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Let G be a finite solvable group having Fitting height h (as defined in [7]
or in 1 below). Let H be a Carter subgroup of G and be the length of a
composition series of H. We shall establish the correctness of a conjecture
of John Thompson (at the end of [7] by proving that

(0.1) h_< 10(2- 1) 41.

This is the result of Theorem 8.5 below, and the rest of this paper is a proof
of that theorem.
The upper bound for h given by (0.1) is almost certainly too large. The

work of Shamash and Shult [6] leads one to coniecture that there is some
constant K such that

(0.2) h <_ Kl,

for all finite solvable groups G. The methods of this paper unfortunately
cannot give an upper bound whose order of magnitude is less than 2. This
is caused by our very naive approach. Essentially we choose a normal
subgroup P of prime order in H and a suitable chain A1, A of H-in-
variant sections of G. Obviously either P centralizes A1, ..., A Eh/21 or
there exists a subchain Ak, Ak+l, ..., A+Eh/21 such that P does not cen-
tralize Ak. In the latter case we construct (and this is the hard part of the
proof) an H-invariant chain D+., D+.+I, .-., Dk+[/l of sections of
A+., A+’+I, ..., A+[/. (respectively) such that j is bounded and P
centralizes each D. In either case we obtain a chain of length "almost"
hi2 of sections of G on which HIP acts, and which satisfies suitable axioms so
that the process can be repeated (using a normal subgroup of prime order in
HIP, etc.) Obviously no method based on this process can give an upper
bound smaller than 2.

There are many technical complications in the proof due to the difficulty
of handling the case [PI 3 (among other things). But basically it is a
straightforward application of the methods of Hall and Higman [3]. The
few new concepts which are used are grouped together in Sections 1, 2 and 3.
They are the notions of Fitting chains (which are the "correct" chains of
sections A1, A of G), of weak equivalence (which is used in place of
equivalence in Fitting chains because it is impossible to verify the latter after
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a complicated construction), of ample representations (which are just the
ones which are "good" in the Hall-ttigman theory) and of the class ( of groups
(which contains all the useful special groups and is closed under formation
of non-trivial sections). There is also something called an augmented Fitting
chain which was just introduced to handle the case P 3.
The titles of the sections indicate pretty well the outline of the argument.

1 is the obligatory list of notations. In 2 we introduce Fitting chains and
state the basic theorems we shall prove about them. In 3 we prove some
elementary facts about ample representations. In 4 we study closely a
certain situation of two steps in a chain in which a non-ample representation
appears. From this we conclude (in Theorem 4.20) that ample representa-
tions always appear in our chains after a bounded number of steps. Then we
show in 5 that, knowing we have ample representations in one step of our
chain, we can find "enough" ample representations at the next step. The
arguments here break down if [PI 3. But in that case we have an aug-
mented Fitting chain. In 6 we use the additional structure to find "enough"
ample representations when PI 3. In 7, we put the results of the pre-
ceding sections together, add a few new ones, and prove the basic theorems of
2. Finally in 8 we prove (0.1) from the established results of 2.

1. Notation
Let G be any finite group. We denote by
Z(G) the center of G,
G the derived group of G,
(G) the Frattini subgroup of G (i.e., the intersection of all maximal subgroups

of G),
F(G) the Fitting subgroup of G (i.e., the largest normal nilpotent subgroup

of G),
Aut(G) the automorphism group of G.
The Fitting series Fn(G), n 0, 1, 2, is defined inductively by

Fo(G) {1}

F,,(G) is the inverse image in G of F(G/F,_(G) ), for n >_ 1.

Evidently each F,(G) is a characteristic subgroup of G. If G is solvable,
then here is some integer h >_ 0 such that F(G) G. We call the least
such integer h the Fitting height of G and denote it by h(G).

If each S, i 1, ], is an element or a subset of G, then (S, S)
will denote the subgroup of G generated by S, S.

If , r e G, then we define

CTr --I
T 0"T

0" T 0" T (TT 0" 0".
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For any rl, r e G and any integers al, am, we define

alr ... -q--an-
O" (o’al)Vl(o’a2)v2 (o’an)TM, for all

-1+ for all, reG. Ifp, ,pro are also elements of GThus [, r]
and b, ..., bm are integers, then we define

O’(al’l"["""[’an’n) (blPlq-"’q-bmPm) [(TalVl-{-...--i-anvn]blPl+... +b,,p., for all (r e G.

Thus
[c, r, p] [[c, r], p] (-I+’)(-+P), for all (r, r, p e G.

Obviously this definition can be repeated to define sl...s,, where each f has
the form a rl + a r,, for some integers a, a and some ele-
ments rl, T Of G.

If A, B are two subgroups of G, then [A, B] will denote the subgroup gen-
erated by all [z, r], where z e A, r e B. We define [A, B], for all integers
n _> 0, by

[A, B] A, [A, B] [[A, B]n-l, B], for n > O.

Thus [A, B] [A, B, B] [[A, B], B].
By A _< G we mean "A is a subgroup of G" as opposed to A G, which

means "A is a subset of G". By A G we mean "A is a normal subgroup
of G".
A section of G is a factor group A/B where B A _< G. The section A/B

equals another section C/D if and only if A C and B D. A subgroup E
of G covers the section A/B if (E n A )B A and avoids A/B if E fl A E n B.

If G is solvable, then l(G) is defined to be the length of a composition series
of G. If we write the order GI as a product of (not necessarily distinct)
primes" G p p,, then l(G) 1.

If G is a non-trivial p-group, for some prime p, we write p p(G).
Let F be any field. We denote by F[G] the group algebra of G over F.

By an "F[G]-module", we understand a right F[G]-module on which the
identity of F[G] acts as the identity transformation and which is finite-di-
mensional as a vector space over F.

If V is an F[G]-module and H is any subgroup of G, then V will denote the
restriction of V to an F[H]-module. If U is any F[H]-module, then U will
denote the F[G]-module induced from U.
An F[G]-module V is trivial if G centralizes it. It is completely reducible

if it is a direct sum of irreducible F[G]-submodules. If G is relatively prime
to the characteristic of F, then every F[G]-module is completely reducible.

For any F[G]-module V, there exists some F[G]-composition series {0}
V0 < V < < V V. We call the composition factors V/V_,
i 1, ..., n, the irreducible F[G]-components of V. Of course, these irre-
ducible components are unique up to order and F[G]-isomorphism.
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An F[G]-module V is called primary if all of its irreducible F[G]-components
are isomorphic to each other.

If V is an F[G]-module and H is a subgroup of G, then
[V, H] is the F-subspace spanned by all v( 1 ), v e V, e H.
IV, H]= V.
[V, HI [IV, H]’-1, HI, for all n > O.
C,(H) is the F-subspace of all v e V such that w v for all e H.
Evidently [V, H], [V, H] and C(H) are all F[H]-submodules of V.
For any integer n >_ 1 and any F[G]-module V, we define the F[G]-module

nXVby"
n

nX V= V(R)...(R)V.

If V is any F[G]-module, then the dual F-vector space Hom(V, F) is
made into the dual F[G]-module by

(fa)(v) f(va-1), for all f e Hom(V, F), aeG, veV.

We say that two F[G]-modules V, U are wealcly F[G]-equivalent if each non-
trivial irreducible F[G]-component of V is F[G]-isomorphic to an irreducible
F[G]-component of U and vice versa, i.e., V, U have the same non-trivial
irreducible components with possibly different multiplicities. Obviously
weak F[G]-equivalence is aIl equivalence relation among F[G]-modules.
Furthermore, it satisfies"

(1.1) If U, V are wealcly F[G]-equivalent F[G]-modules and H

_
G, then

U V are weakly F[H]-equivalent.

Indeed, any non-trivial irreducible F[H]-component of U must be F[H]-
isomorphic to an F[H]-component of some non-trivial F[G]-component of U,
and hence to an F[H]-component of V. Statement (1.1) follows immediately
from this.

Another remark about weak equivalence has to do with field extensions"

(1.2) Let E be a finite algebraic extension field of F and U, V be weally
E[G]-equivalent E[G]-modules. Then U, V, considered as F[G]-moduIes, are
weatcly F[G]-equivalent.

Indeed, any non-trivial F[G]-component of U must be F[G]-isomorphic to an
F[G]-component of some non-trivial E[G]-component of U, and hence to an
F[G]-component of some E[G]-component of V. The statement follows
directly from this.
An action of a group K on a group G will be a homomorphism of K into

Aut (G). Since we seldom need consider two different actions of K on G,
we usually write "(K on G)" to denote that action of K on G which is being
considered at a given point in the argument. If z e K, then we write d for
the image of r G under the automorphism of G which is the image of z in
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Aut (G). We may always form the semidirect product KG in which be-
-1comes a ra, for all a e K, r e G. This enables us to define [G, K] and [G, K]

as usual. We may also define the centralizers Co(K) of K in G and CK(G)
of G in K. For the latter we usually use the alternative notation Ker (K on
G) CK(G), since it is the kernel of the representation of K on G given by
(K on G).
We denote the image of K in Aut (G) by Ka. Often we also consider Ka

to be the section K/Ker (K on G) of K. This identification seldom causes
confusion.

If G is an abelian group, we denote by G+ the group G written additively.
When G is an elementary abelian p-group (i.e., when G is abelian with prime
exponent p), we make G+ into a vector space over the field Zv of p elements
in the natural way. If another group K acts on G, then G+ becomes a Z [K]-
module.
Suppose a group K acts on a finite solvable group G. Then each K-composi-

tion factor A/B of G is an elementary abelian p-group, for some prime p.
So [A/B]+ is an irreducible Z [K]-module, which we call an irreducible com-
ponent of (K on G). If K also acts on another finite solvable group H, then
(K on G) and (K on H) are weakly equivalent if each nontrivial irreducible
component of (K on G) is K-isomorphic to an irreducible component of (K on
H) and vice versa. Obviously this is an equivalence relation among K-
groups. As in (1.1) we have

(1.3) If (K on G) is wealdy equivalent to (K on H) and L

_
K, then (L

on G) is weakly equivalent to L on H),

where, of course, the actions of L are restricted from those of K.

Suppose that a group K acts on a group G. A section A/B of G is K-in-
variant if both A and B are K-invariant subgroups of G. We also say that
"K normalizes A/B". In this case K acts naturally on the factor group A/B.
To say that a section C/D of K normalizes A/B means that C normalizes A/B
and D

_
Ker (C on A/B). Then C/D acts naturally on A/B.

Let a group K act on a group G and another group L act on both K and G.
We say that (K on G) is L-invariant if () (aP)P, for all a e G, r e K, p e L.
In that case we may form the "triple semi-direct product" LKG.

If K acts on G and L acts on K, then (K on G) is weakly L-invariant if the
actions (K on G) and (K on G), the latter given by

r-+(KonG)(r-1) for - eK,are weakly equivalent for all a e L. We define weak L-invariance similarly
for F[K]-modules V over any field F, using weak F[K]-equivalence.
We define Ct to be the family of all finite groups A satisfying"

(1.4a)
(1.45)

A is a non-trivial p-group, for some prime p.
(A) <_ Z(A).
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(1.4c) ((A)) {1}.
(1.4d) If p is odd, then A has exponent p.

Evidently all special groups A (in the sense of [3]) lie in a provided they are
non-trivial and satisfy (lAd). However a obviously has the following
important property which special groups lack"

(1.5) Any non-trivial section B/C of a group A e ( also lies in (.

If A e a, we define 2: to be the Z(A)-vector space [A/(A )]+. It follows
easily from (1.4b) that the map fA defined by

(1.6) ((A ), r)(A

is an alternating, bilinear map of fi X 2: into (A )+ (note that (A)+ is
also a Z()-vector space by (1.4c)). It is clear from (1.6) that the radical
of f (i.e., the set of all e 2: such that f(a, 2: {0} is precisely
[Z(A)/(A)]+.

2. Fitting chains

The simplest way of thinking about the Fitting height of a finite solvable
group G is to consider chains A1, As of sections of G satisfying the fol-
lowing conditions"

(2.1a) Each A i 1, t, is a non-trivial p-group, for some prime p
(2.1b) At normalizes A+l for i 1, 1.
(2.1c) Ker(AtonA+l) {1},fori= 1, ...,t- 1.
(2.1d) p p+lfor i 1,...,t- 1.

It is easy to verify that the Fitting height h(G) is merely the maximum of the
lengths of all such chains of sections of G (see Lemma 8.2 below for part of
the argument).
The basic idea behind our proof of Thompson’s conjecture is that one

should forget about the group G and consider only chains A1, ..., As of
groups, each acting on the next, which satisfy axioms similar to (2.1). From
this point of view the Carter subgroup H of G becomes a group outside the
chain acting on each A and leaving invariant each action (A on A+).
Under certain conditions, which Carter subgroups and appropriate chains of
sections of G can be shown to satisfy, we prove that the length of such
chain must be bounded as a function of l(H).
To make this program more explicit, we first consider the axioms which our

chains A1, A must satisfy. Obviously we want the groups A to have
as uncomplicated a structure as possible. The Hall-Higman theory suggests
that we take them to be special. However, the class of special groups is no
closed under subgroups and epimorphic images, which makes it awkward to
use in complicated constructions. So we choose the At instead from the class
a, which does have the desired closure properties by (1.5) and contains enough
special groups for our purposes.
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A little experimentation soon demonstrates that we cannot allow the ac-
tions (Ai-1 on A) and (A on At+l) to be completely independent of each
other. It is tempting to make the representation (Ai on Ai+l) invariant
under At-1. However, in practice this condition is much too difficult to
verify after a construction. So we only insist that (A on A+I) be weakly
At_l-invariant, which turns out to be sufficient in general to establish what we
need.
Another axiom suggested by the Hall-Higman theory is that A centralize
(Ail). This condition turns out to be vital in many of our proofs.
Combining the above ideas, we define a Fitting chain to consist of groups

A1, ,A and actions (At onA;+l), for/= 1, 1, satisfying"

(2.2a) A e (, for i 1, t.
(2.25) p(At) p(A+l), for i 1, 1.
(2.2c) [(At+I),A] I1},fori- 1, ...,t- 1.
(2.2d) Ker(AtonA/l) {1},fori- 1, ...,t- 1.
(2.2e) (A;+I on A-2 is weatcly At-invariant, for i 1, 2.

