A CHARACTERIZATION OF THE ALTERNATING GROUP OF DEGREE ELEVEN

BY
'Takeshi Kondo

Introduction

The main purpose of the present paper is to prove the following theorem. Theorem B. Let G be a finite group satisfying the following conditions:
(1) G has no normal subgroup of index 2, and
(2) G contains an involution z_{0} such that $C_{G}\left(z_{0}\right)$ is isomorphic to the centralizer of an involution in the center of an S_{2}-subgroup of A_{11}, the alternating group of degree eleven.

Then G is isomorphic to A_{11}.
Let D be a 2 -group of order 2^{7} which is isomorphic to a wreath product of a dihedral group of order 8 by a group of order 2 . An S_{2}-subgroup of A_{11} is isomorphic to D. Further, there are infinitely many simple groups with an S_{2}-subgroup isomorphic to D, namely $L F_{4}(q)(q \equiv 3 \bmod 8)$ and $U_{4}(q)$ ($q \equiv 5 \bmod 8$). So the present paper contains detailed discussions of a finite group with an S_{2}-subgroup isomorphic to D, which are more than necessary for the proof of Theorem B (cf. footnote 2)). The results are summarized in Theorem A of $\S 4$.

Notation:

$\operatorname{ccl}_{X}(x) \quad$ a conjugate class in a group X containing x
$\langle\cdots\rangle \quad$ a group generated by ...
$X^{\prime} \quad$ the commutator subgroup of a group X
$[x, y] \quad x^{-1} y^{-1} x y$
$x^{y} \quad y^{-1} x y$
$x \sim y$ in $X \quad x$ is conjugate to y in a group X
$J(X) \quad$ the Thompson subgroup of X (cf. [7])
$C_{X}^{*}(x) \quad\left\langle y \in X \mid y^{-1} x y=x^{ \pm 1}\right\rangle$.
$A_{n}\left(S_{n}\right) \quad$ the alternating (symmetric) group of degree n
The other notations are standard.

1. Preliminaries

(1.0) Let X be a finite group and S be an S_{2}-subgroup of X. Let K be a subset of S which is an intersection of S with a conjugate class of X. An element x of K is called an extreme element if $\left|C_{S}(x)\right| \geqq\left|C_{S}(y)\right|$ for any $y \in K$. The following is due to R. Brauer [1, p. 308].
(1.1) Lemma. If x is an extreme element of $K, C_{S}(x)$ is an S_{2}-subgroup of $C_{X}(x)$. Moreover, for every element y of K, there exists an isomorphism θ

[^0]of $C_{S}(y)$ into $C_{S}(x)$ with the properties:
(1) $\theta(y)=x$, and
(2) if $\theta(z)=z^{\prime}$ for $z \in C_{S}(y)$ and $z^{\prime} \in C_{S}(x), z^{\prime}$ is conjugate to z in X.
(1.2) Lemma. Let M be a maximal subgroup of S and x be an involution of S outside M. If x is not conjugate in X to any element of M, X has a normal subgroup of index 2.

This is due to J. G. Thompson. The proof is easily obtained by computing the transfer.

In the present paper, Lemmas (1.1) and (1.2) will be frequently used
(1.3) Lemma. ${ }^{1}$ Let S be isomorphic to a 2-group generated by involutions $x_{1}, x_{2}, y_{1}, y_{2}$ and w subject to the relations

$$
\begin{gathered}
{\left[x_{i}, x_{j}\right]=\left[y_{i}, y_{j}\right]=\left[x_{i}, y_{j}\right]=1 \quad(i=1,2 \quad j=1,2)} \\
x_{1}^{w}=x_{2}, \quad y_{1}^{w}=y_{2} .
\end{gathered}
$$

Then X has a normal subgroup of index 2 with $\left\langle x_{1}, x_{2}, y_{1}, y_{2}\right\rangle$ as an S_{2}-subgroup.

Proof. $\quad C_{S}(w)=\left\langle w, x_{1} x_{2}, y_{1} y_{2}\right\rangle$ is a self-centralizing normal subgroup of order 8. Put $W=C_{S}(w)$. We know $C_{X}(W)=W \times U$ and $|U|=$ odd. Suppose that X has no normal subgroup of index 2. Then (1.2) implies that w must fuse to an element of $\left\langle x_{1}, x_{2}, y_{1}, y_{2}\right\rangle=V$. We claim that w must fuse to an element of $Z(S)$. Otherwise, $C_{S}(w)$ would be conjugate to a subgroup of V by (1.1), which contradicts the fact that $C_{x}(W)=W \times U$ and $|U|=$ odd. Take an S_{2}-subgroup S_{1} of $C_{X}(w)$. Then we have $Z\left(S_{1}\right) \subset W$ and $Z\left(S_{1}\right)=\left\langle w, x_{1} x_{2}\right\rangle,\left\langle w, y_{1} y_{2}\right\rangle$ or $\left\langle w, x_{1} x_{2} y_{1} y_{2}\right\rangle$. If $Z\left(S_{1}\right)=$ $\left\langle w, x_{1} x_{2}\right\rangle$, we see that x_{1} is contained in $N_{X}\left(Z\left(S_{1}\right)\right)-C_{X}\left(Z\left(S_{1}\right)\right)$, which is impossible because $N_{X}\left(Z\left(S_{1}\right)\right) / C_{X}\left(Z\left(S_{1}\right)\right)$ is of odd order Similarly, we get a contradiction also in other cases. Hence we have proved that $X>O^{2}(X)$ and w does not fuse to any element of V. Then any element of $S-V$ is not conjugate to an element of V, since an element of $S-V$ is of order 4 or is conjugate to w in S. Then the focal subgroup theorem yields our lemma.

2. Some properties of a 2-group D

Let D be a 2 -group generated by involutions $b_{1}, c_{1}, b_{2}, c_{2}$ and u satisfying the following relations:

$$
\begin{array}{cc}
b_{1}^{2}=c_{1}^{2}=b_{2}^{2}=c_{2}^{2}=u^{2}=1, \quad\left(b_{i} c_{i}\right)^{4}=1 & (i=1,2), \\
{\left[b_{i}, b_{j}\right]=\left[c_{i}, c_{j}\right]=\left[b_{i}, c_{j}\right]=1} & (i \neq j) \\
b_{1}^{u}=b_{2}, \quad c_{1}^{u}=c_{2} &
\end{array}
$$

[^1]Put $z_{i}=\left(b_{i} c_{i}\right)^{2}, a_{i}=b_{i} c_{i}(i=1,2), z=z_{1} z_{2}$. Further we define four elementary abelian subgroups of order 16:
and

$$
B=\left\langle b_{1}, z_{1}, b_{2}, z_{2}\right\rangle, \quad C=\left\langle c_{1}, z_{1}, c_{2}, z_{2}\right\rangle, \quad F_{1}=\left\langle b_{1}, z_{1}, c_{2}, z_{2}\right\rangle
$$

D is a wreath product of a dihedral group of order 8 by a cyclic group of order 2. The Thompson subgroup $J(D)$ of D is $\left\langle b_{1}, c_{1}\right\rangle \times\left\langle b_{2}, c_{2}\right\rangle$, which is generated by all elementary abelian subgroups of order 16 , that is, B, C, F_{1} and F_{2}, and is isomorphic to a direct product of two copies of a dihedral group of order 8 .
B, C, F_{1} and F_{2} are normal in $J(D)$ and selfcentralizing in $D . \quad B$ and C are normal in D. The conjugate classes of involutions of D are as follows:

elements	cardinality
z	1
z_{1}, z_{2}	2
$b_{1}, b_{1} z_{1}, b_{2}, b_{2} z_{2}$	4
$b_{1} z, b_{1} z_{2}, b_{2} z_{1}, b_{2} z$	4
$b_{1} b_{2}, b_{1} b_{2} z_{1}, b_{1} b_{2} z_{2}, b_{1} b_{2} z$	4
$c_{1}, c_{1} z_{1}, c_{2}, c_{2} z_{2}$	4
$c_{1} z, c_{1} z_{2}, c_{2} z, c_{2} z_{1}$	4
$c_{1} c_{2}, c_{1} c_{2} z_{1}, c_{1} c_{2} z_{2}, c_{1} c_{2} z$	4
$b_{1} c_{2} x, b_{2} c_{1} x$ for any $x \epsilon\left\langle z_{1}, z_{2}\right\rangle$	8
$u x u x^{-1} u$ for any $x \in\left\langle b_{1}, c_{1}\right\rangle$	8

See (3.7) for the conjugate classes of elements of order 4 which are used only in the proof of lemmas (3.8) and (3.9).

