then measure-preserving from Y(TI’bt) AT to Y(TI-bt>AT and it
is onto the joint z-field. Since this method is not new, the details may be left



858 FRANK B. KNIGHT

to the reader. It is obvious that the section at w corresponding to
S n{Y(T1 + To) e D} is simply/Y(T1 -t- To) e D} or the null set, depending
on whether the point w in the first space is in S or not, where T1 + To is a
function of this w. The corollary now follows from the definition of rl+t)Ar,
and the fact that the diagonal mapping is measure preserving.

DEFINITION 3.4. Let Tt f(x) E/rf(X(t/ T)), for f e b+().
In other words, T[ is the semigroup of the process X(t) stopped on reaching

A, except that no function space is assumed to remain stationary under its
application. Since the measures ^r need not be finite (as can be seen by
considering in R a process of outward radial translation along a sequence of
radii chosen from x 0 with different probabilities, and having different trans-
lation rates and different variations of mass, each radial mass reaching its
maximum upon arrival at A {x -t- x -> 1} and then decreasing rapidly),
this is only to be expected. Tt f(x) can nevertheless be regarded as the
solution with the same generating mechanism as T f(x) outside of A and the
boundary values prescribed by f on A.
The final matters which we wish to consider involve the "harmonic" and

"excessive" functions for Tt
THEOREM 3.4. Let 0 <- f be k-measurable, and suppose that either
(a) Ttf f < ,0 <- or
(b) Tt f <__ f <= Tt f < fort > O, and limt_.,o Tt f f.
Then if (a) holds Tt f fi while if (b) holds then Tt f <- f <- Trt f <

for > O, and limt..,.o T[ f f.
Remark. It is easy to check that under (a) or (b) f(X(s) )/m(t s, X(s),

E) is a -martingale or supermartingale, respectively. It is thus plausible
that the theorem should follow by optional stopping of these processes at A.
However, such an approach involves knowing that the processes are right
continuous in s, and this is not obvious. The proof in [7] involves quasi-left-
continuity, and thus is not presently available here. It is therefore necessary
to use a direct method, based on the following lemma and its proof.

LEMMA 3.3. Under (a) or (b) above, E/(X(T)) <__ f(x) for all x eE,
where Er is computed over T < oo} as in Definition 2.3.

Proof. It obviously suffices to prove the lemma for e-"Tt in place of Tt if
a is permitted to be an arbitrary positive number. Next, if there is an in-
creasing sequencef of non-negative functions with limitf for each of which the
lemma holds, then it also holds for f by Fatou’s lemma. We show that f is
such a limit with f, f e- Tt g, dt, 0 <= g and that the lemma holds for
these f,. Indeed, for e $ 0 let

g e=l(f e-"-T f).

Then it is easy to compute that f,, e- f;" e-" T f dt which does increase to
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f as required (it may be + at certain x under b) ). But for f we have the
decomposition

e Tt g,,(x) dtf,,(y)

e t [g,,(X(t))I(t<ri] dt -t- e [g,,(X(t))I[tar] dt

e [g.(X(t))I[<] dt + e r [E_ g.(i(t- T)); T t] dt

e t [g.(X(t))I[t<r] dt

f _--aX(T)+ E

e t [g(X(t))I[t<r] dt

he las erm is simply Nf(X(T)) for ghe segroup e- T, and since he
nex o las erm is non-negative he proof is complete.
eurning o ghe proof of he heorem, if we use T in ghe lemma in

place of T we obgain T f N f. Ig remains go prove ghe reverse inequaligy
der (a), and ghe convergence go f as 0 under (b). or ghe former, we
observe gha he nexg o las erm in hen bounded by

Sinee f f i follows

f(z) Tr f(z) N lim0 (1 e-)f() 0,

as required. As for he laer, if
same erm is small for smN1 , uniformly in and : e < . Since

e-"’T,g.(x) ds e-"’T,f ds e-"’T, f d

the result follows. If f(x) , however, we must prove that the last term
above tends to as 0 and n , with T in place of T. This term
exceeds

which increases to f7 e-"" E g.(X(s) ds as O+ unless x is a point of
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A A. The last integral is%, whence the result in this case. If x e A A,
then we have % immediately, and the proof is complete.
The next, and last, theorem establishes the existence and uniqueness of the

solutions of T[ f f with non-negative boundary values on A.

THEOREM 3.5. (i) If 0 <= f is g-measurable, and if T[ f(x) satisfies (a)
or (b) of Theorem 3.4, then f(x) or >= Er[f(X(T) T < respectively at
any x e E for which lim_. E [f(X(t) < T] O.

(ii) Conversely, let 0 <= f be defined and g*-measurable over A u At. Then
f(x) Er[f(X(T));T < oo] is well defined and we have, for all xeE,
T[ f(x) f(x).