Usually we speak of "the Fitting chain A, ..., At" leaving the actions
(Ai on A+) to be understood.
Suppose that A1, At is a Fitting chain and that D is a section of A,

for i 1, t. If the action of At on A+ induces an action of D on D+,
for i 1, 1, and if these actions make D1, D, a Fitting chain,
we say that D1, D, is a Fitting subchain of A1, A,. Notice that
some of the axioms (2.2) for D1, D, are free by

Proposition 2.3. Let A1, At be a Fitting chain. Then sections D of
A for : 1, t, will form a Fitting subchain if and only if they satisfy"

1}.
(2.4b) D normalizes Dr+l, for i 1, 1.
(2.4c) Ker(DonDtl) {1}fori 1, 1.
(2.4d) (Dt+ on D+2) is weatdy D-invariant, for i 1, 2.

Proof. If D1, D is a Fitting subchain it certainly satisfies (2.4) by
(2.2) and (1.4a).

Conversely, suppose that D1, D satisfies (2.4). Then (2.2a) and
(2.4a) imply D1 e a, by (1.5). Suppose we know that Dte a, for some
i 1, ..., 1. ThenDt {1}, by (1.4a). So (2.4b, c) imply that
Dt+l {1}. Since Dt+l is a section of A+, this, (1.5), and (2.2a) give
DI e a. By induction, (2.2a) holds for D1, Dr.

Clearly p(D) p(A) and p(Di+) p(Aql). Therefore (2.2b) for
A1, At implies (2.2b) for D, Dr.

Because At centralizes (I,(At+) (by (2.2c)), so does Dr. If D+I ElF,
then it follows that D centralizes (E) _< E n (Ai+l). Since (D+) is
the image in Di+l of )(E), it is centralized by Dr. So (2.2c) holds for

,D.
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Finally (2.2d, e) for D1, D are just (2.4c, d). Therefore (2.2) holds
for D, D, which proves the proposition.
We say that group H acts on a Fitting chain A, A if H acts on

each group A, i 1, t, leaving invariant each action (A on A+), for
1, 1. A Fitting subchain D1, D is then H-invariant if

each D, i 1, t, is an H-invariant section of A;. In that case H
clearly acts on the Fitting chain D, D in the natural manner.
The first two of our three basic theorems concern the situation in which

2.5 A group H acts on a Fitting chain A A
(2.5b) H has a normal subgroup P of prime order p,
(2.5c) [A1, P] {1}.

The theorems, whose proofs will follow later (see 7), are"

THEOREM 2.6. If > 3 and p does not divide y[= A I, then there exists
an H-invariant Fitting subchain Da Da Dt of Aa At such that P
centralizes each D i 3, t.

THEOREM 2.7. If > 4 and p > 5, then there exists an H-invariant Fitting
subchain D, D, ..., D of A, ..., At such that P centralizes each D,
i=4,...,t.

Assuming these two theorems, we now prove

THEOREM 2.8. Let H be a finite group acting on a Fitting chain A A
such that no non-trivial section of any A, i 1, t, is centralized by H
Assume further that H is a supersolvable group whose order is not divisible by 6

Proof. We use induction on l(H). If l(H) 0, then H {1}. Since
no non-trivial section of any A, i 1, t, is centralized by H, each A
must be 1}. By (2.2a) and (1.4a), this implies that 0 3(20 1 ).
So the theorem is true in this case.
Now suppose that l(H) > 0 and that the theorem is true for all smaller

values of (H). Since H is supersolvable it has a normal subgroup P whose
order is the largest prime p dividing H (see Theorem VI, 9.1 of [4]).
Suppose that P centralizes A, A,, for some integer s 1, t.

Then HIP acts on the Fitting chain A, .-., A,. Obviously HIP, and
A, ..., A,, satisfy all the hypotheses of the theorem with l(H/P)

1. So induction tells us that s _< 3(2- 1 ).
If _< 3(2- 1) A- 3, then

_< 3(2-1- 1) A- 3 -4- 3(2-- 1) 3(2- 1)

and the theorem is true. So assume that > 3(2t- 1) -t- 3. The argu-
ment of the preceding paragraph gives us an integer

s 1,2, ...,3(2-- 1)-4- 1

such that P does not centralize A. Furthermore, the length s + 1 of
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the Fitting chain A8, A8+1, At is at least

[3(2- ) + 4] [3(2’- )

If p >_ 5, then Theorem 2.7 applied to H, P and A,, At gives us an
H-invariant Fitting subchain D8-3, D,+4, Dt of A8+3, At which is
centralized by P. Evidently H/P, and D,+3, ..., Dt, satisfy the hypoth-
eses of the theorem with l(H/P) 1. So induction tells us that

Hence
t- (s+3) - 1

_
3(2-1- 1).

t_ s+3(2-’- 1) + 2_
[3(2-- 1) 4- 1] + 3(2l-1- 1) - 2 3(2- 1),

and the theorem is true in this case.
If p 2 or 3, then H is a p-group. Because H centralizes no non-trivial

section of the p(A)-group Ai, for i 1, ..-, t, the primes p and p(A)
must be distinct. Hence Theorem 2.6 applies to H, P, and As, At,
giving us an H-invariant Fitting subchain D+2, D,+, ..., Dt of
A,, At which is centralized by P. By induction

t- (s + 2) + 1

_
3(21-’- 1).

Sot

_
s-[- 3(2-1- 1) - 1 < 3(2- 1), which finishes the proof of the

theorem.
The second sentence of Theorem 2.8 looks very suspicious. It seems

reasonable to make the

CONJECTURE 2.9. There is a function g from the non-negative integers into
themselves such that

_
g(l(H) whenever a finite group H acts on a Fitting

chain A A and centralizes no non-trivial section of any A i 1, t.
One might even hope that g can be chosen so that g(1) O(1) as -- .By an example which is too complicated to give here I cn show that
Theorem 2.7 does not hold for p 3. So we are forced to consider more
complicated chains of groups in order to prove Thompson’s conjecture by
this method when HI is divisible by 6. The idea is to make the connection
between (A on A+) and (A+ on A+) stronger when p(Ai+) 3 and to
leave everything else alone.
We define an augmented Fitting chain to be a Fitting chain A1, -.., At

together with certain additional groups, actions, and epimorphisms. We
say that an index i 1, is relevant if 1 <: i

_
2 and p(A+) 3.

For each relevant index i, we have an additional group B, an action of B
on A+, and an epimorphism v of Bi onto A (which defines an action of
B on A.+ via (A on A+)) satisfying"

(2.10a) B is a p(A)-group.
(2.10b) (A/+I on A,+2) is Bi-invariant.
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(2.10c) If i

_
3 then (A+2 on A+a) is weatdy Bi-invariant.

We usually write "the augmented Fitting chain A1, At, {B}" leaving
the actions and the epimorphisms v to be understood.

Suppose that A1, ..-, A {B} is an augmenCed Fitting chain, that
D1, D is a Fitting subchain of A1, At, and that C is a section of
B, for each relevant i. If w induces an epimorphism of C onto D and C
normalizes Di+. for each relevant i, and if D1, ..., Dr, {C} with these
epimorphisms and actions form an augmented Fitting chain, then we call
DI, Dr, {C} an augmented Fitting subchain of A1, At, {Bi}. As in
Proposition 2.3, we need not verify all the properties of D1, Dr, {C}.
PROPOSITION 2.11. Let A At, IBi} be an augmented Fitting chain,

Dj be a section of A for j 1, t, and C be a section ofB for all relevant
i. Then D Dr, {C} form an augmented Fitting subchain if and only if
they satisfy:

(2.12a)
(2.12b)
(2.12c)
(2.12d)
(2.12e)
(2.12f)

D {1}.
D normalizes D.+, for j 1, 1.

v induces an epimorphism of C onto D for all relevant i.
C normalizes D_ for all relevant i.
Ker(DonD-+l) {1},forj 1, 1.
(D+I on Di_) is weakly D-invariant, if i 1, 2 and

p(A_) 3.
(2.12g) (D+: on D+a) is weakly C-invariant for all relevant i < 3.

Proof. It is clear that (2.12) holds whenever D, ..., D,, {C} is an
augmented Fitting subchain.
Suppose that (2.12) holds. We have enough groups, epimorphisms, and

actions to form an augmented Fitting subchain D, ..., Dr, {C}. So we
need only check the various axioms.

Let i 1, 2 with p(A+) 3. The B-invariance of (A+I on
A2), together with (2.12c, d), implies that (D+ on D+2) is C-invariant.
So (2.10b) holds for our subchain. Since D+ centralizes (D+2) by (2.2c),
this clearly implies that (D+I on D+2) is weakly D-invariant. So (2.12f)
is satisfied for all i 1, 2. This and (2.12a, b, e) are conditions
(2.4). Therefore D, ..., D is a Fitting subchain by Proposition 2.3.
Obviously p(C) p(Bi) p(A) p(D), for all relevant i. And (2.12g)
is (2.10c) for the subchain. Hence D, Dr, {C} satisfies (2.10) and
the proposition is true.
A group H acts on an augmented Fitting chain A1, At, {B} if it acts

on each group A., j 1, t, and on B, for each relevant i, so that all
the actions and epimorphisms of the chain are H-invariant. An augmented
Fitting subchain D1, ..., Dr, {C} is then H-invariant if each D., j
1, t, and C, for each relevant i, is an H-invariant section. In that case
H acts on the augmented Fitting chain D, ..., Dr, {C} in the natural
manner.
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The third basic theorem, whose proof will follow later (see 7) is

THEOREM 2.13. Let H be a group acting on an augmented Fitting chain
A1, A, {Bi}. Suppose that P is a normal subgroup of order 3 in H such
that [A1, P] /1}. If >_ 6, then there is an H-invariant augmented Fitting
subchain D6 D {C} of A6 At, {B} such that P centralizes each
Dj and Ci

Assuming the three Theorems 2.6, 2.7 and 2.13, we now prove the following
result from which we shall later derive a proof of Thomson’s conjecture (see
8).
THEOREM 2.14. Let a finite group H act on an augmented Fitting chain

A i, At, {Bi} 80 that H centralizes no non-trivial section of any Ai, j
1, t. Assume further that H is a supersolvable group with a normal 3-
Sylow subgroup M. Then

_
5(2(") 1).

Proof. We use induction on M [. If M[ 1, then H and
A1, At satisfy the hypotheses of Theorem 2.8. That theorem tells us
thatt_ 3(2(s) 1)

_
5(2(s) 1). So this theorem is true iflM[ 1.

Now we assume that M ) 1 and that this theorem is true for all smaller
values of M I. Since H is supersolvable it has a normal subgroup P of prime
order p. We may even choose P to be contained in the normal 3-Sylow sub-
groupMofH. Sop 3.
Suppose that P centralizes A1, As, for some integer s 1, t.

If p(Ai+l) 3, for some i 1, s 2, then the P-invariance of (B on
A+2), together with the fact that P centralizes A+2, implies that [B, P]
centralizes Ai+:. Furthermore, the facts that P centralizes v(B) A
and leaves w invariant imply that vi([B, P]) {1}. So there is a natural
action of B/[B, P] on A+2 and a natural epimorphism of B/[B, P] onto A.
Since P is normal in H, the subgroup [Bi, P] is H-invariant. Hence so are the
action (B/[B, P] on A+:) and the epimorphism of Bi/[Bi, P] onto A.
It follows that A1, As, {B/[B, P]} is an augmented Fitting chain on
which H/P acts. Since H/P, M/P and At, As, {Bi/[B P]} satisfy
our hypothesis with M/P] < M [, we know by induction that s

_
5(2-- 1), where/= l(H) l(U/P) -- 1.

If

_
5(2-1 1) + 5, the theorem is certainly true. So assume that

> 5(2-1 1) -t- 5. The preceding paragraph proves that there exists an
s 1, 5(2- 1) + 1 such that P does not centralize A,. The length

s + 1 of the augmented Fitting chain As, As/l, A, {B} is at least

[5(2- 1) + 6] [5(2- 1) + 1] + 1 6.

So Theorem 2.13 gives us an augmented Fitting subchainD+,D+, D,
{CI of A+, A, {B} such that P centralizes each Dj and C. Apply-
ing the present theorem by induction to HIP, M/P and D,+, ..., D,
{C}, we see that

t- (s + 5) -[- 1 _< 5(2-1- 1).
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Hence

t_< (s+5)-- 1+5(2- -1) _< 5(2--1)-6- 1+5(2-- 1)

5(2’-- 1).
This completes the proof of the theorem.

3. Ample representations
We begin with some elementary observations bout the situation in which

(3.1a) PA is the semi-direct product of a group P of prime order p acting
on a group A (,

(3.1b) F is a field of prime characteristic q p(A which is a splitting field
for all subgroups of PA,

(3. lc) V is an irreducible F[PA ]-module.

The first observation is

1)ROIOSITION 3.2. If (3.1) holds and [Z(A), P] {1}, then V is induced
from an irreducible F[A]-module U.

Proof. Apply Clifford’s theorem (see Theorem V, 17.3 of [4]) to V and
the inverse image B of Z(A ;,) in A. Since F is splitting field for B and
B;, Z(A ;,) is abelian, there is linear F-character }, of B and an irreducible
F[C2(h)]-module U such that V is induced from U and any e B acts on
U as scalar multiplication by k(a) e F. Because A centralizes B, it fixes
),. By (3.1u), A is maximal in PA. Therefore Ce(},) is either A or PA.
The latter possibility implies that U V and that P centralizes B/Ker h

B Z(A), contradicting our hypotheses. Hence C2() A nd the
proposition is true.