3. General properties of G and D

(3.0) Let G be a finite group with D as an S_{2}-subgroup. Put $H=C_{G}(z)$. Throughout the present paper, G, D and H will be used in this meaning.
(3.1) Lemma. z is not conjugate to z_{1} in G.

$$
N_{G}(J(D))=D \cdot C_{G}(J(D)) \quad \text { and } \quad N_{G}(J(D)) \subseteq N_{H}(B) \cap N_{H}(C)
$$

Proof. Since $J(D)$ is weakly closed in D with respect to G, any two elements of $Z(J(D))=\left\langle z_{1}, z_{2}\right\rangle$ are conjugate in G if and only if they are conjugate in $N_{G}(J(D))$. On the other hand, from the structure of $J(D)$, the automorphism group of $J(D)$ is 2 -group. Hence we have $N_{G}(J(D))=$ $D \cdot C_{G}(J(D))$. From this, our lemma follows.
(3.2) Lemma. $z_{1} \sim b_{1}$ in G if any only if $z \sim b_{1} z$ in $G . \quad$ Similarly, $z_{1} \sim c_{1}$ in G if and only if $z \sim c_{1} z$ in G.

Proof. Suppose that $z_{1} \sim b_{1}$ in G. Put $W=C_{D}\left(b_{1}\right)=B\left\langle c_{2}\right\rangle$. Then we have $W^{\prime}=\left\langle z_{2}\right\rangle$. Denote by D_{1} an S_{2}-subgroup of $C_{G}\left(b_{1}\right)$ with
$W \subset D_{1} \subset C_{G}\left(b_{1}\right) . \quad$ By (3.1), we have $\left|D_{1}\right|=64$. Furthermore $Z\left(D_{1}\right) \ni z_{2}$, since W^{\prime} char W and $\left[D_{1}: W\right]=2$ and so $W^{\prime} \triangleleft W$. Hence we have $Z\left(D_{1}\right)=$ $\left\langle b_{1}, z_{2}\right\rangle$. Since D_{1} is conjugate in G to $J(D)$ by $(3,1), Z\left(D_{1}\right)$ is conjugate to $Z(J(D))=\left\langle z_{1}, z_{2}\right\rangle . \quad$ Since $b_{1} \sim z_{1} \sim z_{2}$ in G, we have $b_{1} z_{2} \sim z$ in G by (3.1). Since $b_{1} z_{2} \sim b_{1} z$ in D, we get $b_{1} z \sim z$ in G. Suppose that $b_{1} z \sim z$ in G. Then we have $W=C_{D}\left(b_{1} z\right)=B\left\langle c_{2}\right\rangle$. Since W is generated by B and F_{1}, W is contained in $J\left(D_{2}\right)$, where D_{2} is an S_{2}-subgroup of $C_{G}\left(b_{1} z\right)$ with $W \subset D_{2} \subset$ $C_{G}\left(b_{1} z\right)$. Furthermore, $Z\left(J\left(D_{2}\right)\right)=\left\langle b_{1} z, z_{2}\right\rangle$. In the same way as above, we get $b_{1} \sim z_{1}$ in G.
(3.3) Lemma. We may and shall assume $b_{1} \nsim z$ in G and $c_{1} \nsim z$ in G.

Proof. This follows from (3.1) and (3.2), by interchanging a pair $b_{1} b_{2}$ (resp. $c_{1} c_{2}$) by $b_{1} z b_{2} z$ (resp. $c_{1} z c_{2} z$) if necessary.
(3.4) Lemma. B and C are weakly closed in D with respect to G.

Proof. Suppose that $B^{x} \subset D$ for $x \in G$. Then we have $B^{x} \triangleleft J(D)$. Since $N_{G}\left(B^{x}\right) \frown D^{x}, J(D)$, there exists an element y of $N_{G}\left(B^{x}\right)$ such that $D^{x y} \supset J(D) \supset B^{x}$. Then we have $D^{x y} \subset N_{G}(J(D)) \subset N_{H}(B)$ by (3.1). Hence there exists an element w of $N_{H}(B)$ such that $D^{x y}=D^{w}$. Since

$$
x y w^{-1} \epsilon N_{G}(D) \subset N_{G}(J(D)) \subset N_{H}(B),
$$

we have $B^{x y}=B^{w}=B$, and so $B^{x}=B^{x y}=B$. Thus we have proved that B is weakly closed in D. Similarly, C is weakly closed in D with respect to G.
(3.5) Lemma. If X is a 2-subgroup of G containing B (resp. C), X normalizes B (resp. C). Furthermore, any two elements of B (resp. C) are conjugate in G if and only if they are conjugate in $N_{G}(B)$ (resp. $N_{G}(C)$).

Proof. This is an immediate consequence of (3.4). This lemma is very useful for the discussions in $\S 4$.
(3.6) Lemma. If z is not conjugate in G to any element of D distinct from z, G has a normal subgroup of index 2.

Proof. Assume by way of contradiction that $G=O^{2}(G)$. Put $W=$ $B\left\langle u, c_{1} c_{2}\right\rangle$. Then by (1.2), an involution c_{1} of $D-W$ must be conjugate to one of

$$
\left\{z_{1}, b_{1}, b_{1} z, b_{1} b_{2}, c_{1} c_{2}, u\right\}
$$

which are involutions of W. If $c_{1} \sim z_{1}$ in G, we have $c_{1} z \sim z$ because of (3.2). This contradicts the assumption of our lemma. If $c_{1} \sim b_{1}$ in G, by (1.1), $C_{D}\left(c_{1}\right)$ and $C_{D}\left(b_{1}\right)$ are S_{2}-subgroups of $C_{G}\left(c_{1}\right)$ and $C_{G}\left(b_{1}\right)$ respectively. Then C is conjugate to B or F_{1} in G, since B and F_{1} are just two elementary subgroups of order 16 contained in $C_{D}\left(b_{1}\right)=B\left\langle c_{2}\right\rangle$ and $C \subset C_{D}\left(c_{1}\right)$. This is impossible because of (3.4). Similarly we get $c_{1} \nsim b_{1} z$ in G. If $c_{1} \sim b_{1} b_{2}$ in G, by (1.1), $C_{D}\left(c_{1}\right)$ and $C_{D}\left(b_{1} b_{2}\right)$ are S_{2}-subgroups of $C_{G}\left(c_{1}\right)$ and $C_{G}\left(b_{1} b_{2}\right)$
respectively. Hence $C_{D}\left(c_{1}\right)$ and $C_{D}\left(b_{1} b_{2}\right)$ are conjugate in G, which is impossible since $C_{D}\left(c_{1}\right)$ and $C_{D}\left(b_{1} b_{2}\right)$ are not isomorphic. Similarly we get $c_{1} \nsim c_{1} c_{2}$ in G. If $c_{1} \sim u$ in G. $\mathrm{C}_{D}(u)$ is conjugate in G to a subgroup of $C_{D}\left(c_{1}\right)$ by (11). Since z_{1} (resp. z) is only one square element of $C_{D}\left(c_{1}\right)$ (resp. $C_{D}(u)$), we must have $z_{1} \sim z$ in G, which is impossible because of (3.1). Thus we get a contradiction.
(3.7) In the proof of Lemmas (3.8) and (3.9), some properties of elements of D with order 4 will be used. The conjugacy classes of D with order 4 are as follows:

representatives	a_{1}	$a_{1} z_{2}$	$a_{1} a_{2}$	$b_{1} a_{2}$	$c_{1} a_{2}$	$u z_{1}$	$u b_{1}$	$u c_{1}$
cardinality	4	4	4	8	8	8	16	16
squares of rep- resentatives	z_{1}	z_{1}	z	z_{2}	z_{2}	z	$b_{1} b_{2}$	$c_{1} c_{2}$