Proof. The proof of (i) is immediate, since

f(x) or >= T[ f(x) E[f(X(T)); T <= t] -5 E [f(X(t)); T > t]

--> E[f(X(T) V <
g*To prove (ii) we must use Theorem 3.3 whenD e instead ofD e g, or equiva-

lently, in its integral form with f measurable over g* instead of over g. Such
a D may be replaced by/) e g for which Y(T1 -5 t) e D} and Y(T1 + t) e }

ydiffer by t(ri+t)/r-measure 0, and for which {Y(t) e D/ and {Y(t) e D} differ
-measure 0 for ;.l^r-a.e. value of Y(T1/k T), justifying the gen-Y(TIA T)by t r

erliztion.
Set

g(x) f(x); x e A

0; otherwise

Then for tl < t2 we have by Theorem 3.3 and Lemma 3.2,

E EX(tA")t./rg(Y(&)) E (-)rJ(x(r)); T &- t].

As t the left side increase to f(x), while by the monotone convergence
theorem the right side increases to Tt f(x), Q.E.D.

4. Examples and remarks
The foregoing theorems have indicated that part of the theory of Markov

processes can be extended directly to more general positive semigroups. At
the same time, they have revealed a certain limitation--namely, they do not
provide any way to extend results involving --+ o. Such problems may be
treated in a sense, however, if the kernels can be reduced to stochastic ones
by a suitable transformation. Even if the result is only substochastic, as in
the case of the h-path transformation when T h < h, it affords a simpler
method than that above. Also, whether or not such an h is available, there
may be a Markov process Z (t) and a multiplicative functional i)E(t) such that
the "semigroup" may be represented in the form Tf(x) E(gE(t)f(Z(t) ).



A PATH SPACE FOR POSITIVE SEMIGROUPS 561

Example 1. Let Z(t) be Brownian motion in R1, let

Y(x) O; xl -<_ 1

log[x[; Ixl > 1,

and define, for f b+(R)

T,f(z) E exp V(Z(s) d f(Z(t)

We can show that this semigroup is defined from a kernel re(t, x, A) satisfying
all of our hypotheses, but which is not exponentially bounded and thus cannot
be reduced by the h-path method. In fact, all of the properties are evident
[see 14] except two" that Tl(x) < for all t, and that for all
A > O, T 1 (x) > e for sufficiently large. To show the former, note that
by Jensen’s inequulity

fN exp
j,

V(Z()) d N(1/) exp V(Z()) d

On he oher hand, if we replace V() by V() (A + e) for e > 0, which
will hog increase T 1(), and ghen consider e-(+ T l(z), for which ghe corre-
sponding V is now g (z) ( + e) ( + e), hen since his funegion van-
ishes for all large z i is easy o see gha he corresponding e-(+T l(x) will
no approach 0 exponentially fast, bu only a a rae of he order of

d
%/_

exp dz 0 (2)-,
which represents he mass remaining for all > e > 0 in he region where
V 0. hus Tl() > eforlarge.

Ig is nagural go inquire as o ghe generaligy of such represenagions of semi-
groups by Markov proeesses and muliplieaive funeionals. Le us conclude
wih ghree exampl of he following variety. In he firsg, such a represenga-
gion is evideng, bug () is of unbounded variagion. In he second, a repre-
sentation is again clear, bu () is a (random) sep function. In he hird,
although i is eviden wha should be gaken as Z (), i does no seem possible
go define () o depend only upon he paths of Z ().

Nmple 2. Leg Tf() h(z)f( + )h-( + ) where and h()
is a fixed, sriely positive, eonginuous function, which may be of unbounded
local variation. he process Z() is evidently righ ranslaion wih unig

speed, and () h()h-( + ) for he path sgarging a .
Nmple a. Leg m(, A) be a measure on g for each , measurable in for

each A, wih m(, N) bounded, posigive, and m(, d)f() eoninuous for
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bounded continuous f. Consider the semigroup

Ttf(x) e-t E -l-ff.
()’t) f f dy)f(y)

k-O

where ), > 0 is fixed. The hypotheses are clearly satisfied. An underlying
sub-Markovian process may be obtained by replacing each re(x, A) with
re(x, E) > 1 by re(x, A) E). In this case the multiplicative functional
would be constant except at the "jumps" of the process, and there it would be
multiplied by m(X(t-), E) when m(X(t-), E) > 1.

Example 4. Here we describe a situation in which there is an underlying
Markov process but the definition of a suitable multiplicative functional to
define the "larger" semigroup may pose insuperable difficulties. For a given
Markov process X(t) and additive functional A (t), (not assumed positive),
let 0 -<_ re(x) be a bounded -measurable function, and let pl, p2, be a
sequence of independent, exponentially distributed random variables inde-
pendent of X(t). A particle moves along the path of X(t), and at time
T1 inf > 0: A (t) = p its "mass" is multiplied by m(X(T)). It then
proceeds as before until at time T. inf > T1 :A (t) A (T) => p. its
"mass" is multiplied by m(X(T2))), and it continues in this manner indefi-
nitely. The semigroup is defined by integration with respect to the distribu-
tion of total "mass" of the particle, the semigroup property being evident from
the description. Evidently there is no intrinsic difficulty in satisfying the
hypotheses on re(t, x, A). The attempt to introduce a multiplicative func-
tional to represent the semigroup by means of X(t), however, leads to the
expression exp f (m(X(s)) 1) dA (s). Here the integral will not be well
defined without further restrictions on A (t), and otherwise there would appear
to be no multiplicative functional available to define the semigroup.
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