COnOLAnY 3.3. Let C C(P). Then both C.(P) and [V, P]- are
non-zero F[C]-submodules of V. Furthermore, both of them are wealcly F[C]-
equivalent to V.

Proof. From V U we conclude that Vec is F[P X C]-isomorphic to
the outer Kronecker product F[P] (R) Uc of the regular F[P]-module with Uc.
We always have Ce(P) {0} and [F[P], P]- {0}. It follows that both

C,(P) C(P) (R) Vc nd [V, P]- ---[F[P], P]- (R) Uc
are non-zero, and that ll of Vc, C;,(P), [V, P]- are multiples of Uv as
F[C]-modules. So they are weakly F[C]-equivalent to each other, which
proves the corollary.

Another observation which we shall use repeatedly is

1)ROPOSITON 3.4. Suppose that (3.1) holds, that p p(A ), and that P
centralizes Z(A ,) but not A ,. Then [A ,, P] is an extra-special group and
$([A, P]) $(A) is centralized by P. The group PA . is the central product
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of its subgroups P[A, P] and Cv(P), which intersect in (A ). Regarding
PA v. as the natural image of P[A, P] X C.(P), the module V is the outer
Kroneclcer product W (R) U of an irreducible F[P[A, P]]-module W and an
irreducible F[C,v.(P)]-module U. Furthermore ([Av, P] on W) is faithful.

Proof. Our hypotheses insure that A v is not abelian. So (1.5) tells us
that A e it. Since P centralizes Z(A ,), it centralizes (A v) (by lab)),
which is non-trivial since it contains A. Therefore (A) <_ Z(PA ).
Because V is an irreducible F[PA]-module on which (A) is faithfully
represented, this implies that ,I(A) is cyclic. Hence (A) has order
p(A p(A) by (1.4c).

From p p(A ) and [A, P] {1} we conclude that

fly [{v, P] @ Cxv(P) and [fi-v, P] {0}.

Since P centralizes (A v) and leaves the form fx v of 1.6 invariant, the two
subspaces [/iv, P] and Cx(P) of fi_ must be fAv-perpendicular. Therefore
A v is the central product of the inverse images L of [A, P] and K of Cx(P)
with L n K (Av).
The radical [Z(A)/(A)]+ of fay is contained in Cxv(P) by hypothesis.

So the restriction offa to [/iv, P] X [A[, P] is non-singular. Since 4(A)
is cyclic of order p(A and [A[, P] # {0}, we conclude that L is extra-special
with (L) (A). Obviously L contains [A , P]. But [A , P] covers
L --- [/i v, P]. Therefore L [A v, P] and the first statement of the proposi-
tion is true.

Since p p(A) and P centralizes both (A) and K/(A) Cxv(P)
the group P centralizes K. It follows that K Cav(P ). So A is the
central product of [Av, P] and Car(P). Because P normalizes [A v, P] and
centralizes Ca.(P), the second statement of the proposition follows directly
from this.
The third statement of the proposition comes immediately from the second,

since F is a splitting field for all the groups involved. Finally, any
e[A,P] {1} acts non-trivially on W since X 1 P[A, P] X Cv(P)

has the image e PAv which acts non-trivially on V. So the entire propo-
sition is true.
The following fact is well known (see [3] or Theorem (IV.9) of [2])-

(3.5) Under the hypotheses of Proposition 3.4, there is a regular F[P]-
submodule of Wv unless p is a Fermat prime, p(A 2, and [i, P] - [A P]
is an irreducible Z. [P]-module.

We use this to prove the following corollary to Proposition 3.4.

CottosAltV 3.6. Let C C(P). Unless p is a Fermal prime, p(A 2,
and [flv., P] is an irreducible Z, [P]-module, the subspaces C,(P) and [V, P]’-
are both non-zero F[C]-submodules of V and are both weakly F[C]-equivalent to V.
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Proof. Assume we are not in the exceptional case. Then (3.5) gives us
an F[P]-submodule of We isomorphic to F[P]. Clearly C, <_ Ca,(P). So
the proposition tells us that Vec is F[P >< C]-isomorphic to the outer Kro-
necker product We (R) Uc, which contains a submodule isomorphic to F[P] (R)

Uc. Since neither CFEe1(P)nor [F[P], p]-i is 10}, we conclude that
C,(P --- C,(P (R) Uc and [V, P]-I --- [W, pip-1 (R) Uc are both non-zero.
Furthermore all the modules Vc, Cv(P)c, and (IV, P]P-i)c are isomorphic
to positive multiples of Uc, and hence are weakly F[C]-equivalent to each
other. So the corollary is true.

When p p(A ), we use a different approach to get a result similar to
Corollary 3.6.

PROPOSITION 3.7. Suppose that (3.1)holds with p p (A >_ 3 and
[Av, P]’- 11}. Let C C,e,-(P). Then C,(P) is a non-zero F[C]-
submodule of V and is weakly F[C]-equivalent to V.

Proof. If [Z(A ), P] {1}, the result follows immediately from (1.1)
and Corollary 3.3, since C C(P). So we may assume that [Z(A), P]
{1}.

Under this assumption we first prove that

(3.8) [Av-, P]-

_
Z([A ,, P]-).

For this it suffices by (1.6) to show that

fv([, P]’-, [ r, P]’-) {0}.

But [A: , P] fi_ (r 1 ), for all n

_
0, where r is any generator of P.

If a, e fi_ , we use p _> 3 and the fact that P centralizes fv(fi_ , 2: v)
Z(A,)+ to compute

f,v(a(r 1)p-l, (71- 1)’-) f,v(a(r 1 )’-:(-: : ), ( 1

fa a( 1 "r-:, 1 )’-a ).

But A is a vector space over a field Z, of characteristic p p(A ). So
a( 1) (" 1) 0. Therefore (3.8) holds.

Let U be any non-trivial irreducible F[C]-submodule of V. Since
C <_ [A, P]’-:, there exists some irreducible F[[A, P]’-]-submodule W of V
containing an F[C]-submodule isomorphic to U. So we may assume that
U _< W. Since C is non-trivial on U, it is non-trivial on W. Therefore

Ker ([A, p]p-i on W) < [A,

So there must exist some element a e [A, P]’- and some r e P such that

p],-[, r] e [A, P]-I Ker ([A v, o W).

It follows from (3.8) that (a, [A , p],-1) is a P-invariant abelian subgroup of
A. Let B be its inverse image in A. Then [A, P]’- _< B. So there is
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some irreducible F[PB]-submodule Y of V containing an F[[A, P]-l]-sub-
module isomorphic to W. As before, we may assume that W _< Y. Clearly
By is a homomorphic image of B (z, [A , p]-l} and hence is abelian. If
P centralized By, then [z, r] would lie in Ker (Bv on Y), contradicting the
fact that [, r] acts nontrivially on W _< Y. Hence [By, P] {ll. So
Corollary 3.3 applies to PB and Y. It tells us that Y and Cy(P) are weakly
F[CB(P)]-equivalent. Since C <_ CB(P), the modules Y and Cy(P) are
weakly F[C]-equivalent (by (1.1)). Hence there is an irreducible F[C]-sub-
module of Cy(P) <_ C,(P) which is isomorphic to the non-trivial F[C]-
submodule U of Y.
We have shown that any non-trivial irreducible F[C]-submodule U of V

is F[C]-isomorphic to a submodule of C(P). The converse being obvious,
this proves that C,(P) and V are weakly F[C]-equivalent.
By hypothesis there exists a non-trivial irreducible F[[A, P]-l]-submodule
W of V. Constructing B and Y as above we see from Corollary 3.3 that
Cy (P) {0}. So C (P) {0} and the proposition is proved.

In practice we must consider modules over fields which need not satisfy
(3.1b). A simple ground field extension quickly reduces this more general
case to the one we have been considering.
Suppose that (3.1a) holds, that E is any field of prime characteristic

q p(A ), and that V is any irreducible E[PA]-module. We call V ample if
one of the following conditions holds:

(3.9a) p p(A)and [Z(A), P]
(3.9b) p p(A),[Z(A),P] {1},[A,P] {1} and we are not in the

exceptional case in which p(A 2, p is a Fermat prime, and [,, P] is an
irreducible Z2 [P]-module.

(3.9c) p p(A) >_ 3and [A P]’-

These are, of course, iust the hypotheses of Corollaries 3.3 and 3.6 and Prop-
osition 3.7 made into axioms. From these results we easily prove

PROPOSiTiON 3.10. Let V be an ample irreducible E[PA]-module. Let C
be C(P), if p p(A ), or Ct,-(P), if p p(A ). Then C,(P) is a
non-zero E[C]-submodule of V and is wealcly E[C]-equivalent to V. Ifp p(A ),
then [V, P]’- is also a non-zero E[C]-submodule of V weakly E[C]-equivalent to V.

Proof. Since PA has only a finite number of subgroups, we may choose a
finite algebraic extension field F of E so that it is a splitting field for all sub-
groups of PA. Let U be an irreducible F[PA]-submodule of the extension
F (R) V of V to an F[PA]-module. Clearly F (R) V, considered as a module
over E[PA], is isomorphic to [F:E] X V. Since V is an irreducible E[PA]-
module, we conclude that the restriction U of U to an E[PA]-module satisfies

(3.11) U n X V (as E[PA]-modules

for some positive integer n.
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Ifp p(A ), let Z Cv(P) or [V, P]P-1. Ifp p(A ), let Z C,(P).
We must prove that Z is a non-zero E[C]-submodule of V weakly E[C]-
equivalent to V. Let Y Cv(P), if Z C(P), and Y [U, p]p-1, if
Z [V, p],-1. Evidently the isomorphism (3.11) always carries Y onto
n X Z. Therefore it suffices to prove that Y is a non-zero F[C]-submodule of
U weakly E[C]-equivalent to UE --- n X V.
One conclusion from (3.11) is that Ker (PA on U) Ker (PA on V).

Hence A v A, as factor groups of A. Therefore PA, F, and U satisfy the
hypotheses of Corollary 3.3 or Corollary 3.6 or Proposition 3.7, if (3.9a) or
(3.9b) or (3.9c), respectively, hold. The fact that V is ample says that one
of (3.9a, b, c) is satisfied. So the cited results tell us that Y is a non-zero
F[C]-submodule of U which is weakly F[C]-equivalent to U. Since the weak
F[C]-equivalence of Y and U implies their weak E[C]-equivalence by (1.2),
the proposition is proved.

COnOLLAaV 3.12. If V is an irreducible E[PA]-module, [Z(A), P] /1},
and [A, P] - 1}, then [A , P] is an extra-special group, ([A, P]) (A v)
is centralized by P, and PA , is the central product of P[A ,, P] and CA,(P)
which intersect in (A).

Proof. Apply the first paragraph of the above argument to V. Then
(3.11) implies that A v Av. Since F, PA and U satisfy (3.1), Proposition
3.4 applies to them, giving this corollary.

The following proposition sometimes helps to prove a module ample. As
before, (3.1a) holds, E is any field of prime characteristic q p(A ), and V
is any irreducible E[PA]-module. Let B be some non-trivial P-invariant
subgroup of A. Then PB also satisfies (3. la) (by (1.5) ).

PROPOSITION 3.13. Suppose there is an ample irreducible E[PB]-component
W of V. Then V is an ample E[PA]-module.

Proof. Since W is a component of V, the factor group Bw is naturally a
section of A v.

Suppose that p p(A ). Because p p(B) and W is ample, (3.9c) must
hold for P and Bw. Therefore p :> 3 and [B, p]-i {1}. Since B is
a section of A v, this implies that [A v, p]-I {1}. So (3.9c) holds for P
and A v. I.e., V is ample.
Suppose that p p(A and that V is not ample. Since W is ample,

[B, P] is not 1}. BecauseB is a section of A, this implies that [A, P]
{1}. Neither (3.9a) nor (3.9b) can hold for PA,. So [Av, P] {1} forces
PA to lie in the exceptional case of (3.9b).
From (3.9b) and Corollary 3.12 we know that p(A 2, that p is a Fermat

prime, that [A, P] is extra-special with ([A v, P]) centralized by PA ,,
and that lay, P] --- [fi v, P] is an irreducible Z. [P]-module. It follows that
[A v, P] is the only non-trivial subgroup D of A v satisfying D [D, P].
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But [Bw, P] {1} implies [Bv, P] {1}. Since p p(A) p(B,), we
have [IBm, P], P] [B, P]. Therefore [B, P] [A, P].
The subgroup ([A v, P]) ([B, P]) is central in PA , and is a non-

trivial subgroup of A. Since V is an irreducible E[PA,]-module, this
implies that [V, ([Av, P])] V. It follows that [W, ([B, P])] W.
Because [Bv, P] [A, P] is extra-special, ([B, P]) is its center and has
prime order p(B) 2. It follows that Ker ([B, P] on W) {1}. I.e.,
[Bw, P] [Bv, P] as sections of B. Therefore [Bw, P] is extra-special, with
([B, P]) centralized by P, and [Bw, P] is an irreducible Z [P]-module.
Since p(B) 2 p, we have [Z(B), P, P] [Z(B), P]. But

[Z(Bw), P] Z(Bw) n [Bw, P] Z([B, P]) I,([B, P]).

The last group is centralized by P. Therefore [Z(B), P] {1}. Now we
know that p(B) p(A 2, that p is a Fermat prime, that P centralizes
Z(B) but not B, and that [/, P] __-[B, P] is an irreducible Z [P]-
module, i.e. PBw lies in the exceptional case of (3.9b). This contradicts the
hypothesis that W is ample. The contradiction proves that V is ample in
all cases, which is the proposition.