We have

$$
C_{D}\left(a_{1} a_{2}\right)=\left\langle a_{1}, a_{2}, u\right\rangle \text { and } C_{D}^{*}\left(a_{1} a_{2}\right)=\left\langle b_{1} c_{2}\right\rangle \cdot C_{D}\left(a_{1} a_{2}\right)
$$

There are sixteen involutions which invert $a_{1} a_{2}$, and they are contained in $\left\langle z_{1}, a_{1} a_{2}, b_{1} b_{2}\right\rangle$ or $\left\langle z_{1}, a_{1} a_{2}, b_{1} b_{2}\right\rangle$. We have

$$
C_{D}\left(u b_{1}\right)=\left\langle z, u b_{1}\right\rangle \quad \text { and } \quad C_{D}^{*}\left(u b_{1}\right)=\left\langle b_{1}\right\rangle \cdot C_{D}\left(u b_{1}\right) .
$$

The set of all involutions which invert $u b_{1}$ is $C_{D}^{*}\left(u b_{1}\right)-C_{D}^{*}\left(u b_{1}\right)$ and so, $C_{D}^{*}\left(u b_{1}\right)$ is a "generalized dihedral group" of order 16. Similarly, the set of all involutions which invert $u c_{1}$ are $C_{D}^{*}\left(u c_{1}\right)-C_{D}\left(u c_{1}\right)$.
(3.8) Lemma. If $u \sim z$ in G, we have $z \sim b_{1} b_{2}$ or $z \sim c_{1} c_{2}$ in G and $b_{1} b_{2} \nsim$ $c_{1} c_{2}$ in G.

Proof. Consider an isomorphism of $C_{D}(u)=\langle u\rangle \times\left\langle b_{1} b_{2}, a_{1} a_{2}\right\rangle$ into $D=$ $C_{D}(z)$ defined in (1.1). Since $z \nsim z_{1}$ in G and $\theta(u)=z=\left(a_{1} a_{2}\right)^{2}, \theta\left(a_{1} a_{2}\right)$ must be contained in $\mathrm{ccl}_{D}\left(u b_{1}\right)$ or $\mathrm{c}_{\mathrm{cl}_{D}}\left(u c_{1}\right)$ (cf. the table of (3.7)). Hence we may assume
$\theta\left(a_{1} a_{2}\right)=u b_{1}$ or $u c_{1}, \quad$ an $\theta\left(C_{D}(u)\right)=\langle z\rangle \times\left\langle b_{1}, u b_{1}\right\rangle$ or $\langle z\rangle \times\left\langle c_{1}, u c_{1}\right\rangle$.
Hence we get $\theta(z)=\theta\left(\left(a_{1} a_{2}\right)^{2}\right)=b_{1} b_{2}$ or $c_{1} c_{2}$, namely, $z \sim b_{1} b_{2}$ or $c_{1} c_{2}$. Assume that

$$
\theta\left(C_{D}(u)\right)=\langle z\rangle \times\left\langle b_{1}, u b_{1}\right\rangle
$$

because, also in case where $\theta\left(C_{D}(u)\right)=\langle z\rangle \times\left\langle c_{1}, u c_{1}\right\rangle$, the argument is similar. Put

$$
C_{1}=C_{D}(u)-\left\langle u, a_{1} a_{2}\right\rangle \quad \text { and } \quad C_{2}=\left\langle u, u b_{1}, b_{1}\right\rangle-\left\langle u, u b_{1}\right\rangle,
$$

which are the sets of all involutions of $C_{D}(u)$ and $\theta\left(C_{D}(u)\right)$ inverting $a_{1} a_{2}$ and $u b_{1}$ respectively. θ must map C_{1} onto C_{2}. If $b_{1} b_{2} \sim c_{1} c_{2}$ in G, we have $z \sim b_{1} b_{2} \sim c_{1} c_{2}$ in G, and so, any element of C_{1} is conjugate to z in G. Since
$C_{1}{ }^{\ni} b_{1}$, this forces to be $b_{1} \sim z$ in G, which is impossible because of (3.3). Thus we get $b_{1} b_{2} \nsim c_{1} c_{2}$ in G.
(3.9) Lemma. If $u \sim z_{1}$ in G, we have $z_{1} \sim b_{1} b_{2} \sim c_{1} c_{2}$ in G.

Proof. Consider an isomorphism θ from $C_{D}(u)$ into $C_{D}\left(z_{1}\right)=J(D)$ defined in (1.1). Then by (3.7), we may assume

$$
\theta\left(a_{1} a_{2}\right)=a_{1} a_{2} \quad \text { and } \quad \theta\left(C_{D}(u)\right)=\left\langle z_{1}, a_{1} a_{2}, b_{1} b_{2}\right\rangle \text { or }\left\langle z_{1}, a_{1} a_{2}, b_{1} c_{2}\right\rangle
$$

Put $C_{1}=C_{D}(u)-\left\langle u, a_{1} a_{2}\right\rangle$ and $C_{2}=\theta\left(C_{D}(u)\right)-\left\langle z_{1}, a_{1} a_{2}\right\rangle$. We have

$$
C_{1}=\left\langle b_{1} b_{2}, b_{1} b_{2} z, c_{1} c_{2}, c_{1} c_{2} z, u b_{1} b_{2}, u b_{1} b_{2} z, u c_{1} c_{2}, u c_{1} c_{2} z\right\rangle
$$

and

$$
C_{2}=\operatorname{ccl}_{D}\left(b_{1} b_{2}\right) \cup \mathrm{ccl}_{D}\left(c_{1} c_{2}\right) \text { or } \operatorname{ccl}_{D}\left(b_{1} c_{2}\right)
$$

according to whether $\theta\left(C_{D}(u)\right)=\left\langle z_{1}, a_{1} a_{2}, b_{1} b_{2}\right\rangle$ or $\left\langle z_{1}, a_{1} a_{2}, b_{1} c_{2}\right\rangle$. Then the assumption that $u \sim z_{1}$ in G forces to be $z_{1} \sim b_{1} b_{2} \sim c_{1} c_{2}$ in G, since θ maps C_{1} onto C_{2}. This completes the proof.

4. Conjugacy classes of involutions of G, where $G=O^{2}(G)$

(4.0) Throughout this section, we shall assume that G has no normal subgroup of index 2. The results of this section can be summarized as follows.

Theorem A. (i) G has normal subgroups G_{1} and G_{2} such that $\left|G / G_{1}\right|$ $\left|G_{2}\right|$ are odd and G_{1} / G_{2} is a non-abelian simple group with an S_{2}-subgroup isomorphic to D.
(ii) G has two classes of involutions. If notation is chosen suitably, the possibilities for the fusion of involutions of G are

Case I. $z \sim b_{1} z \sim c_{1} z \sim b_{1} c_{2} \sim b_{1} b_{2} \sim u \mid z_{1} \sim b_{1} \sim c_{1} \sim c_{1} c_{2}$,or
Case II. $z \sim b_{1} z \sim c_{1} z \sim b_{1} c_{2} \mid z_{1} \sim b_{1} \sim c_{1} \sim b_{1} b \sim c_{1} c_{2} \sim u$.
(iii) $\quad C_{G}(z)$ has a normal subgroup K of index 4 with the following properties;
(α) an S_{2}-subgroup of K is $\left\langle z_{1}, z_{2}, b_{1} b_{2}, c_{1} c_{2}, u\right\rangle$, which is an extraspecial 2 -group of order 32.
(β) K has no normal subgroup of index 2.
(iv) $C_{G}\left(z_{1}\right)$ has a normal subgroup K_{1} of index 8 with the following properties:
(α) an S_{2}-subgroup of K_{1} is $\left\langle b_{2}, c_{2}\right\rangle$, which is a dihedral group of order 8, and
(β) $\quad K_{1}$ has no normal subgroup of index 2.
(v) $N_{G}(C) / C_{G}(C)$ (resp. $\left.N_{H}(C) / C_{H}(C)\right)$ is isomorphic to S_{5} (resp. S_{4}). In Case I, $N_{G}(B) / C_{G}(B)$ (resp. $N_{H}(B) / C_{H}(B)$) is isomorphic to a 3-Sylownormalizer of A_{8} (resp. a dihedral group of order 8), while in Case II, $N_{G}(B) /$ $C_{G}(B)\left(\right.$ resp. $\left.N_{H}(B) / C_{H}(B)\right)$ is isomorphic to S_{5} (resp. S_{4}).