Let E and PA be as above. Now, however, we take V to be an arbitrary
finite-dimensional E[PA]-module. Since the characteristic of E is different
from p(A ), the restriction VA of V to an E[A]-module is completely reducible.
Let : (V) be the family of all kernels Ker (A on W), where W runs over
all irreducible E[A]-components of VA. For each K e y:, let V(K) be the
sum of all those irreducible E[A]-submodules W of V such that Ker (A on
W) K. Then the complete reducibility of V implies that

(3.14a) V(K) is a non-trivial E[A]-submodule of V, for each K e ,
(3.145) Y @ V(K).

g.If K is any normal subgroup of A, let K(P) n.,. Then K(P) is
the largest normal subgroup of PA contained in K. We define an,
am,(V) to be the set of all K e such that (3.9) holds with A/K(P) in
place of A. Finally, we set

e
Then we hve

PROPOSITION 3.16. Vm, is an E[PA]-submodule of V whose irreducible
E[PA]-components are precisely the ample irreducible E[PA]-components of V.

Proof. Since V is n E[PA]-module we have

(3.17) Va(K) VA(K).r for all K e , r e P.

In prticulr, is P-invrint fmily of subgroups of A. From the defini-
tion of it is clear that it is P-inwrint subfamily of :. So (3.15)
and (3.17) imply that Vm,o is n E[PA]-submodule of V.
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Let U be any irreducible E[PA]-component of V, and W be an irreducible
E[A]-component of U. If K Ker (A on W), then Clifford’s theory (see
Theorem V, 17.3 of [4]) says that

Ker (A on U) K"= K(P).

Since K e , we conclude that U is ample if and only if K e amplo
If U is a component of Vample, then (3.15) implies that K e m,e. SO

U is ample. If U is a component of V/Vm,, then (3.14) and (3.15) imply
that K e m,o SO U is not ample. Therefore the ample irreducible
E[PA]-components of V are precisely the irreducible E[PA]-components of
Vam,, which proves the proposition.

4. Finding one ample representation

The ollowing situation occurs repeatedly in Fitting chains on which our
group P acts:

(4.1a) PB is the semi-direct product of a group P of prime order p acting
on a group B (.

(4. lb) PBA is the semi-direct product of PB acting on a group A a.
(4.1c) V is an irreducible Zq [PA]-module, for some prime q.
(4. ld p, p(B) and q are all different from p(A ).
(4.1e) Ker ((A) on V) {1}.

We shall prove the following consequence of (4.1) under weaker hypotheses
because of future applications.

PROeOSTOq 4.2. Let the semi-direct PA of a group P acting on a group
A e ( itself act on a group V. If Ker ((A) on V) {1}, then the natural
epimorphism of A/Z(A onto A,/Z(A,) is a P-isomorphism.

Proof. Obviously this epimorphism preserves the actions of P. So we
need only show it to be an isomorphism, i.e., that Z(A is the inverse image
of Z(A ,). Suppose that A Z(A ). Then there exists r e A such that
[, r] 1. Since [, r] e (A ), our hypotheses say that the image of [, r]
in A is not 1. Hence the image of does not lie in Z(A ,). It follows that
Z(A) contains the inverse image of Z(A ). The opposite inclusion is obvious.
So the proposition is true.

In our case the value of Proposition 4.2 is that [A/Z(A )]+ is a Z()[PB]-
module, while [A,/Z(A,)]+ is only a Z()[P]-module. We exploit this fact
to prove

PnoeosTmN 4.3. Suppose that (4.1) holds and V is not an ample Z [PA]-
module. Then [B ,P] centralizes A/Z(A unless the following exceptional
conditions all occur"

(4.4a) p(A 2.
(4.4b) p is a Fermat prime.
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z.
(4.4d) U [[A /Z A )]+, [B, P]] is an irreducible Z2 [PB]-module.
(4.4e) [U, P] is an irreducible Z2 [P]-module.
(4.4f) The function g: aZ(A X rZ(A --+ [a, r] is a well-defined, PB-

invariant, non-singular, alternating bilinear map of U X U into (A )+.
Proof. Since p p(A) (by (4.1d)) and V is not ample, both (3.9a)

and (3.9b) must fail. So there are two possibilities: either P centralizes
A or the exceptional case in (3.9b) occurs.

If P centralizes A,, then it centralizes A/Z(A,) and hence centralizes
A/Z(A), by Proposition 4.2. But A/Z(A) is a PB-group. So [B, P]
must centralize it, and the proposition is true in this case.
Assume that we are in the exceptional case of (3.9b) and that [B, P] does

not centralize A/Z(A ). Then (4.4a, b) hold and [fi_, P] is an irreducible
Z [P]-module. Since A ,/Z(A ,) is a natural epimorphic image of fi (by
(lAb)), we conclude that [[A ,/Z(A )]+, P] is either {0} or an irreducible
Z [P]-module. By Proposition 4.2 the same holds for [[A/Z(A )]+, P].
Therefore [U, P] is either {0} or an irreducible Z [P]-module. But [U, P]
cannot be {0}, since U # {0} by assumption and

(4.5) [U, [B, P]] U,

which follows from the definition of U and the fact that p(B) p(A (by
(4.1d)). Therefore (4.4e) holds.
Hypothesis (4.1d) says that p(A) does not divide PB [. Therefore U

is a completely reducible Z2[PB]-module. If U is reducible, then
U U1 (R) U., where U1, U are non-trivial Z2 [PB]-submodules. Clearly
(4.5) implies [U, [B, P]] U and hence [U, P] {0}, for i 1, 2. So
[U, P] [U1, P] @ [U., P] is reducible, contradicting (4.4e). Therefore
(4.4d) holds.

Since we are in a case of (3.9b), Corollary 3.12 tells us that [A v, P] is
extra special with ([Av, P]) (Av). Because p(A) 2, this implies
that (Av) 2. By (4.1e) the natural epimorphism of (A) onto (b(Av)
is an isomorphism. Therefore (4.4c) holds.
By (1.4b), the function g of (4.4f) is a well-defined, non-singular, alter-

nating bilinear map of [A/Z(A )]+ X [A/Z(A )]+ into (A )+. It is obviously
PB-invariant. From (4.4c) we conclude that PB centralizes (A ). Since
p(B) 2, this implies that

[A/Z(A )]+ U @ Ca/z(a)+([B, P]),

where these two subspaces are g-perpendicular. It follows that the restric-
tion of g to U X U is non-singular, which proves (4.4f) and completes the
proof of the proposition.
Now we investigate the exceptional case in Proposition 4.3. I.e., we as-

sume that (4.1) and (4.4) hold. We choose a finite algebraic extension F
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of Z2 so that F is a splitting field for all subgroups of PB. Then the exten-
sion F (R) z U of U to an F[PB]-module has the decomposition

(4.6) F (R) U U1 @ @ Ut,
where U1, ..., Ut are absolutely irreducible F[PB]-submodules. From
(4.5) and the equation corresponding to (3.11), we know that

(4.7a) [U, [B,P]] U for i 1, t,
(4.7b) [U,, P] {01, for i 1, ..., t,
(4.7c) Bv, By ,for i 1, (as factor groups orB).

The first step in the investigation is

LEMM+/- 4.8. p p(B).

Proof. Suppose that p p(B). Let i 1, ..., t. By (4.7a), P does
not centralize Bye. If it does not centralize Z(Br,), then U is induced
from some F[B]-module by Proposition 3.2. Hence U contains a regular
F[P]-submodule. If P does centralize Z(Bv), then Proposition 3.4 says
that U is isomorphic to an outer Kronecker product W (R) Y of an

F[P[Bv, P]]-module W and anF(C,v(P))-module Y. The exceptional case
in (3.5) does not hold here, since p(B) 2. Therefore W contains regu-
lar F[P]-submodule, which implies that U does also.

The above argument shows that each U, i 1, t, contains a regular
F[P]-submodule. It follows from (4.6) that the multiplicity of any non-
trivial irreducible F[P]-module Z as a component of F (R) U is at least t.
But condition (4.4e) forces the multiplicity of Z as a component of IF (R) U, P]
to be at most one. Since Z is non-trivial, these two multiplicities are equal.
Therefore 1.
The function g of (4.4f) has a natural extension to a PB-invariant, non-

singular, alternating, F-bilinear map g’ of (F (R) U) X (F (R) U)into
F (R) (A )+. By (4.4c), F (R) (A )+ is F-isomorphic to F as a trivial F[PB]-
module. So the non-singularity of g gives us an F[PB]-isomorphism of
F (8) U U onto its dual module Hom(F (R) U, F) Hom(U, F).
This is impossible since U is a non-trivial irreducible F[PB]-module and

PBi is odd (by (4.1d) and (4.4a)). This contradiction proves the lemma.
Let e be the smallest positive integer such that 2 1 (rood p). Then we

have

LEMMA 4.9. e and dim [U, P] 1, for i 1, e.

Proof. Since P is cyclic of order p, every non-trivial irreducible Z [P]-
module has dimension e. So (4.4e) and (4.7b) imply

e dim [F (R) U, P] dimr [U, P] -t- + dim JUt, P] >_ t.

Furthermore, equality holds if and only if the lemma is true. Hence we need
only show that _> e.
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Lemma 4.8 tells us that PBe is a p-group. Its normal subgroup By is
non-trivial by (4.5). So there must exist a subgroup P1 of order p satisfying
PI <_ Bv r Z(PBv). The group P1 acts faithfully on U. Hence there is
some non-trivial irreducible Z2 [P]-submodule W of U. SinceP is also cyclic
of order p, the F[P]-submodule F (R) W is the direct sum W @ @ We of
e distinct irreducible F[P1]-submodules Wi. Because P1 is central in PBe,
distinct Wi must be submodules of distinct absolutely irreducible F[BP]-
modules U. Therefore _> e, which proves the lemma.
The condition that dimF[ui, P] 1 is very stringent. E.g., it implies

LEMMA 4.10. P centralizes every P-invariant abelian subgroup of Be.

Proof. Let D be a P-invariant abelian subgroup of Be such that
[D, P] {1}. By (4.7c), [D, P] acts faithfully on U. So there must be
some irreducible F[PD]-submodule W of U1 such that [Dw, P] {1}. Be-
cause D Z(D) is abelian, Proposition 3.2 tells us that W is induced from an
irreducible F[D]-module. Hence W contains a regular F[P]-submodule.
By Lemma 4.9 this implies

1 dimF [U1, P] _> dimy [W, P] _> dim [F[P], P] p 1.

Therefore p 2, which contradicts (4.1d) and (4.4a). This proves the
lemma.
Some judicious choices of abelian subgroups of Be give us a string of

consequences from Lemma 4.10.

LEMM_ 4.11. Be is extra-special, with [(Be), P] {1}.

Proof. Lemma 4.10 forces P to centralize Z(Be). So Z(Be)

_
Z(PBe).

Because Z(Be) acts faithfully on the irreducible Zo. [PBe]-module U, this
implies that Z(Be) is cyclic. We know from (4.1d) and (4.4a) that p(B)
is odd. Hence (4.1a) and (1.4d) saythat Be hasexponentp(B). There-
fore Z(Bv) p(B).

Since (4.4d) holds, P cannot centralize By. So Lemma 4.10 says that
Bv {1}. From the inclusion

{1} < B’ <_ (Be) <_ Z(Bv)

(by (1.4b)) and the fact that IZ(Be) p(B), we conclude that
B (Be) Z(Be) is cyclic of order p(B). I.e., By is extra-special.
Furthermore, P centralizes (Be) Z(Bv). So the lemma is true.

Fix a generator of the cyclic group P.

LEMMA 4.12. [/e, P] /(r 1) is fv-perpendicular to Cv(P).
Hence [Be, P] centralizes C,v(P ).

Proof. Since P () is cyclic and e is a vector space, we know that
[/v, P] /v( 1). Suppose that /v and r e Cv(P ). Then

f,v(a(r 1), r) f,v(a, r(r- 1)),
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since P centralizes (Bv) (by Lemm 4.11) snd leaves fss invrint. But
r e Csu(P) implies r(-I 1) 0 and hencefsu(z, r(-I 1)) 0.
Therefore/s(r 1 nd Css(P re fss-perpendiculr.
The images in of [Bs, P] nd Css(P) re certainly contained in [s, P]

nd Css(P), respectively. So the bove fcts nd (1.6) imply that [Bs, P]
centralizes Css(P). This proves the lemm.

LEMMA 4.13. [By, P, P] 1}.

Proof. By Lemmu 4.8 there must be some positive integer n such that
[B, P]" {1}. Let n be the least such integer. Assume that n 3.
Then we may choose an element in [By, p]n-- C,v(P). We hve

e[Bv,p]n- [By,P] for i 1, ...,p,
and

[ ] e[Bv,p]n-l < C,u(P for i,j 1 p

So Lemmu 4.12 tells us that commutes with [, ], for all i, j, 1, p.
Hence commutes with [, -], for all i, j= 1, ..., p. We
conclude that (a, a ..., a is a P-invariant abelin subgroup of B
Lemma .10 says that it is centralized by P. But P does not centralize the
element a a of this subgroup. Therefore n 2, which is the ]emma.

LM 4.14. dimz[, P] 2.

Proof. The endomorphism a a( 1 of defines a Z-isomorphism
of W /C(P) onto [, P]. It follows rom Lemmu 4.12 thut the
function g given by

e( + c.(P). + c(P)) f..(. ( 1)) or . .
is a well-defined, Z-bilinear map of W X W into (B)+.

If a, B, we compute

( + C,(P), + ,(P)) f,,(, ( 1))

f,((-1 1 ), ) (by Lemma 4.11

--fs( , (- 1 (fv is alternating

..(. (-)( 1))

e( + .(P). (-) + c(P))

( + .(P). + c(P)).

since a- a [ P] C(P) by Lemm 4.13. So g is symmetric.
But (Bv)+ is Z-isomorphic to Z by Lemma 4.11. Therefore g is just an
ordinury quadratic form on the vector space W over Z.
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Suppose that dimz(W) _> 3. Since Z is a finite field of odd character-
istic, there must exist some element w 0 in W so that g(w, w) 0 (see
page 144 of [1]). Let z e /v satisfy w - Cv(P ). Then
Zz - Zz( 1) is totally isotropic with respect to fBv, since
fBv(z, z(r 1)) g(w, w) O. This subspace is P-invariant by Lemma
4.13 and is not centralized by P since z - Cv(P) w O. Therefore its
inverse image is a P-invariant abelian subgroup of By which is not centralized
by P. This contradicts Lemma 4.10. Hence dimz(W) _< 2, which is
equivalent to the lemma by the first line of the proof.
We must reach back to Lemma 4.9 to prove

LEMMA 4.15. p 3.

Proof. Since (4.4d) holds, P does not centralize By. So we may choose
z e By such that [, ] 1. If z centralizes [, z], then Lemma 4.13 implies
that (z, [, ]} is a P-invariant abelian subgroup of By. It is not centralized
by P since [, ] 1. This contradicts Lemma 4.10. Therefore [[, z], z]
[, ,] 1. From Lemmas 4.11 and 4.13 we now conclude that
D (z, [, ]} is a P-invariant extra-special subgroup of order p3 in By with
(D) (Bv).

The group P centralizes (D) ([, z, z]} by Lemma 4.11 and centralizes
[, a] by Lemma 4.13. If follows that E (, [, ], [, z, z]} is an abelian
subgroup of order p3 in PD. Since PD P, E is normal in PD.
The group (D) ([, z, ]} is clearly the center of PD. Since (D)

acts faithfully on U (by (4.7c)), there must be an irreducible F[PD]-sub-
module W of U on which(D acts non-trivially. From Lemma 4.9 we know
that dim [W, P] is 0 or 1. So the restriction Ce to P of the modular char-
acter b(see [5] for definitions) of the F[PD]-module W has the form:

(4.16) (,(1) 1).1,

for some linear character of P.
Because PD[ p4 is odd, the modular character is an ordinary ir-

reducible character of PD (see [5]). The non-triviality of (D) on W im-
plies that () b(1)., for some non-trivial ordinary linear character
of (D). Since is faithful and (D) ([, , a]} _< [E, (}], no extension

PDof to a linear character of E can be fixed by (a}. It follows that
for some such extension . Therefore

ap--1=/-t-.-. +
ButP < E. Hence

Comparing this with (4.16), we see that (*)e must be trivial for all but
one i 0, 1, p 1. We may assume that the exceptional value of i
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(if any exists) isi 0, sothat;() 1, fori 1, ...,p-- 1. Hence

i =/() (-’:) ([, l-[, , 1"’))
,()t([, a])-([% a, a]) c(i’2) for i 1, ..., p 1,

where, of course, C(i, 2) is the binomial symbol i(i 1 )/2. Taking i 1
in this we get t [% a] (r). Taking i 2, we then get t [v, a, a] (r).

)1--33If p 3, we may tke i 3, getting 1 (r /(r) ([r, , ]).
This contradicts the fact that u([r, a, ]) u([r, a, a]) 1. So the lemma
is true.
We collect the results of the last eight lemmas and one further consequence

in

PROPOSITION 4.17. If both (4.1)and (4.4) hold, then
(4.18a) p p(B) 3,
(4.18b) U is not an ample Z2 [PB]-module,
(4.18c) By is extra-special,
(4.18d) dimz3[/v, P]

_
2,

(4.1Se) dimz2 Cv(P) >_ 4.

Proof. Conclusion (4.18a) is Lemms 4.8 and 4.15.

Conclusion (4.185)is Lemm 4.13, since (4.18a) holds (compare (3.9c)).
Conclusion (4.18c) is Lemma 4.11.
Conclusion (4.18d) is Lemma 4.14, since p 3.
By (4.18c) and (4.7c), each Ui has dimension at least p(B) 3. Since
U [U, P] @ Cv(P) and dim [U, P] 1, by Lemma 4.9, each Cv(P)
has dimension at least 2. So (4.6) gives

4imz.Cv(P) dimly C(R)v(P) t= dimCv(P) >_ 2t.

But e 2 by Lemma 4.9, since p 3. Therefore (4.18e) holds and the
proposition is true.
We shull upply the above propositions to the situation in which our group

P of arbitrary prime order p acts on Fitting chain A, ..., At
with [A, P] {1}. We wish to show that some representation (PA on
2:+) has an ample irreducible component, provided the Fitting chain is
long enough. To specify the necessary length, we define n integer i0 by

(4.19a) i0 2 if p does not divide II= A I,
(4.195) i0 3 if p divides II= A and p 3,
(4.19c) i0 5 if p divides .II= A and p 3.

Then we have

TEOnE 4.20. If io, then there is some i 1, ..., io such
that p(A) p and (PAi on l+) has an ample irreducible component.

Proof. Define the groups B Bt inductively by

B A, B/ [A+,[B,P]], for i 1, 1.
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We first prove that

(4.21a) B is a P-invariant subgroup of A for i 1, t,
(4.21b) B is PB_l-invariant, for i 2, t,
(4.21c) [B,P]/1},fori--- 1,...,t,
(4.21d) B e (t, for i 1, t.

Statement (4.21a) is obvious from the definition of the B.
[B_I, P] is a normal subgroup of PB_, for i 2, t.

It implies that
Therefore

B [Ai, [B_, P]]

is PB_-invariant, which is statement (4.21b).
Statement (4.21c) is proved by induction on i. For i 1 it is true since

[A, P] {1} by hypothesis. Suppose that i > 1 and that [B_I, P] {1}.
By (2.2d), [B_, P] acts faithfully on A i. Therefore

B, [A,, [B_, PI] {11.

Since p([B_, P]) p(A_) p(A) (by (2.2b)), we have {1} B
[B, IBm-l, P]]. If P centralizes B, then so does IBm_l, P], (by (4.21b))
which contradicts the preceding statement. Therefore [B, P] {1} and
(4.21c) holds. This implies that B {1}, for i 1, ..., t. So (4.21d)
follows from (1.5) and (2.2a).

Suppose we can prove that

(4.22) there is some i 1, ..., io such that p p(A) and (PB on
A/) has an ample irreducible component.

Then the theorem will be true. To see this, let W be an ample irreducible
component of (PB on A+). Then there must be some irreducible compo-
nent V of (PA on di+) such that W is PB-isomorphic to an irreducible
component of (PB on V). Proposition 3.13, applied to Z(+,), P, A,
B, V and W, tells us that V is ample. So the theorem will follow from
(4.22).
From now on we assume that (4.22) is false, i.e., that no irreducible com-

ponent of any (PB on A+) is ample, for any i 1, ..., i0 such that
p(A) p.

Suppose that 2 _< i _< i0 and p(A) p. Since [B, P] acts faithfully on
A.+I (by (2.2d)) and p(A+I) p(A) p([B, P]) (by (2.2b)), it acts
faithfully on A+ (see Theorem III, 3.18 of [4]). So (4.21c) implies that
Y+ [d+l, [Bi, P]] is a non-zero Z(,,+l)[PB]-submodule of di+. Fur-
thermore, [Y4., [Bi, P]] Y+, since p([B, P]) p(A+). Therefore
there is some irreducible component W+ of (PB on Y+) and any such
W;+ satisfies [W+, [Bi, P]] W+I.

Let K Ker((B) on W,+). Since K, _< (B) _< (A), it is cen-
tralized by B_ _< A_ (by (2.2c)). Therefore PB_ acts on B/K.
Now we see that P, B B_I A B/K W+ and q p(A+) satisfy
(4.1).
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Suppose that (B)+ is abelian. Since [W+, [B, P]] W+, we have
[Z( (B,)w,+ ), P] [(B)w+, P] {1}. But p(B) p(A) p. So
(3.9a) holds and W+ is ample, contradicting our assumptions. Therefore
Z((B)w,+) < (B)w+,. By Proposition 4.2 this implies that Z(A < A.
By construction [B,, [B_x, P]] = B. Therefore [A/Z(A), [B, P]]

A/Z(A ). Since A/Z(A 1} and W+ is not ample, Proposition 4.3 says
that (4.4) holds. So Proposition 4.17 tells us that (4.18) holds. In par-
ticular, 3 p p(B) p(A;_).
Suppose that (4.19a) holds. Then p(A:) p. The above argument

shows that p(A) p, contradicting (4.19a). So (4.22) cannot be false,
and the theorem is true in this case.
Suppose that (4.19b) holds. By (2.2b) there is some i 2, 3 such that

p(A) p. The above argument shows that p 3, contradicting (4.19b).
So the theorem is true in this case.
We must be in the case (4.19c). There is some i 4, 5 such

that p(A) p. The above argument shows that p(A_) p 3 and
p(A) 2. Furthermore, since (4.18) holds, we have an irreducible

Z [PB_]-module U sothat (B_)v is extra-special and dimz, [(/-)v, P] _< 2.
Let

K_ Ker((B_) on U).

By (2.2c), Bi_2 centralizes Ki-1. Therefore PB_ acts on B_I/K_.
Evidently P, B_2, B_/K_, and U satisfy (4.1a, b, c, e). So Proposition
4.2 says that

[(B_/K_I)/Z(B_I/K_I)]+= Y_I

is Z [P]-isomorphie to [(Bi_I)v/Z((B_)v)]+. The latter group is just
(B_)v,since (B_l)v is extra-special. Hence Yi_ {0} and dimz [Y_, P]
<2.
Because PB_: acts on B_/K_, it acts on Y_. By (2.2b) and the

definition of Bi_, we have [B_, [B_., P]] B_I. It follows that

[Y_I, [Bi_, P]] Yi_.

Since Y_ {0}, there is some irreducible component W_t of (PB_. on
Y_). Clearly [Y;-1, [B_, P]] Y_ and dimz [Y_, P] _< 2 imply that

(4.23a) [Wi_ [B_ P]] W_I
(4.23b) dimz. [W_, P] _< 2.

Since W_I is a section of A_, it follows from (2.2c) and (4.23a) that it is
isomorphic to some irreducible component of (PB_ on A_). So (PB_.
on W_I) is not ample.
Now we repeat our earlier argument with i 2 in place of i. It tells us

that P, Bi_, B_2/K_ and W_ satisfy (4.1), (4.4), and (4.18), where
K_ Ker((B_2) on W_). The definition (4.4d) of the Z2[PB_3]-
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module U_., the definition of Bi_, and (2.2b) imply that

U_. [(B_/Ki_.)/Z(B_./K_)]+.
From Proposition 4.2 we conclude that U,_. is P-isomorphic to

[(B,_)w,_I/Z((B,_2)w,_,)]+ /,_.
Therefore (4.18e) gives

(4.24) dimz2C_.(P) >_ 4.

Let F be a finite algebraic extension field of Z3 which is a splitting field
for every subgroup of PB_.. Let X be a irreducible F[PBi_]-submodule of
the extension F (R) W-I of W-I to an F[PB_2]-module. Then (B_.)x
(B_.)_I s in (4.7c). Because (PB_ on W-I) lies in the exceptional case
of (3.9b), Proposition 3.4 applies to P, B_., F and X. It tells us that X
is the outer Kronecker product X S (R) T of an irreducible F[P[(B_)x, P]]-
module S and n irreducible F[C(_2)x(P)]-module T. Since Z((B_)x) <_
C C_x(P), and (Bi_)x is the central product of [(B_), P] and
C, we know that Z((B_)x) Z(C). This acts faithfully on T since it acts
faitlffully on X. It follows from (4.24) and Theorem (III.2) of [2] that

dim T [C’Z(C)]/= IC_.(P)[1/2 (2),/2 23= 4.

Since P acts faithfully on [(B_)x, P] and the latter acts faithfully on S, we
know that P acts faithfully on S. So dim [S, P] _> 1. It follows from
(4.23b) that

2 >_ dim [F (R) W_I, P] _> dim [X, P] dim [S, P].dim T _> 4.

This contradiction proves the theorem.

5. Finding enough ample representations
We now turn to the problem of going from the ample components of (PA-1

on A to those of (PA on A+1 in our P-invariant Fitting chain A1, A.
The critical case is the following situation"

(5.1a) PB is the semi-direct product of a group P of prime order p acting
on a group B e (.

(5. lb) D is a subgroup of C,(P).
(5.1c) PBA is the semi-direct product of PB acting on a group A e a.
(5.1d) V is a finite-dimensional Zq [PA ]-module, for some prime q.
(5. le) p, p(B) and q are all different from p(A ).
(5.1f) [(A), B] {1}.
(5.1g) Each irreducible component of (PB on A is ample.
(5.1h) The representation (A on V) is faithful and weatly B-invariant.
(5.1i) /f p p(B) then D <_ [B, P]-.
One immediate consequence of these hypotheses is

PnOPOSITION 5.2. A’ (A ).
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Proof. By (5.1g) and (3.9), B acts non-triviully on each irreducible com-
ponent U of (PB on 2: ). Hence [U, B] U. It follows that [, B]
Since 2: is naturally isomorphic to (A/A’)/(A/A), we conclude that
[A/A’, B] A/A’. The map -- a() is B-invarint epimorphism of the
abelian group A/A’ onto (A/A’)
(A )/A’. By (5.1f), this implies that (A )/A’ /1}. So the proposition

holds.

We let (V) and 5Q, m,(V) be the families of (3.14) and
(3.15). Define to be the subfamily of all K e such that K >_ (A ).

POeOSTON 5.3. Both and 2 are PB-invariant families of normal
subgroups of A. Furthermore,

Proof. Since V is PA-module, is P-invriunt by (3.17). The weak
B-invariance of (A on V) (by (5.1h)) clearly implies that 5C is B-invriant.
So 5 is PB-invariant. Because (A is characteristic subgroup of A,
it is PB-invriant. So 2 is PB-invariant subfamily of 5, which finishes
the proof of the first statement of the proposition.

Suppose that K -. Then there exists some irreducible component
W of (A on V) such thut K Ker(A on W). There must be some irre-
ducible component X of (PA on V) such that W is isomorphic to a com-
ponent of (A on X). Clifford’s theory (see Theorem V, 17.3 of [4]) tells
us that

Ker(A on X) f’le K K(P ).