Remark. We know only two examples of finite simple groups with Case I for the fusion of involutions, namely A_{10} or A_{11}, while there exist infinitely
many simple groups with Case II, namely $L F_{4}(q)(q \equiv 3 \bmod 8)$ or $U_{4}(q)$ ($q \equiv 5 \bmod 8$) 。
(4.1) Lemma. z is conjugate in G to an element which is distinct from z and is contained in B or C.

Proof. Suppose false. Then the assumption $G=O^{2}(G)$ and (3.6) yields that $z \sim u$ or $b_{1} c_{2}$ in G. If $z \sim u$, we have $z \sim b_{1} b_{2}$ or $c_{1} c_{2}$ in G from (3.8). Hence we may assume that $z \sim b_{1} c_{2}$ in G and z is not conjugate to any element of B or C. Denote by D_{1} an S_{2}-subgroup of $C_{G}\left(b_{1} c_{2}\right)$ with $C_{D}\left(b_{1} c_{2}\right)=$ $F_{1} \subset D_{1} \subset C_{G}\left(b_{1} c_{2}\right)$. Put $W=\left\langle J(D), J\left(D_{1}\right)\right\rangle$. Then we have $W \triangleright F_{1}$ and $z \sim b_{1} c_{2}$ in W. Hence we get $\left[N_{G}\left(F_{1}\right): H \cap N_{G}\left(F_{1}\right)\right]=5$. If x is an element of $N_{G}\left(F_{1}\right)-C_{G}\left(F_{1}\right)$ with $x^{5} \in C_{G}\left(F_{1}\right), x$ acts fixed-point-free on F_{1}. This forces to be $z_{1} \sim b_{1} \sim b_{1} z_{2}$ in G, which is impossible because of (3.2).
(4.2) We may and shall assume that z is conjugate to an element in B distinct from z, since B and C play symmetric role.
(4.3) Lemma. $z \sim b_{1} z$ and $z_{1} \sim b_{1}$ in G. More precisely, there exists an element β in $N_{G}(B) \cap N G\left(F_{2}\right)$ of odd order such that $\beta^{3} \epsilon C_{G}(B), z_{2}^{\beta}=b_{2}$, $b_{2}^{\beta}=b_{2} z_{2}, z^{\beta}=b_{2} z_{1},\left(b_{2} z_{1}\right)^{\beta}=b_{2} z$, and $\left[\begin{array}{ll}\beta & z_{1}\end{array}\right]=1$. We have $\left[\begin{array}{ll}\beta & b_{1}\end{array}\right]=1$ or $\left[\begin{array}{ll}\beta & b_{1} z\end{array}\right]=1$, and $b_{1} b_{2} \sim z$ or z_{1} in G according to whether $b_{1}^{\beta}=b_{1}$ or $\left(b_{1} z\right)^{\beta}=$ $b_{1} z$. Moreover, we have $b_{2} c_{1} \sim c_{1}$ or $c_{1} z$ in G.

Proof. First we shall show that $z \sim b_{1} z$ in G. Suppose false. Then, from (3.1), (3.3) and (4.2), we must have $z \sim b_{1} b_{2}$ in G and so in $N_{G}(B)$ because of (3.5). Hence we get $\left[N_{G}(B): H \cap N_{G}(B)\right]=5$. If x is an element of $N_{G}(B)-C_{G}(B)$ with $x^{5} \in C_{G}(B), x$ acts fixed-point-free on B. This forces $b_{1} \sim z_{1}$ in G and so $z \sim b_{1} z$ in G because of (3.2). This is a contradiction. Thus we have proved that $z \sim b_{1} z$ in G and so $b_{1} \sim z_{1}$ in G because of (3.2). Denote by D_{1} an S_{2}-subgroup of $C_{G}\left(b_{2} z\right)$ with $C_{D}\left(b_{2} z\right)=$ $B\left\langle c_{1}\right\rangle \subset D_{1} \subset C_{G}\left(b_{2} z\right)$. Put $U=C_{D}\left(b_{2} z\right)$. Then we have $U^{\prime}=\left\langle z_{1}\right\rangle$ and $Z(U)=\left\langle b_{2}, z_{1}, z_{2}\right\rangle$. Since $\left[J\left(D_{1}\right): U\right]=2$ we have $Z\left(J\left(D_{1}\right)\right)=\left\langle b_{2} z, z_{1}\right\rangle$ and $J\left(D_{1}\right)$ normalizes $Z(U)=\left\langle b_{2}, z_{1}, z_{2}\right\rangle$. Put $W=\left\langle J(D), J\left(D_{1}\right)\right\rangle$. Then we have $Z(W)=\left\langle z_{1}\right\rangle$ and W normalizes $B\left\langle c_{1}\right\rangle=U,\left\langle b_{2}, z_{1}, z_{2}\right\rangle, B$ and F_{2} by (3.5). (Note that B and F_{2} are exactly two elementary subgroups of order 16 contained in $B\left\langle c_{1}\right\rangle$.) Furthermore, z is conjugate to $b_{2} z$ in W. $W / C_{W}(B)$ is not 2-group. Otherwise W would be $W=\left\langle c_{1}, c_{2}\right\rangle C_{W}(B)$ because of $Z(W)=\left\langle z_{1}\right\rangle$, against the fact that $z \sim b_{2} z$ in W. Hence we can find an element β of W such that $[\beta, B] \neq 1$. Since $C_{\theta}(B)=B \times Y$ and $|Y|=$ odd, we may assume that β is of odd order. Then we have $\left[\beta,\left\langle b_{2}, z_{1}, z_{2}\right\rangle\right] \neq 1$. From $\left[\beta, z_{1}\right]=1, z \sim b_{1} z$ and $z_{1} \sim b_{1}$ in G, we obtain $z_{2}^{\beta}=b_{2}, b_{2}^{\beta}=b_{2} z_{2}, z^{\beta}=b_{2} z_{1}$ and $\left(b_{2} z_{1}\right)^{\beta}=b_{2} z$ by interchanging β by β^{-1} if necessary. This implies that β^{3} centralizes $\left\langle b_{2}, z_{1}, z_{2}\right\rangle$ and so B. Since $\left[\beta, z_{1}\right]=1$ and β normalizes B, β must fix an element of $B-\left\langle b_{2}, z_{1}, z_{2}\right\rangle$. If β fixes an element of $\operatorname{ccl}_{D}\left(b_{1} b_{2}\right) \subset B-\left\langle b_{2}, z_{1}, z_{2}\right\rangle$, we have $\left(b_{1} b_{2}\right)^{\beta}=b_{1} b_{2}$
or $\left(b_{1} b_{2} z\right)^{\beta}=b_{1} b_{2} z$. In the former case, $b_{1} b_{2}=b_{1}^{\beta} b_{2} z_{2}$ and so $b_{1}^{\beta}=b_{1} z_{2}$ which is impossible since $b_{1} \sim z_{1}$ and $b_{1} z_{2} \sim z$ in G. In the second case, $b_{1} b_{2} z=$ $\left(b_{1} b_{2} z\right)^{\beta^{2}}=b_{1}^{\beta^{2}} x_{2} b_{2} z$ and so $b_{1}^{\beta^{2}}=b_{1} z_{2}$, which is impossible. Hence we have $b_{1}^{\beta}=b_{1}$ or $\left(b_{1} z\right)^{\beta}=b_{1} z$. If $b_{1}^{\beta}=b_{1}$, we have $\left(b_{1} b_{2}\right)^{\beta^{2}}=b_{1} z_{2} \sim z$ in G. If $\left(b_{1} z\right)^{\beta}=b_{1} z$ we have $b_{1}^{\beta}=b_{1} b_{2} z$ and so $z_{1} \sim b_{1} b_{2}$ in G. Finally we shall show that $b_{1} c_{2} \sim c_{1}$ or $c_{1} z$ in G. The involutions of $F_{2}-\left\langle b_{2}, z_{2}, z_{1}\right\rangle$ are $c_{1} \sim c_{1} z_{1}$, $c_{1} z_{2} \sim c_{1} z$ and $b_{2} c_{1} \sim b_{2} c_{1} z_{1} \sim b_{2} c_{1} z_{2} \sim b_{2} c_{1} z$. If $c_{1}^{\beta}=c_{1}$, we have $\left(c_{1} z_{2}\right)^{\beta}=b_{2} c_{1}$. If $c_{1}^{\beta}=c_{1} z_{1},\left(c_{1} z_{2}\right)^{\beta}=b_{2} c_{1} z$. If $c_{1}^{\beta}=c_{1} z_{2},\left(c_{1} z_{2}\right)^{\beta}=b_{2} c_{1} z_{2}$. If $c_{1}^{\beta}=c_{1} z$, $\left(c_{1} z_{2}\right)^{\beta}=b_{2} c_{1} z$. If $c_{1}^{\beta} \neq c_{1}, c_{1} z_{1}, c_{1} z_{2}$ and $c_{1} z$, we have $c_{1}^{\beta}=b_{2} c_{1}, b_{2} c_{1} z_{1}$, $b_{2} c_{1} z_{2}$ or $b_{2} c_{1} z$ since β normalizes F_{2} and $\left\langle b_{2}, z_{2}, z_{1}\right\rangle$. Thus, in any case, we get $b_{1} c_{2} \sim c_{1}$ or $c_{1} z$ in G.
(4.4) Lemma. z is conjugate in G to an element which is distinct from z and is contained in C.

Proof. Suppose false. By Lemma (1.2) of Thompson and the assumption $G=O^{2}(G), c_{1}$ must be conjugate in G to an element of $B\left\langle u, c_{1} c_{2}\right\rangle$. Since every element of B fuses to z or z_{1} by (4.3) and $c_{1} \sim z_{1}$ in G implies $c_{1} z \sim z$ in G by (3.2), we have $c_{1} \sim c_{1} c_{2}$ or $c_{1} \sim u$ in G. If $c_{1} \sim c_{1} c_{2}$ in G, by (1.1), $C_{D}\left(c_{1}\right)$ and $C_{D}\left(c_{1} c_{2}\right)$ are S_{2}-subgroups of $C_{G}\left(c_{1}\right)$ and $C_{D}\left(c_{1} c_{2}\right)$ respectively. Hence $C_{D}\left(c_{1}\right)$ is conjugate to $C_{D}\left(c_{1} c_{2}\right)$, which is impossible since they are not isomorphic. If $c_{1} \sim u, C_{D}(u)$ must be conjugate in G to a subgroup of $C_{D}\left(c_{1}\right)$ by (1.1). Since z and z_{2} are only one square elements of $C_{D}(u)$ and $C_{D}\left(z_{2}\right)$ respectively, we must have $z \sim z_{2}$ in G. This contradicts (3.1). This completes the proof of the lemma.
(4.5) Lemma. There exists an element γ in $N_{G}(C) \cap N_{G}\left(F_{1}\right)$ of odd order such that ${ }^{3} \in C_{G}(C), z_{2}^{\gamma}=c_{2}, c_{2}^{\gamma}=c_{2} z_{2}, z^{\gamma}=c_{2} z_{1},\left(c_{2} z_{1}\right)^{\gamma}=c_{2} z$ and $\left[\begin{array}{ll}\gamma & z_{1}\end{array}\right]=1$. Wehave $\left[\begin{array}{ll}\gamma & c_{1}\end{array}\right]=1$ or $\left[\begin{array}{ll}\gamma & c_{1} z\end{array}\right]=1$ and $c_{1} c_{2} \sim z$ or z_{1} accordingto whether $c_{1}^{\gamma}=c_{1}$ or $\left(c_{1} z\right)^{\gamma}=c_{1} z$.

Proof. This can be proved in the same way as in (4.3).
(4.6) Lemma. G has two classes of involutions If notation is chosen suitably, the possibilities for the fusion of involutions of G are

Case I. $z \sim b_{1} z \sim c_{1} z \sim b_{1} b_{2} \sim u \mid z_{1} \sim b_{1} \sim c_{1} \sim c_{1} c_{2}$
Case II. $z \sim b_{1} z \sim c_{1} z \mid z_{1} \sim b_{1} \sim c_{1} \sim b_{1} b_{2} \sim c_{1} c_{2} \sim u$.
Moreover, we have $b_{1}^{\beta}=b_{1}$ and $\left(c_{1} z\right)^{\gamma}=c_{1} z$ in Case I, while we have $\left(b_{1} z\right)^{\beta}=$ $b_{1} z$ and $\left(c_{1} z\right)^{\gamma}=c_{1} z$ in Case II.
(Remark that whether $z \sim b_{1} c_{2}$ or $z_{1} \sim b_{1} c_{2}$ has not been determined yet. In (4.9) we shall show that $b_{1} c_{2} \sim z$ in G in both cases.)

Proof. By (4.3) and (4.5), any involution of $J(D)$ must be conjugate to z or z_{1} in G. By (1.2) and the assumption $G=O^{2}(G), u$ must be conjugate to an element of $J(D)$ and so, we get $u \sim z$ or z_{1} in G. Thus G has two classes of involutions.

If $u \sim z$ in G, we have $z \sim b_{1} b_{2}$ or $c_{1} c_{2}$ in G and $b_{1} b_{2} \nsim c_{1} c_{2}$ by (3.8). Because of the symmetric role of B and C, we may assume $z \sim b_{1} b_{2}$ in G and so $z_{1} \sim c_{1} c_{2}$ in G. Then Case I occurs. If $u \sim z_{1}$ in G, we have $z_{1} \sim b_{1} b_{2} \sim c_{1} c_{2}$ by (3.9). Then Case II occurs. The third statement follows from (4.3) and (4.5).
(4.7) Lemma. $N_{H}(B) / C_{H}(B)$ (resp. $N_{H}(C) / C_{H}(C)$) operates faithfully on $\operatorname{ccl}_{D}\left(b_{1}\right)$ (resp. $\left.\operatorname{ccl}_{D}\left(c_{1}\right)\right)$. Furthermore $N_{H}\left(F_{1}\right) / C_{H}\left(F_{1}\right)$ is an elementary subgroup of order 4 and $N_{G}\left(F_{1}\right) / C_{G}\left(F_{1}\right)$ has normal 2-complement.

Proof. Assume there exists an element x of $N_{H}(B)$ such that $b_{1}^{x}=z_{1}$ or $b_{1} b_{2}$. If $b_{1}^{x}=z_{1}$, we have $\left(b_{1} z\right)^{x}=z_{1} z=z_{2}$. This is impossible because of (4.6). If $b_{1}^{x}=b_{1} b_{2}$, we have $\left(b_{1} z\right)^{x}=b_{1} b_{2} z$, again impossible. Then (4.6) implies the first statement of our lemma.

Similarly we can prove that $N_{H}\left(F_{1}\right) / C_{H}\left(F_{1}\right)$ operates faithfully on the set $\left\{b_{1}, b_{1} z_{1}, c_{2}, c_{2} z_{2}\right\}$. Then $N_{H}\left(F_{1}\right) / C_{H}\left(F_{1}\right)$ is isomorphic to the four group or the alternating group of degree four, since an S_{2}-subgroup of $N_{H}\left(F_{1}\right) / C_{H}\left(F_{1}\right)$ is $\left\langle\bar{c}_{1}, \bar{b}_{1}\right\rangle$ because of (3.4). On the other hand, c_{1} and $b_{2} c_{1}$, regarded as linear transformations on F_{1}, are not conjugate. This implies that $N_{H}\left(F_{1}\right) / C_{H}\left(F_{1}\right)$ must be isomorphic to the four group and $N_{G}\left(F_{1}\right) / C_{G}\left(F_{1}\right)$ has normal 2-complement.
(4.8) Lemma. If $N_{H}(B) / C_{H}(B)$ is isomorphic to a dihedral group of order 8, we have Case I for the fusion of involutions of G and $N_{H}(C) / C_{H}(C) \cong S_{4}$. If $N_{H}(B) / C_{H}(B)$ isomorphic to S_{4}, we have Case II and $N_{H}(C) / C_{H}(C) \cong S_{4}$.
(Remark that $N_{H}(B) / C_{H}(B)$ (or $N_{H}(C) / C_{H}(C)$) is isomorphic to a dihedral group of order 8 or S_{4} by (4.7).)