Therefore K e ,o if and only if P and A A/K(P) satisfy (3.9), i.e.,
if nd only if (PA on X) is ample.

Let N Ker((A on X). Then N is u P-invriunt normul subgroup
of A. By (5.1f) it is also B-invariant. So (5.1e) implies that P, B, AIN
and X satisfy (4.1).

Proposition 4.2 says that Y [(A/N)/Z(A/N)]+ is isomorphic to
[A/Z(A)]+. Since K , we hve K (A < (A ). By Proposition
5.2, this implies that K A’ < A’. Therefore

K(P) A’ <_ K A’ < A’ and A’---A’/K(P) A’ {1}.

So A is non-abelian. Hence [A/Z(A)]+ {0}. We conclude from this
and (lAb) that Y is a non-trivial Z()[PB]-fctor module of . In par-
ticular, (PB on Y) has at least one irreducible component uad, by (5.1g),
each such component is ample.
Suppose that (PA on X) is not ample. Then neither is (P(AIN) on X).

By Proposition 4.3, either [B, P] centralizes Y or (4.4) holds. But (PB on Y)
hus n mple irreducible component, which, by (3.9), cannot be centralized
by [B, P]. Hence (4.4) holds. In particular, (4.4d) says that U is an
irreducible component of (PB on Y). So (PB ou U) is ample. This con-
tradicts (4.18b). Therefore X is ample and the proposition is true.
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Let L be the subgroup of A defined by

If -09 is empty, this intersection is taken to be A.

PROPOSITION 5.6. L is PB-invariant normal subgroup of A such that
L n (A {11. Hence L is elementary abelian and the natural Z()[PB]-
homomorphism of L+ into . is a monomorphism.

Proof. By the definition of , each K e is a normal subgroup of A.
Proposition 5.3 implies that -09 is a PB-invariant subfamily of . So L
is a PB-invariant normal subgroup of A by (5.5).

Let a be a non-trivial element of (A ). By (5.1h) a acts non-trivially on
V. Since q p(A (by (5.1e)), the representation (A on V) is completely
reducible. So a must act non-triviMly on some irreducible component
Wof (A onV). HenceK Ker(A onW) eandacK. It follows that
(A) $ K, i.e., that K e -09. Therefore a L _< K (by (5.5)). This

proves that L n (A 1}. The other statements follow directly from this.
Define families , 9 of subgroups of L and a subgroup N of L by

(5.7a)
(5.7b)
(5.7c)

9 {K nL]K e,L $ K},
{M el)l[L,P] M},

N n,r M.

Let V, be the Zq [PA]-submodule of V defined by (3.15) and Q be the
subgroup Ker(A on Vm,o) of A.

PROPOSITION 5.8.
satisfying

9 is a PB-invariant family of maximal subgroups of L

(5.9) n, M 1}.

The subfamily 9 and the subgroups N and Q are P X D-invariant.
more,

Further-

(5.10) Q _< N _< L.

Proof. Proposition 5.3 says that 2 is PB-invariant. Proposition 5.6 says
that L is PB-invariant. This and (5.7a) imply that 9 is PB-invariant.

Suppose that M e 9. Then there exists K e 09 such that L $ K and
M K n L. Since 09 , there is some irreducible component W of
(A on V) such that K Ker(A on W). Because K e 09, we have )(A _<: K.
So the elementary abelian group A/(A acts irreducibly on W. This
implies that A [A/(A )] is cyclic, and hence has order 1 or p(A ).
Therefore

[L’M] [L:K L] <_ [A’K] <_ p(A).

But L is a p(A )-group and L $ K.
M e i) is a maximal subgroup of L.

So [L’K n L] p(A ). Hence ny
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Since q p(A (by (5.1e)), the representation (A on V) is fully decom-
posable. It follows that

1 Ker(A on V) (by (5.1h))

n, K [l"l.c-: K] n [i"l: K]

L [ K] (by (5.5))

[L n K]

..[L K]

NMM (by (5.7))
So (5.9) holds.
By (5.1a, b), PD P X D PB. Since, L and P are P X D-invariant,

so are and N (by (5.7b, c)). It follows from the definition of ,
thut it is P X D-invrint. Since Q is the intersection of the members of
m, (by (3.15)), it is P X D-invariant.

K >Supposetht K e -,. ThenK (A). Hence K(P) ne
(A). So A/K(P) is abelian. Since K ,, P and A/K(P) cannot

satisfy (3.9). Therefore (5.1e) and (3.9a) imply that

[A/K(P), P] [Z(A/K(P)), P] {1}.
Hence [A/K, P] {1}. It follows that [L, P] g [A, P] nL K n L.
From this and (5.7b) we conclude that K n L . So we hve

{K n L[K e n ample}.
This implies

N M (by (5.7c))

nn,,(K n L)

[n2n,m. K] n [n- K] (by (5.5))

nxx. K (by Proposition 5.3)

Q (by (3.15)).

Therefore (5.10) holds, which completes the proof of the proposition.
Define the section C of A by

(5.11) C [C(P)],. C(P)/C(P) n Q.

Since D centralizes P (by (5.1b)), the subgroup C(P) is D-invariant.
By Proposition 5.8, Q is D-invariant. Hence

(5.12) C is D-invariant.

We are interested in conditions which will guarantee the following property"

(5.13) C 1} and (D on is wealcly equivalent to (D on ).
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One set of such conditions is given by

PROPOSITION 5.14. If L {1}, then (5.13) holds. If C,(P) > CN(P)
and (D on C,(P)+) is weakly equivalent to (D on C,(P)+/CN(P)+), then
(5.13) holds.

Proof. It follows from (5.1g) and Proposition 3.10 that Ca(P) {1}
(see Theorem I, 18.6 ot [4]). Therefore L {1} gives Q {1} (by (5.10))
and C /1} (by (5.11)).

If C,(P) > C(P), then (5.10) implies that C,(P) > CQ(P). By (5.11),
C,(P)/C((P) is isomorphic to a subgroup of C. Hence C {1} in both
cases.
Because L {1} trivially implies the condition "(D on C,(P)+) is weakly

equivalent to (D on CL(P)+/Cv(P)+)" we are reduced to deducing from this
condition that (D on A: is weakly equivalent to (D on ).

Since Q is P )< D-invariant (by Proposition 5.8), so are A/Q and the natu-
ral epimorphism of A onto A/Q. It follows that induces a Z(a)[P )< D]-
epimorphism of onto (A/Q). From Proposition 5.6 and (5.10) we
conclude that q(Q+) Ker . Hence

(5.15) (D on k(Cz(P))) is equivalent to (D on C(P)/Cz(P) n (Q+)).
We know from (5.1e) that p(A) does not divide P I. It follows (see

Theorem I, 18.6 of [4]) that Cx(P) is the natural image in 2: of Ca(P).
By (5.11), this implies that (Cz(P)) is the natural image of in (A/Q).
The kernel of the natural map of C onto (Cx(P)) is

[(C n (A vm,,o) )/(C)]+,
which D centralizes by (5.1f). From this we conclude that (D on C) is
weakly equivalent to (D on (Cx(P))). In view of (5.15), this gives

(5.16) (D on ) is weakly equivalent to (D on Cx(P)/Cx(P) F (Q+)).
Since p(A) does not divide PBI (by (5.1e)), there are irreducible

Z(a)[PB]-submodules U, U, of such that @ [= U. By
(5.1g), each U is an ample Z(a)[PB]-module. If p p(B), thenD _< C(P)
by (5.1b). If p p(B), then D <_ C[.e-(P) by (5.1b, i). So Proposi-
tion 3.10 and (1.3) tell us that (D on U) is weakly equivalent to (D on
C(P)), for i 1, .-., r. Since fi @ =U and Cz(P)
@ =Cv(P), it follows that

(5.17) (D on is weakly equivalent to (D on C(P)).
By assumption (D on C(P)+) is weakly equivalent to

(D on C,,(P)+/Ov(P)+).
It follows from this and (5.10) that (D on C(P)+) is weakly equivalent to

(D on C(P)+/CQ(P)+).
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Since is an isomorphism, this says that (D on Cz(P) n (L+)) is weakly
equivalent to

(D on [Cz(P) (L+)]/[C(P) n (Q+)]).
Clearly this implies that (D on Cz(P)) is weakly equivalent to

(D on C(P)/[C(P) n (Q+)]).
Combined with (5.16) and (5.17), this shows that (D on 2 is weakly equiv-
alent to (D on ), which completes the proof of the proposition.
To establish the hypotheses of Proposition 5.14 it is convenient to pass to

the dul Z(.)[PB]-module U Homz()(L+, Z()) the family of 11
perpendicular subspaces M {u U lu(M+) {0}} to the members M
of the fmily , the subfamily 05 of all M, M e 9Z, and the subgroup J N’.
These stisfy

1)tOOSITIO 5.18. Every irreducible component of (PB on U) is ample.
is a PB-invariant family of non-trivial Z(a)-subspaces of U. Furthermore

(5.19a) U ,I,
(5.19b) e {Iel[I, P] # {0}},
(5.19c) g ,aI.
If U {0} or if
(5.20) C(P) {0} and (D on Cv(P)) is weakly equivalent to (D on

C(P ),

then (5.13) holds.

Proof. Any irreducible component W of (PB on U) is obviously Z,()[PB]-
isomorphic to the dual of an irreducible component Y of (PB on L+). By
Proposition 5.6, Y is Z()[PB]-isomorphic to an irreducible component of
(PB on fi ). So (5.1g) implies that (PB on Y) is ample. Since Br B,
it follows from this and (3.9) that (PB on W) is ample, which proves the
first statement of the proposition.

The second statement and (5.19a) come directly from the first statement
of Proposition 5.8 and (5.9) by duality. Equations (5.19b, c) come from
(5.7b, c) by duality.

Since p(A) p (by (5.1e))we have

U Cv(P) @ [U, P],

where [U, P] C(P )’. Similarly

J C(P) @ [J, P]

with [J, P] J [U,P] (C(P)N)= (C(P) X [N, P])’. Since J
N" (Cv(P)) [N, P], it follows that
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(5.21a) (D on Cu (P is equivalent to the dual of (D on CL (P)+),
(5.21b) (DonCj(P))isequivalenttothedualof (D on CL(P)+/C(P)+).
If U 0}, then L 1} and (5.13) holds by Proposition 5.14. If U 0}

and (5.20) is true, then (5.21) gives CL (P) > C (P) and the weak equivalence
of (D on C(P)+) with (D on C (P )+/CN (P )+). So Proposition 5.14 also
gives (5.13) in this case, and the proof is complete.
When L {1}, Proposition 5.18 and (5.1) sy that P, B, D, U, satisfy:

(5.22) PB is the semi-direct product of a group P of prime orde p acting on
a group B a.

(5.22b) D is a subgroup of C, (P ).
(5.22c) U is a non-zero finite-dimensional Z [PB]-module, for some prime

r p, p(B).
(5.22d) is a PB-invariant family of non-zero Z-subspaces of U.

u
Now we consider rbitrary P, B, D, U, satisfying (5.22). We define and
J by (5.19b, c). From (5.22b, d) it is clear that

(5.23u) is a P X D-invariant subfamily of ,
(5.23b) J is a Z [P X D]-submodule of U.

Of course, we are looking for situations in which (5.20) holds.
By (5.22a, c), U is a completely reducibleZ [PB]-module. Let U,-. , U

be irreducible Z [PB]-submodules of U so that

v v,.
Fix i 1, s. Then the projection v of U onto U deterned by the

decomposition (5.24) is a Z, [BP]-epimorphism. Define to be the family

Then we hve

L 5.25. P, B, D, U, satisfy (5.22), for each i 1, ..., s. If
P, B, D, U, satisf (5.20), for all i 1, ..., s, then P, B, D, U, satisfy

Paoor. F i 1, ..., s. Conditions (5.22, b, e) re sisfied by
P, B, D, U, a by hypothesis. Condition (5.22d) for hem comes from he
original (5.22d) nd he PB-invrinee of re. The original (5.22e) gives"

8o he firs semen of he proposition holds.

For eeh i 1, s, we define 8 nd fie by (5.19b, e) wih a in place of a.
If I 8 hen I e a nd [I, P] {0}. By definition of a, here is some
I suchhI re(I). Beeuse ris P-invfin we hve {0} [1, P]
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ri([I, P]). Therefore [I, P] {0}, i.e. I e . It follows that

(5.26) Ji r Ii _< x r(I) -(J),fori 1, ,s.

Suppose that P, B, D, U, satisfy (5.20), for all i 1, ..., s. By
(5.22c) we must have s > 1. So CJ1 (P) 0}. Since (P on J) is completely
reducible (by (5.22c)), it follows from this and (5.26) that Cj(P) {01.

Let W be any non-trivial irreducible component of (D on Cv(P)). By
(5.24) there is some i 1, s such that W is Zr [D]-isomorphic to an ir-
reducible component of (D onC (P)). Since (5.20) holds for P, B, D, U, 9i,
the module W is Zr[D]-isomorphic to an irreducible component of
(D on Cj (P)). Then (5.26) and the complete reducibility of (P on J)
imply thatWis Z [D]-isomorphic to an irreducible component of (D on Cz (P) ).
Obviously any irreducible component of (D on C (P)) is an irreducible com-
ponent of (D on Cu (P)). Therefore (D on Cv (P)) is weakly equivalent to
(D on C(P)), which proves the lemma.
Now we study the elements I of 9 and their translates.

],EMMA 5.27. Let (5.22) hold. If I e , then-C, (I) is a P-invariant
subgroup of B. Furthermore, if r B, then I( if and only if- e C(I
for all - P.

PROOF. By (5.19b), P centralizes I. Therefore C,(I) is P-invariant.
IfzeB, thenlzeby (5.22d). By (5.19b),Ize if and only if P

centralizes I, i.e., if nd only if yz yz, for all y e I, r e P. Since I e q,
we know that y yr-. Hence I if and only if y-r y, for all
y e I, r e P, i.e., if and only if yz- y, for all y e I, P. So the lemma is
true.