Proof. Suppose that $\left[N_{H}(B): C_{H}(B)\right]=8$. If we have Case II, we get $\left[N_{G}(B): C_{G}(B)\right]=8.5$ from (4.6) and (3.5). This is impossible since $N_{G}(B) / C_{G}(B)$ is a subgroup of $A_{8} \cong G L(4,2)$ with a dihedral group of order 8 as an S_{2}-subgroup. Thus we have Case I. If $\left[N_{H}(C): C_{H}(C)\right]=8$, we get $\left[N_{G}(C): C_{G}(C)\right]=8.5$ from (4.6) and (3.5), again impossible. Similarly the second statement can be proved.
(4.9) Lemma. $b_{1} c_{2}$ is conjugate to z in G in both Cases I and II. Furthermore, we have $c_{1}^{\beta}=c_{1}$ and $b_{1}^{\gamma}=b_{1}$, where β and γ are elements defined in (4.3) and (4.5).

Proof. Firstly we note that $\bar{F}_{2}=N_{G}\left(F_{2}\right) / C_{G}\left(F_{2}\right)$ is of order $4 \cdot 3$ or $4 \cdot 3^{2}$, since \bar{F}_{2} has normal 2 -complement by (4.7) and is isomorphic to a subgroup of A_{8} with the four group as an S_{2}-subgroup, and $\beta \in N_{G}\left(F_{2}\right)-C_{G}\left(F_{2}\right)$ by (4.3). Assume by way of contradiction that $b_{2} c_{1} \nsim z$ in G and so $b_{2} c_{1} \sim z_{1}$ in G. Then we have

$$
\left|\bar{F}_{2}\right|=\left[N_{G}\left(F_{2}\right): N_{H}\left(F_{2}\right)\right] \cdot\left[N_{H}\left(F_{2}\right): C_{H}\left(F_{2}\right)\right]=3 \cdot 4
$$

by (4.3) and so $N_{G}\left(F_{2}\right)=\left\langle c_{2}, b_{1}, \beta, C_{G}\left(F_{2}\right)\right\rangle$ and $z_{1} \in Z\left(N_{G}\left(F_{2}\right)\right)$. Denote
by T_{1} an S_{2}-subgroup of $C_{G}\left(b_{2} c_{1}\right)$ with $F_{2} \subset T_{1}$. Then we have $\left|T_{1}\right|=64$ and $T_{1} \subset N_{G}\left(F_{2}\right)$. Hence we get $Z\left(T_{1}\right)=\left\langle b_{2} c_{1}, z_{1}\right\rangle$. Since $b_{2} c_{1} \sim z_{1}$ by the assumption, we must have $b_{2} c_{1} z \sim z$. This is impossible since $b_{2} c_{1} \sim b_{2} c_{1} z_{1}$ in D.

We have proved that $b_{2} c_{1} \sim z$ in G. Since, by (4.3), β is of odd order and normalizes $F_{2},\left\langle b_{2}, z_{2}, z_{1}\right\rangle$ and $z_{1}^{\beta}=z_{1}, \beta$ must centralize an element of F_{2} $\left\langle b_{2}, z_{2}, z_{1}\right\rangle$. If β centralizes one of

$$
\left\{b_{2} c_{1}, b_{2} c_{1} z_{1}, b_{2} c_{1} z_{2}, b_{2} c_{1} z, c_{1} z, c_{1} z_{2}\right\}
$$

we have $\left(b_{2} c_{1}\right)^{\beta}=b_{2} c_{1}$ or $\left(b_{2} c_{1} z_{2}\right)^{\beta}=b_{2} c_{1} z_{2}$ or $\left(c_{1} z_{2}\right)^{\beta}=c_{1} z_{2}$. If $\left(b_{2} c_{1}\right)^{\beta}=b_{2} c_{1}$, we get $c_{1}^{\beta}=c_{1} z_{2}$ by (4.3). This is impossible because of (4.6). If $\left(b_{2} c_{1} z_{2}\right)^{\beta}=$ $b_{2} c_{1} z_{2}$, we get $c_{1}^{\beta}=b_{2} c_{1}$ which is impossible because of (4.6) and the fact that $b_{2} c_{1} \sim z$ in G. If $\left(c_{1} z_{2}\right)^{\beta}=c_{1} z_{2}$, we get $c_{1}^{\beta}=b_{2} c_{1} z_{2}$, whichis impossible. Hence β must centralize c_{1}. Analogously, by using (4.5) and (4.6), we get $b_{1}^{\gamma}=b_{1}$.
(4.10) Proof of (iv) of Theorem A. Put $Q=C_{G}\left(z_{1}\right)$. In order to apply Grün's first theorem, we shall compute

$$
W=\left\langle J \cap N_{Q}(J)^{\prime}, J \cap J^{\prime x} \mid x \in Q\right\rangle
$$

where $J=J(D)$. Since the automorphism group of J is 2 -group, we have $N_{Q}(J)=J C_{Q}(J)$ and so $J \cap N_{Q}(J)^{\prime}=J^{\prime}=\left\langle\begin{array}{lll}z_{1} & z_{2}\end{array}\right\rangle . \quad J$ has fifteen conjugate classes of involutions with the representatives $b_{1}, c_{1}, z_{1}, b_{2}, c_{2}, z_{2}$, $b_{1} z_{2}, c_{1} z_{2}, b_{1} b_{2}, c_{1} c_{2}, b_{1} c_{2}, b_{2} c_{1}, b_{2} z_{1}, c_{2} z_{1}$ and z. Then it is easy to see that, if $z^{x} \in J$ for some $x \in Q$, we must have

$$
z^{x} \in\left\{b_{2} z_{1}, b_{2} z, c_{2} z_{1}, c_{2} z, z\right\}
$$

by using (4.6) and (4.9). From this, it follows that $W \subset\left\langle z_{1}, z_{2}, b_{2}, c_{2}\right\rangle$. On the other hand, by (4.3) and (4.5) we have $\beta, \gamma \in Q$ and $z_{2}^{\beta}=b_{2}$ and $z_{2}^{\gamma}=$ c_{2}. This yields that $W \supset\left\langle z_{1}, z_{2}, b_{2}, c_{2}\right\rangle$ and so, $W=\left\langle z_{1}, z_{2}, b_{2}, c_{2}\right\rangle$. Hence by Grün's first theorem [3] there exists a normal subgroup M of Q with W as an S_{2}-subgroup. Since $W=\left\langle z_{1}\right\rangle \times\left\langle b_{2}, c_{2}\right\rangle$, a theorem of Gaschütz [2] yields that there exists a normal subgroup K_{1} of M such that $M=\left\langle z_{1}\right\rangle \times K_{1}$. Since β and γ are of odd order, we have $\beta, \gamma \in K_{1}$. Moreover, the fact that $z_{2}^{\beta}=b_{2}$ and $z_{2}^{\gamma}=c_{2}$ yields that $K_{1} \supset\left\langle b_{2}, c_{2}\right\rangle$ and K_{1} has one class of involutions, since $\left[Q: K_{1}\right]=8$ and so $\left\langle b_{2} \quad c_{2}\right\rangle$ is an S_{2}-subgroup of K_{1}. This completes the proof.
$(4.11)^{2}$ Proof of (i) of Theorem A. We may assume that G has no normal subgroup of odd order. Let G_{1} be a minimal normal subgroup of G. Then G_{1} is of even order and z is contained in G_{1}. Since $z \sim b_{1} z$ in G, we get $b_{1} z \in G_{1}$ and so $b_{1} \in G_{1}$. Since $b_{1} \sim z_{1}$ in G, we get $z_{1} \in G_{1}$. Hence all involutions of G are contained in G_{1}. This implies that $\left[G: G_{1}\right]$ is odd, since D is generated

[^2]by involutions. The minimality of G_{1} yields that G_{1} has no normal subgroup of odd index.

Moreover, G has no normal subgroup of index 2, because otherwise G would have a normal subgroup of index 2. The same argument applied to G_{1} yields that G_{1} is a simple group.
(4.12) Proof of (v) of Theorem A For an element x of $N_{G}(B)$ (resp. $N_{G}(C)$), we denote by \bar{x} the image by the canonical homomorphism of $N_{G}(B)$ (resp. $N_{G}(C)$) onto $N_{G}(B) / C_{G}(B)$ (resp. $\left.N_{G}(C) / C_{G}(C)\right)$. From (4.8), it follows that there exists an element γ^{\prime} in $N_{H}(C)$ such that

$$
c_{1}^{\gamma^{\prime}}=c_{1} z_{1}, \quad\left(c_{1} z_{1}\right)^{\gamma^{\prime}}=c_{2}, \quad \overline{b_{1} b_{2}} \bar{\gamma}^{\prime}=\bar{u}, \quad \bar{u}=\overline{u b_{1} b_{2}} \bar{\gamma}^{\prime} \quad \text { and } \quad \bar{\gamma}^{\prime \bar{b}_{1}}=\bar{\gamma}^{\prime-1}
$$

Let γ be an element defined in (4.5). From the actions of $x_{1}=\bar{b}_{1}, x_{2}=$ $\overline{b_{1} \gamma^{\prime}}, x_{3}=\overline{b_{2}}$ and $x_{4}=\overline{\gamma b_{2}}$ on C, it follows that x_{1}, x_{2}, x_{3} and x_{4} satisfy the relations

$$
x_{1}^{2}=x_{2}^{2}=x_{3}^{2}=x_{4}^{2}=1, \quad\left(x_{i} x_{i+1}\right)^{3}=1 \quad(i=1,2,3)
$$

and

$$
\left(x_{i} x_{j}\right)^{2}=1 \quad(|i-j|>1)
$$

This implies that $N_{G}(C) / C_{G}(C)$ is isomorphic to S_{5}, since

$$
\left[N_{G}(C): C_{G}(C)\right]=120
$$

by (4.6), (3.5) and (4.8).
If we have Case II, from (4.8) it follows that there exists an element β^{\prime} in $N_{H}(B)$ such that

$$
b_{1}^{\beta^{\prime}}=b_{1} z_{1}, \quad\left(b_{1} z_{1}\right)^{\beta^{\prime}}=b_{2}, \quad \overline{c_{1} c_{2}^{\bar{\beta}^{\prime}}}=\bar{u}, u^{\bar{\beta}^{\prime}}=\overline{u c_{1} c_{2}} \text { and } \bar{\beta}^{\prime \bar{c} 1}=\bar{\beta}^{\prime-1}
$$

By using an element β defined in (4.3), it follows that $N_{G}(B) / C_{G}(B)$ in Case II is isomorphic to S_{5}. If we have Case I, from (4.6), (3.5) and (4.8) it follows that $\left[\mathrm{N}_{G}(B): C_{G}(B)\right]=8.9$. An element β defined in (4.3) satisfies the relations $b_{1}^{\beta}=b_{1}, z_{1}^{\beta}=z_{1}, z_{2}^{\beta}=b_{2}$ and $b_{2}^{\beta}=b_{2} z_{2}$. In the same way as the construction of β, we get that there exists an element β^{\prime} in $N_{G}(B)$ such that $\beta^{\prime 3} \in C_{G}(B), b_{2}^{\beta^{\prime}}=b_{2}, b_{2}^{\beta^{\prime}}=z_{2}, z_{2}^{\beta^{\prime}}=b_{1}$ and $b_{2}^{\beta^{\prime}}=b_{1} z_{1}$. (Remark that we must use $z \sim b_{1} b_{2}$ in G.). Then from the action of $\bar{u}, \overline{c_{1} c_{2}}, \overline{c_{1}}, \bar{\beta}$ and $\bar{\beta}^{\prime}$ on B, it follows that $\left[\bar{\beta}, \bar{\beta}^{\prime}\right]=1$ and $\left\langle\bar{u}, \overline{c_{1} c_{2}}, \bar{c}_{1}\right\rangle$ normalizes $\left\langle\bar{\beta}, \bar{\beta}^{\prime}\right\rangle$. This implies that $N_{G}(B) / C_{G}(B)$ in Case I is isomorphic to a 3-Sylow normalizer of A_{8}.
(4.13) Lemma. There exists an element γ^{\prime} of $N_{G}(C)$ such that $\gamma^{\prime 3} \in C_{G}(C)$, $z \gamma^{\prime}=z, c_{1}^{\gamma^{\prime}}=c_{1} z_{1},\left(c_{1} z_{1}\right)^{\gamma^{\prime}}=c_{2}, b_{1} b_{2} \gamma^{\prime}=u$ and $u^{\gamma^{\prime}}=u b_{1} b_{2}$.

Proof. We know that D splits over C. It is easy to see that the complement of D over C is conjugate to $\left\langle u, b_{1} b_{2}, b_{1}\right\rangle$ or $\left\langle u, b_{1} b_{2}, b_{1} z\right\rangle$ in D. A theorem of Gaschütz [2] yields that the extension of $\mathrm{N}_{G}(C)$ over C splits. Let N be a complement of $N_{G}(C)$ over C. We may assume that

$$
N \supset\left\langle u, b_{1} b_{2}, b_{1}\right\rangle \text { or }\left\langle u, b_{1} b_{2}, b_{1} z\right\rangle
$$

In particular, we have $N \supset\left\langle u, b_{1} b_{2}\right\rangle$ in any case. On the other hand, we know that $C_{G}(C)=C \times U$ and $|U|=$ odd. Then we have $N \triangleright U$. From (4.7), it follows that there exists an element $\gamma^{\prime \prime}$ of N such that $\gamma^{\prime \prime 3}{ }_{\epsilon} C_{G}(C)$, $z^{\gamma \prime \prime}=z, c_{1}^{\gamma \prime \prime}=c_{1} z_{1}\left(c_{1} z_{1}\right)^{\gamma^{\prime \prime}}=c_{2},\left(b_{1} b_{2}\right)^{\gamma^{\prime \prime}} \equiv u \bmod U$ and $u^{\gamma \prime \prime} \equiv u b_{1} b_{2} \bmod$ U. Frattini argument yields

$$
\left\langle\gamma^{\prime \prime}, u, b, b_{2}\right\rangle U=N_{N}\left(\left\langle u, b_{1} b_{2}\right\rangle\right) \cdot U
$$

Then an element γ^{\prime} of $\gamma^{\prime \prime} U \cap N_{N}\left(\left\langle u, b_{1} b_{2}\right\rangle\right)$ satisfies the required properties.
Remark. The complement N of $N_{G}(C)$ over C must have a subgroup conjugate in G to $\left\langle u, b_{1} b_{2}, b_{1}\right\rangle$ as an S_{2}-subgroup. In fact, we may assume that

$$
N \supset\left\langle u, b_{1} b_{2}, b_{1}\right\rangle \text { or }\left\langle u, b_{1} b_{2}, b_{1} z\right\rangle
$$

If $N{ }_{3} b_{1} z$, the action of $\left(b_{1} z\right)^{-1}\left(b_{1} z\right)^{\gamma}$ on C is trivial and so $\left(b_{1} z\right)^{-1}\left(b_{1} z\right)^{\gamma} \in U$, where γ is an element defined in (4.5) (Remark that γ can be taken in N.) and U is the complement in $C_{G}(C)$ of C. However, we have $\left(b_{1} z\right)^{-1}\left(b_{1} z\right)^{\gamma}=$ $c_{2} z \epsilon U$, which is impossiblebecause of $|U|=$ odd. Similarly, the complement of $N_{G}(B)$ over B has a subgroup conjugate in G to $\left\langle u, c_{1} c_{2}, c_{1}\right\rangle$ as an S_{2}-subgroup.
(4.14) Proof of (iii) of Theorem A. Put

$$
W=\left\langle D \cap N_{H}(D)^{\prime}, D \cap D^{\prime x} \mid x \in H\right\rangle
$$

where $H=C_{G}(z)$. Then it is easy to see from (4.6) that W is contained in

$$
U=\left\langle z_{1}, z_{2}, b_{1} b_{2}, c_{1} c_{2}, u, b_{1} c_{2}\right\rangle
$$

Grün's first theorem yields that H has a normal subgroup M of index 2 with U as an S_{2}-subgroup. Put $\bar{M}=M /\langle z\rangle$. Then an S_{2}-subgroup of \bar{M} is isomorphic to a 2 -group of (1.3) by a mapping defined by

$$
x_{1} \leftrightarrow \overline{b_{1} b_{2}}, \quad x_{2} \leftrightarrow \bar{u}, \quad y_{1} \leftrightarrow \overline{b_{1} b_{2} z_{1}}, \quad y_{2} \leftrightarrow \overline{u a_{1} a_{2}} \quad \text { and } \quad w \leftrightarrow \overline{b_{1} c_{2}}
$$

where x_{i}, y_{i} and w are as in (1.3). Hence \bar{M} has a normal subgroup of index 2 with

$$
\left\langle\bar{z}_{1}, \overline{b_{1} b_{2}}, \overline{c_{1} c_{2}}, \bar{u}\right\rangle
$$

as an S_{2}-subgroup and so M has a normal subgroup K of index 2 with

$$
\left\langle z_{1}, z_{2}, b_{1} b_{2}, c_{1} c_{2}, u\right\rangle
$$

as an S_{2}-subgroup. The existence of an element γ^{\prime} in (4.13) yields that K has no normal subgroup of index 2.