The following lemma is the key to proving (5.20)"

]_EMMA 5.28. Let (5.22) hold. Suppose that U) is a primary Z [D]-module.
Assume that there is some I , and some ( e B satisfying

(5.29) for eachTr eP 1}, thereexistspeP 1} suchthata(-)(-) C,(I).

Then (5.20)holds and Cz(P) - {0}.
Pnoo.. By (5.22d) we may choose some y e I 10/. Our hypotheses give

us an element e B satisfying (5.29). We define u e U by

u

Clearly u is centralized by P.

By (5.19b), P centralizes I. Therefore yzr y-ar ya, for all e P.
If .-i e C, (I), for any r e P 1}, then the P-invariance of C,(I) (by Lemma
5.27) implies that a(.-1)(o-) e C,(I), for all p e P {1}. This contradicts
(5.29). So- C, (I), for all r e P 1}. Since P is abelian and C, (I) is
P-invariant, we havea(-) (.-)o C,(I), for all o eP, eP {11. Be-
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cause P 1}, this and Lemma 5.27 imply that I e , for all p e P. Hence
u py e J (by (5.19c)). If u 0, we conclude that C (P) {0}.

Suppose that u 0. Then

0 u y

_
y--

Condition (5.29) and Lemma 5.27 tell us that Iz- e , for all P {1.
Hence

y v_} y-
But y is non-zero and centralized by P. Therefore C (P) {0} in all cases.

Since (D on U) is primary, any two non-trivial Z [D]-submodules of U are
weakly Z [D]-equivalent. Clearly Cz (P) {0} implies C (P) {0}. So
C(P), Cv(P) are two non-zero Z [D]-submodules of U and the lemma is
true.
To obtain some information about CB(I) we use the following technical

lemma"

LEMMA 5.30. Suppose that (5.22a, c) holds and that (PB on U) is irreducible.
Let E be a P-invariant subgroup of Z (B and Y be any non-trivial Z [PE]-
submodule of U. Then Ker (E on U) Ker (E on Y).

Proof. Clifford’s theory (see Theorem V, 17.3 of [4]) and (5.22a) give us a
primary Z [B]-submodule W of U such that

v
Let X be an irreducible Z [E]-submodule of W. Since E is central in B and
W isZ [B]-primary, the module WE is Z [E]-primary. Because P normalizes
E, each Wr, e P, is Z [E]-primary withXas an irreducible Z [E]-submodule.
It follows from this and (5.31) that every irreducible component of (E on U)
is Z [E]-isomorphic to X, for some e P.

Since Y {0}, it has an irreducible Z [El-component which, by the above
argument, must be isomorphic to X, for some e P. By Y is a Z [PE]-
submodule. Therefore it must contain irreducible Z [E]-components iso-
morphic to X%0, for all 0 e P. By the above argument it can contain no
other irreducible Z, [E]-components. Since (E on Y) is completely reducible
(by (5.22c)), we conclude that"

Ker (E on Y) Ker (E on X).
Obviously this expression is independent of Y, which proves the lemma.
We use this to prove

LEMMA 5.32. Suppose that (5.22) holds and that (PB on U) is irreducible.
Then CB (I) Z (B) Ker (Z (B) on U), for any I e .

Proof. By Lemma 5.27, CB(I) is P-invariant. Hence E CB(I) Z (B)
is a P-invariant subgroup of Z (B) which centralizes I. It follows from this
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and (5.22d) that I is a non-trivial Z [PE]-submodule of U such that
E Ker (E on I). Since (PB on U) is irreducible, Lemma 5.30 implies that
E Ker (Eon U) _< Ker (Z(B) on U). SinceKer (Z(B) on U) is ob-
viously contained in E C,(I) Z(B),, this proves the lemma.

Now we cn establish (5.20) in a substantial case:

LEMMA 5.33. If (5.22) holds, (PB on U) is irreducible, and

[Z (By), P, P]

then (5.20) is true.

Proof. Obviously By is non-trivial. Therefore it lies in ( (by (1.5)). It
follows esily that P, By, Dr, U and stisfy (5.22). Clearly (5.20) holds
for P, B, D, U, if und only if it holds for P, By, Dr, U, . So we muy re-
place B, D by By, Dr, respectively, and assume that (B on U) is faithful.

Let B Z (B). D. This is a P-invariant non-trivial subgroup of B. So it
lies in (. It follows that P, B, D, U, stisfy (5.22). Of course, (PB on U)
need not be irreducible. Let UI, U be irreducible Z [PB]-submodules
of U so that (5.24) holds. Lemma 5.25 tells us thut we need only verify
(5.20) for P, B, D, U, , for each i 1, s.
Let p be a generator of the cyclic group P. Since Z (B) is abelian, we have

/11 [Z (B), P, P] Z (B)("-). So we may choose an element a e Z (B)
such that z("-) 1. Because p [PI is prime, this condition implies that

(5.34) z(-)("-1) 1, for all r e P {11.

Fix i 1, s. The group PB is the central product of PZ (B) and D
(by (5.22b)). Since Uis an irreducible Z [PB]-module, its restriction (U)
must be primuryZ [D]-module. Lemm 5.30 with E Z (B) and. Y U
tells us that Z (B) acts faithfully on U.
Supposethuti= i. ThenJ= Ui. So (5.20) forP, B,D, Ui,9re-

duces to the condition Cv (P) {0}. Since [Z (B), P] 1} and Z (B) acts
fithfully on U,we huve [Z(B)v ,P] [z(B)v ,P] {1}. Asin the proof
of Proposition 3.10, it follows from this and Corollary 3.3 that Cv (P) {0}.
Hence (5.20) for P, B, D, U, I holds in this case.
Suppose that g c 9. Choose I e q. Since Z (B) acts faithfully on

U, Lemm 5.32 implies that C, (I) n Z (B) 1}. But a e Z (B). So none
of the elements on the left in (5.34) cn lie in C, (I). Now Lemma 5.28 proves
(5.20) for P, BI D, Ui, I in this case.
We conclude that (5.20) holds for P, B, D, U, in all cases. As noted

above, this is enough to prove the lemma.
We now have enough information to hundle the cse in which p p ,B).

PROIOSITION 5.35 Assume that (5.22) holds with p p (B ). If each
irreducible component of (PB on U) is ample, then (5.20) is true.
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Proof. In view of Lemma 5.25, it suffices to prove this proposition under the
additional hypothesis that (PB on U) is irreducible. As in the first para-
graph of the proof of Lemma 5.33, we may also replace B, D by Bu, Du and
assume that (B on U) is faithful.

If [Z (B), P] 1}, then p p (B) implies that [Z (B), P, P] [Z (B), P]
{1}. Since (B on U) is faithful and (PB on U) is irreducible, Lemma 5.33
gives (5.20).
Now suppose that [Z (B), P] [1}. By hypothesis, [B, P] [1}. So

Corollary 3.12 tells us that PB is the central product of P[B, P] ald Ca(P).
In view of (1.3) and (5.22b) it suffices to prove (5.20) under the additional
hypothesis that D Ca (P). Then U, is a primary Z, [D]-module.

If , then J U. Since (PB on U) is ample and irreducible, Proposi
tion 3.10 gives Cj(P) Cv(P) /0}, which proves (5.20). Hence we may
assume that c .
Let I be an element of B. By Lemma 5.32, Ca (I) n Z (B) 1}. It

follows that Cta,P (I) n Z ([B, P]) {1}. So CEa.P (I) is a proper P-in-
variant subgroup of [B, P]. Let B1 be a maximal P-invariant subgroup of
[B, P] containing Ca,e(I). Then [[B, P]/Bi]+ is an irreducible
module such that

[[[B, PI/B]+, P] [[B, P]/B]+.
Since P is cyclic of prime order p, it follows that a( 1) 0, for all

[[B, P]/BI]+ {0} and all r e P 1}. Choose [B, P] so that its image
in [[B, P]/B]+ is non-zero. Then none of a(-)(-), where r, p e P {1},

has a nonzero image in [[B, P]/B]+. In particular, none of them can lie in
Ca(I). So a satisfies (5.29). Now the hypotheses of Lemma 5.28 are all
satisfied. So that lemma completes the proof of this proposition.
For the case p p (B), we need a few routine technical lemmas.

LEMMA 5.36. Suppose that (5.22a) holds with p p (B ). Then

(5.37) lIB, P], [B, P]]

_
[ (B), p](+’+-,0), for all i, j )_ O.

Proof. Suppose that i 0. Ifj

___
p 1, then Max (i -}- j -}- 1 p, 0) 0

and (5.37) holds. If j >__ p, then [/, P] {0/ (since p p (B)), and (5.37)
follows from (1.6). So (5.37) is true for i 0.

Suppose that i > 0 and that (5.37) is true for all smaller values of i. Let
be an element of [B, p]-l, r be an element of [B, P], and rbe anelement of P.

Let , be the images of , r, respectively, in B. From (1.6) and the bi-
llnearity and P-invariance of fa we compute

[[, ], ]+ f(( 1), e)

f(, ) f(, e)

fa(, /r-X)r fa(, /)
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f(, -)( ) + f(, (- ))

[[, ’-]+, ] + [, [, -]]+.
By induction the first term lies in

[[4 (B)+, p]Maxti+’-,.0), p] _< [4 (B)+, p]Maxi+’+l-,.0)

and the second lies in

[4 (B)+, p]Mx(+’+l-,.0).

Therefore [[, v], r] e [(B), P]Max(i+’+-p’), for all e [B, P]-,re [B, P],
j _> 0. Evidently this proves (5.37) for i and finishes the inductive proof of
the lemma.

LEMMA 5.38. Suppose that (5.22a) holds, that p p(B) >_ 5, and that
[4 (B), p]2 {1}. For any, p, r e P {1}, the map

(r--1))kp,r ff ---+ 0
"(p 1)

is a P-epimorphism of [B, P]-a onto [B, P]’-z. If Bz is a P-invariant subgroup of
[B, P]’-, then the image . (Bz) is independent of the choice of p, r e P {1/.

First we show that p, is a homomorphism. If a, r e [B, P]-, we
compute

()(-)(-) [[ ()()-]-’
[--]-
(--[-, -])-
(--)[-, -]-(--)-.

Since r"-e [B, P]’- and a- e [B, P]-, it follows from (5.37) that their
commututor lies in

[ (B), P](’-)+(’-)+-" [ (B), P]’-.

This is contained in [ (B), P], since p 5. From [ (B), P] lJ, we con-
clude that [r-, ]- 1. So this term my be dropped from the above
expression, giving

a(-) (-)(-1) (a-i)-.

Now (a-)- e [B, P]’- and r(-)(-) e [B, P]’-. So (5.37) says that their
commutator lies in

[ (B), P](’-:)+(’-)+-" [ (B), P]’-.

This is {1}, since p 5 and [(B), P] {1. Therefore the terms r(-)(-)
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and (iTp---1)--1 commute in the above expression and we have

(fiT)(P--1)(w--1) IT(p--1)(r--1)

which proves that Xp, is a homomorphism.

Since P is abelian, Xp, is P-invariant. Clearly it sends [B, pip-3 into
[B, p]p-1. Before showing that it is onto (and hence proving the first
statement of the proposition), we prove the last statement of the propo-
sition.

7ri-t-1Fix.,r, peP-- /1}. Ifi 1,...,p-- 2, thenr and lie inP- {1},
since p ]P] is a prime. For IT e B1, we compute"

p,ri+l (IT) (iTp--1)ri+1-1 (iTp--1)ri+
r(p--1) (ri--1) (p--l) (r--1)

o. x, ()x, ().

Using the P-invariance of B1, we conclude by induction on i that

X,, (BI <_ Xo,, (B1), for all i 1,... p 1.

Since [PI P is a prime, there exists, for each i 1,-.., p 1, some
j 1, p 1 such that v’. The above inclusion for r, j in place of
r, i respectively is just"

Xo, (BI <_ Xp,, (B ), for all i 1,... p 1,

Combined with the original inclusion and the fact that P is cyclic, this proves
that Xo, (B) is independent of the choice of r e P 1}.
Now we varyp. Fori 1,...,p-- 2wehave

pi+ l,v (0") (0"pi
+ l-1)v-1 [iTp(pi--1)iTp--1]r--1

p(o-)(o-)(’-)[ao(o-)]-"
(-1) [B, P]*- [-;]- [B, P]*-. By (5.37), theirWe know that (o )

e and
commutator lies in

[q) (B), P](P-1)+(’-=)+- [ (B), P]’-= 11,

since p >_ 5 and [q)(B), P] {1}. So they commute and the above expres-
sion becomes

kpi+l,r (IT) ITp(pi--1) Or--1)tTCp--1)Cr--1)

for all i 1, p 2.

As in the above case of r, this is enough to show that },, (B) is independent
of the choice of o e P 11. So the last statement of the lemma is true.

Obviously [B, P]P- is generated by its subgroups Xp, ([B, P]-3), where
p, r e P {1}. By the preceding argument all these subgroups are equal to
each other and hence to [B, P]-. Therefore Xo. ([B, P]-) [B, P]-, for
all p, r e P 1}, which finishes the proof of the lemma.
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Now we can handle the case p p (B) > 5.

PROPOSiTiON 5.39. Suppose that (5.22) holds with p p (B > 5. If each
irreducible component of (PB on U) is ample and D <_ [B, p]v-1, then (5.20) is
true.

Proof. In view of Lemma 5.25, we may assume that (PB on U) is ir-
reducible. Since (PB on U) is ample, (3.9c) implies that By {1}. So
By e ( (by (1.5)), and we may replace, B, D by By, Dv without disturbing
our hypotheses, assumptions, or conclusions. I.e., we may assume that (B
on U) is faithful.