5. A characterization of A_{11}

(5.0) In $\S 5$, we assume that G satisfies the following conditions:
(i) G has no normal subgroup of index 2, and
(ii) G contains an involution z_{0} such that $C_{G}\left(z_{0}\right)$ is isomorphic to the centralizer of an involution in the center of an S_{2}-subgroup of A_{11}.

Then G has an S_{2}-subgroup isomorphic to D. We may assume that $G \supset D$ and identify z_{0} with z. Then $H=C_{G}(z)$ is generated by D, γ^{\prime} and v subject to the following relations:

$$
\begin{gathered}
v^{3}=\gamma^{\prime 3}=1, \quad\left[v,\left\langle B, c_{1} c_{2}, u, \gamma^{\prime}\right\rangle\right]=1, \quad v^{c_{1}}=v^{-1} \\
b_{1}^{\gamma^{\prime}}=u, \quad u^{\gamma^{\prime}}=b_{1} b_{2}, \quad \gamma^{b_{1}}=\gamma^{\prime-1}, \quad c_{1}^{\gamma^{\prime}}=c_{1} z_{1}, \quad\left(c_{1} z_{1}\right)^{\gamma^{\prime}}=c_{2}
\end{gathered}
$$

Then we have $N_{H}(B)=D \cdot C_{H}(B)$ and $C_{H}(B)=B \times\langle v\rangle$. Hence we have Case I for the fusion of involutions of G by (4.8).
(5.1) Lemma.

$$
C_{G}\left(z_{1}\right)=\left(\left\langle b_{1}, z_{1}\right\rangle \times K_{1}\right)\left\langle c_{1}\right\rangle \quad K_{1}=\left\langle b_{2}, c_{2}, \beta, \gamma, v\right\rangle \cong A_{7}
$$

and $K_{1}\left\langle c_{1}\right\rangle=S_{7}$, where K_{1} is a subgroup of $C_{G}\left(z_{1}\right)$ defined in (4.10), and β and γ are elements defined in (4.3) and (4.5).

Proof. Put $Q=C_{G}\left(z_{1}\right)$ and $W=\left\langle b_{2}, c_{2}, \beta, \gamma, v\right\rangle$. From the structure of H, it follows that $C_{Q}\left(z_{2}\right)=C_{H}\left(z_{2}\right)=\langle J(D), v\rangle$. This yields $C_{K_{1}}\left(z_{2}\right)=$ $C_{W}\left(z_{2}\right)=\left\langle b_{2}, c_{2}, v\right\rangle$ which is isomorphic to $C_{A_{7}}\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)$). K_{1} and W have no normal subgroup of index 2 because of $z_{2}^{\beta}=b_{2}$ and $z_{2}^{\gamma}=c_{2}$. Then a theorem of Suzuki [6] yields that K_{1} and W are isomorphic to A_{7} respectively. Hence we get $K_{1}=\left\langle b_{2}, c_{2}, \beta, \gamma, v\right\rangle$. Then it is clear that $\left\langle b_{1}, z_{1}\right\rangle$ centralizes K_{1} because of (4.6) and (4.9). We shall show that $K_{1}\left\langle c_{1}\right\rangle \cong S_{7}$. Suppose false. Then c_{1} induces an inner automorphism of $K_{1} \cong A_{7}$ and so, there exists an element x of K_{1} of order 2 such that $\left[c_{1} x, K_{1}\right]=1$. Since
 On the other hand, we have $v^{c_{1}}=v^{-1}$ and so $v^{x}=v^{-1}$. This is a contradiction. Thus we have proved that $K_{1}\left\langle c_{1}\right\rangle \cong S_{7}$.
(5.2) Now the proof of Theorem B can be accomplished by using a theorem in [5], which is a generalization of W. J. Wong's theorem [8]. Let ρ be a mapping from
$C_{G}(z) \cup C_{G}\left(z_{1}\right) \quad$ onto

$$
C_{A_{11}}\left(\left(\begin{array}{ll}
1 & 2
\end{array}\right)(3 \quad 4)(5 \quad 6)(7 \quad 8)\right) \cup C_{A_{11}}\left(\left(\begin{array}{lll}
1 & 2
\end{array}\right)(3 \quad 4)\right)
$$

defined as follows:

$$
\begin{aligned}
& b_{1} \leftrightarrow(1 \quad 3)(2 \quad 4), \quad c_{1} \leftrightarrow\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
9 & 10
\end{array}\right), \\
& b_{2} \leftrightarrow\left(\begin{array}{ll}
5 & 7
\end{array}\right)\left(\begin{array}{ll}
6 & 8
\end{array}\right), \quad c_{2} \leftrightarrow\left(\begin{array}{ll}
5 & 6
\end{array}\right)\left(\begin{array}{ll}
9 & 10
\end{array}\right), \\
& u \leftrightarrow(1 \quad 5)(2 \quad 6)\left(\begin{array}{ll}
3 & 7
\end{array}\right)\left(\begin{array}{ll}
4 & 8
\end{array}\right), \quad \beta \leftrightarrow\left(\begin{array}{lll}
5 & 6 & 7
\end{array}\right), \\
& \gamma \leftrightarrow\left(\begin{array}{lll}
5 & 9 & 7
\end{array}\right)\left(\begin{array}{lll}
6 & 10 & 8
\end{array}\right), \quad v \leftrightarrow\left(\begin{array}{lll}
9 & 10 & 11
\end{array}\right), \\
& \gamma^{\prime} \leftrightarrow\left(\begin{array}{lll}
1 & 3 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 4 & 6
\end{array}\right) .
\end{aligned}
$$

Then from Lemma (5.1) it follows that ρ satisfies the condition of a theorem in [5]. Hence G is isomorphic to A_{11}.

References

1. R. Brauer, Some applications of the theory of blocks of characters of finite groups $I I$, J. Algebra, vol. 1 (1964), pp. 307-334.
2. W. Gaschütz, Zur Erweiterungtheorie der enlichen Gruppen, J. Reine Angew. Math., vol. 190 (1952), pp. 93-107.
3. J. Hall, Jr., The theory of groups, Macmillan, New York, 1959.
4. K. Harada, Finite groups with Sylow 2-subgroups of order $\leq 2^{5}$.
5. T. Kondo, On the alternating groups, J. Fac. Sci. Univ. Tokyo, vol. 15 (1968), pp. 87-97.
6. M. Suzuki, On finite groups containing an element of order four which commutes only with its powers, Illinois J. Math., vol. 3 (1959), pp. 255-271.
7. J. G. Thompson, Normal p-complements for finite groups, J. Algebra, vol. 1 (1964), pp. 43-46.
8. W. J. Wong, A characterization of the alternating group of degree eight, Proc. London Math. Soc. (3), vol. XIII (1963), pp. 359-383.

University of Tokyo

Tokyo, Japan

[^0]: Received September 22, 1967.

[^1]: ${ }^{1}$ This is due to K Harada (cf. [4, Lemma 5]). This lemma will be used only in the proof of Lemma (4.14).

[^2]: ${ }^{2}$ For the purpose of the proof of Theorem B, Lemmas (4.11)-(4.14) are not necessary. So the reader who is interested only in the characterization of A_{11} may omit the subsequent lemmas in §4.