Since (PB on U) is faithful, irreducible, and ample, (3.9c) implies that
[B,P]-1 {1}. Inviewof (1.1),wemayassumethatD CB,-I(P) {1}.

If [ (B), P, P] 1 }, then [Z (B), P, P] 1 by (lAb). Since (B on U) is
faithful and (PB on U) is irreducible, Lemma 5.33 gives (5.20)in this case.
So we may assume that

Let p be any element of P 1}. Our assumptions and Lemma5.38 tellus
that ),,, - (-1) is a P-epimorphism of [B, P]- onto [B, P]-. Since
(PB o1 U) is ample, (3.9c) implies that [B,P]-I {1}. Hence
[B, P]- 1/. It follows that P, [B, P]V-, D, U, satisfy (5.22) and that
we only need prove (5.20) for this quintuple.
Decompose U as in (5.24) into a direct sum of irreducible Z,[P[B, P]-a-

submodules U where i 1, ..., s. We first consider such an i for which
q and [By,, p]v- {1}.

It follows from (5.37) that

[[B, P]-, [B, PF-1 _< [ (B), PI(-)+(-)+- [ (B), PI-.
This is {1}, since p >_ 5 and [ (B), P] {1}. Hence [B, p]v-x is central in
[B, p]v-. If I e g , we conclude from Lemma 5.32 that

C,.,- (I) Ker ([B, p]v- on U).

By the choice of U, the last group is not equal to [B, p]v-. Hence there exists
some a e [B, p]v-a such that

It follows from the last statement of Lemma 5.38 that the inverse image in
[B, P]P-a of Ct.e- (I) under ,, is independent of the choice of r e P 1}.
Therefore

(’-) (-) (I),

for all r e P {1}, i.e., , I satisfy (5.29).
Because D is a subgroup of [B, P]V-, it is central in [B, P]V-. Because D

centralizes P, it is central in P[B, P]v-. Since (P[B, P]v-a on U) is ir-
reducible, this implies that (D on U) is primary. So Lemma 5.28 says that
(5.20) holds for P, [B, P]V-, D, U,
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If2i i, forsomei 1, ...,s, thenJi Ui. So (DonCj(P))
(D on C, (P ). If[B,P]-I {1},forsomei 1, ...,s, thenDcen-
trlizes U. So (D on Cj (P)) is trivially wekly equiwlent to (D on Cv (P)).
This nd the bove arguments tell us that (D on Cj (P)) is wekly equivalent
to (D on C (P)), for ll i 1, s. As in Lemm 5.25, we conclude that
(D on C (P)) is weakly equivalent to (D on C(P)).
Since (PB on U) is mple nd irreducible, Proposition 3.10 implies that

(D on U) is wekly equivalent to (D on Cv (P)), and hence to (D on C (P)).
But D Dv {1}. Therefore D acts non-trivially on C (P), which implies
Cz(P) {0} and completes the proof of the proposition.
We collect the results of this section in

THEOREM 5.40. If (5.1) holds with either p p (B or p p (B >_ 5, then,
(5.13 is true.

Proof. Define U, as in Proposition 5.18. By that proposition we may
assume that U {0}. Then we only need prove (5.20).

Evidently P, B, D, U, satisfy (5.22). Furthermore, ech irreducible
component of (PB on U) is ample (by Proposition 5.18). If p p(B),
then Proposition 5.35 proves (5.20). If p p (B) >_ 5, then D _< [B, P]-
by (5.1i) and Proposition 5.39 proves (5.20). Therefore the theorem is true.

6. The case p 3

When p p (B) 3, Proposition 5.29 does not hold and the rguments of
the lst section do not suffice. However, in this cse our Fitting chain is aug-
mented. So we consider the more complicated situation in which"

(6.1) PE is the semi-direct product of a group P of order 3 acting on a non-
trivial group E of prime power order.

(6.1b)
(6.c)
(6.1d)
(6.1e)
(6.1f)
(6.1g)
(6.1h)
(6.1i)
(6.1j)
(6.1k)

We define

(6.2)

Then we have

PROPOSITION 6.3.
D K_ C(P).

PEB is the semi-direct product of PE acting on a group B e (.

F is a subgroup of C (P).
PFBA is the semi-direct product of PFB acting on a group A e et.
V is a finite dimensional Z[PA]-module, for some prime q.
p(E) p(B) 3 p(A) q.
[@(B), E] {1}.
B is a completely reducible Z [PE]-module.
[(A),B] {11.
Each irreducible component of (PB on A is ample.
The representation (A on V) is faithful and wealdy FB-invariant.

D [[B, P], F].

It follows from (6.1,b,c,g) and p(B) 3 that
If all of (6.1) holds, then P, B, A, D, V satisfy (5.1) with p 3.
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Proof. Suppose that (6.1a, b, c, g) hold and p (B) 3. Since PI 3,
we hve [/, p]3 1/. From B e ( aud (1.4b) we conclude that [B, p]3 <
Z (B). It follows that, for each r e P, the map a -- a is a homomorphism
of [B, p]2 into (B). It is clear from (6.1b, c) that tt is F-invariant. By
(6.1c, g), F centralizes t([B, P]2) _< (B). Therefore D _< Kerry, i.e., P
centralizes D. This proves the first statement of the proposition.

If all of (6.1) holds, then (5.1a) comes from (6.1a, b), (5.1b) is the first
statement of this proposition, (5.1c) comes from (6.1d), (5.1d) from (6.1e),
(5.1e) from (6.1f), (5.1f) from (6.1i), (5.1g) from (6.1j), (5.1h) from (6.1k),
and (5.1i) from (6.2) since p 3. So the proposition is true.
Now we may define the families 5, 2, 3E, 9 and the subgroups L, N, Q and

C as in 5. Furthermore, we define U, 9, g, J as in Proposition 5.18.

PnOPOSTON 6.4. D is an F-invariant subgroup of CB(P ). The families
3, 2, E and the subgroup L are PFB-invariant. Hence U is a Z(.)[PFB]-
module and is a PFB-invariant family. The family 9 and the subgroups N, C
and Q are P )< FD-invariant. Hence so are and J.

Proof. The first statement follows directly from (6.1a, b, c), (6.2), and
Proposition 6.3.

The F-invariance of the families , 2 follows from their definitions and
(6.1d, k). They re PB-invriant by Proposition 5.3. Hence they are PFB-
invarint. By (5.5), this implies that L is PFB-invriant. This and (5.7a)
give the PFB-invarince of i)E nd complete the proof of the second statement.
The third statement follows from the second by duality and the definitions

of U nd preceding Proposition 5.1.8.
Both F and D centralize P by (6.1c) and Proposition 6.3. It follows from

this and (5.7b, c) that nd N re P )< FD-invriant. Furthermore, it
follows that 5m,o is P )< FD-invariant. Since Q is the intersection of the
members of m, (by (3.15)), it is P )< FD-invariant. Clearly C (P) is
P X FD-invariant. So (5.11) implies that C is P )< FD-invariant, which
completes the proof of the fourth statement.
The lst statement follows from the fourth by duality and the definitions of

q and J. Therefore the proposition holds.
Instead of (5.20) we now try to establish

(6.5) (F on Dc() is weakly equivalent to (F on Dc( ).
This has the following consequence"

PnoosON 6.6. If (6.5) holds, then (F on D) is wealcly equivalent to
(F on D).

Proof. By (6.1f) the representations (D on fi_ and (D on ) are both fully
reducible. So (5.16) and (5.17) give

(6.7a) Ker (Donfi_) Ker (Don Cx(P)),
(6.75) Ker (D on ) Ker (D on Cx (P)/Cx (P) (Q+)).
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In particular, Ker (D on A

_
Ker (D on C). Therefore we only need to show

that a given non-trivial irreducible component W of (F on D)is Z [F]-iso-
morphic to an irreducible component W of (F on D). To simplify the no-
tation we make the definition"

(6.8) "W DI" means "D1 is an F-invariant section of D and W is Z [F]-
isomorphic to an irreducible component of (F on D)".
The subgroup L is PFB-invariant by Proposition 6.4. Hence so are the

natural monomorphism of Proposition 5.6 and the submodule (L+) of ,5_.
Since (D on fi is completely reducible, we conclude from this and (6.7) that

(6.9a) Ker (Donfi)
Ker (D on Cx (P)/ (CL (P)+)) n Ker (D on (CL (P)+)).

(6.9b) Ker (D on C)

Ker (D on Cx (P)/ (C (P)+))
n Ker (D on (C (P)+)/ (Co (P)+)).

By hypothesis W Dx D/Ker (D on A ). So (6.9a) implies that either
W D/Ker (D on Cx (P)/@ (C (P)+)) or W D/Ker (D on (C (P)+)).
In the former case, W D/Ker (D on ) D by (6.9b), and we are done.
So we may assume that the latter case holds.

Proposition 5.6 says that is a monomorphism. Hence

Ker (D on (C (P)+)) Ker (D on C (P)+).
By (5.21a) this is just Ker (D on Cv (P)). Therefore

W < D/Ker (D on Crs(P))

Now (6.5) implies that W < Dcs() D/Ker (D on Cs(P)). From (5.21b)
we have

Ker (D on Cz (P)) Ker (D on C (P)+/Cv (P)+).
This contains Ker (D on C (P)+/Co(P)+) by (5.10). Since is a mono-
morphism, the last kernel is just Ker (D on (CL (P)+)/q(Co(P)+) ). There-
fore

W D/Ker (D on ,(C(P)+)/q(C,(P)+)).

By (6.9b) this implies that W D/Ker (D on ) D, which completes the
proof of the proposition.

It is clear from (6.1) and Propositions 5.18 and 6.4 that P, F, E, B, U,
satisfy

(6.10a) PE is the semi-direct product of a group P of order 3 acting on a non-
trivial group E of prime power order.

(6.10b) PEB is a semi-direct product of PE acting on a group B (.

(6.10c) F is a subgroup of C(P ).
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(6.10d)
(6.10e)
(6.0f)
(6.0g)
(6.10h)
(6.10i)

U is a finite-dimensional Zr [PFB]-module, for some prime r.
is a PFB-invariant family of non-trivial Zr-subspaces of U.

p(E) p(B) 3 r.
[(B), E]
[ is a completely reducible Za [PE]-module.
U I.

Now we consider the most general, P, F, E, B, U, satisfying these con-
ditions. We define D by (6.2), by (5.19b) and J by (5.19c). Since
(6.10a, b, c, g) are (6.1a, b, c, g), Proposition 6.3 and the definitions of D, , J
imply

(6.11a) D is an F-invariant subgroup of CB (P ),
(6.11b) is a P FD-invariant subfamily of ,
(6.11c) J is a Z [P X FD]-submodule of U.

Of course, we are trying to prove (6.5). We first make some preliminary
reductions to the "minimal case".

LEMMA 6.12. Suppose that (6.5) holds whenever we assume, in addition to
(6.10 ), that

(6.13) / is an irreducible Z3 [PE]-module with [ [, E].
Then (6.5) always holds when (6.10) does.

Proof. Let (6.10) hold. By (6.10h) there exist irreducible Z [PE]-sub-
modules Y1, Yt of/ so that"

(6.14) [ @ .=1 Y (as Z [PE]-modules ).

For each i 1, t, it follows from the normality of E in PE and the
irreducibility of (PE on Y) that [Y, E] is either {0} or Y. We choose the
notation so that [Y, E] Y, for i 1,... s, and [Y, E] {0}, for
i s+ 1,-..,t. Then

(6.15) the natural map of D into [ is a Za [F]-isomorphism of D onto
@ =1 [[Y, p]2, F].

Indeed, by (6.2) the image of/) is [[/, P]2, F], which is

=1 [[Y, P], F]

by (6.14). Evidently[[Y,P],F] [Y,E] {0},fori s + 1,...,t.
So the image of/) is @ ’=1 [[Y, p]2, F].

Since p (E) 3 p (B) by (6.10f), it follows from (6.2) that [D, F] D.
Hence [/), F] /) and C(F) {0}. The kernel of the map in (6.15) is
[D (B)/(D)]+, which is contained in C(F) by (6.10g). Therefore the
kernel is {0} and the map, which is obviously F-invariant, satisfies (6.15).

Let B be the inverse image in B of Y and B [B, E] for i 1, s.
Obviously each B is a PE-invariant subgroup of B. Furthermore
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(6.16) the natural map of [ into [ is a Z3 [PE]-isomorphism of [i onto
Y for i 1, s.

Indeed, the image of this map is [Yi, E] Y, by the construction. The
kernel is [Bin ((B)/(B)]+ which is contained in C (E) by (6.10g). But
p (E) p (B) 3 implies that C (E) 0}. So (6.16) holds.

Fix i 1, s. It follows easily from (6.10) and (6.16) that both (6.10)
and (6.13) hold with Bi in place of B. Let D [[B, p]2, F]. Then our
hypotheses tell us that

(6.17) (F on (D)cv(v))iswealdyequivalentto (F on (D)cj(e)),for 1,...

s. Since J < U we have

Ker (D on Cj(P)) Ker (D on Cv (P)).

So (6.5) will follow once we prove that any non-trivial irreducible component
W of (F on Dc(,)) is Z3 [F]-isomorphic to an irreducible component of
(F on Dcz(e) ). For simplicity we adopt the notation (6.8).
It is clear from their definitions and (6.2) that each D, i 1, s, is a

subgroup of D. So each D(D) is an F-invariant normal subgroup of D.
The ntural image of D in is clearly [[Y, P], F], for i 1,... s. D.
follows from (6.15) that II= (D((D)) covers D/(D) /). Hence D is
the product of its F-invariant normal subgroups D(D), i 1,... s.
Since

W Dcv(e) II.= (Di (D)) cv(.)

we conclude that there is some i 1, s such that W (Di (D))v().
By (1.4b), q)(D) is central in Di(D). By (6.10g) it is centralized by F.
Since (F n W) is non-trivial, we must have W (D)v(e) Then (6.17) tells
us that W (D)j(e). This implies that W Dcs(), which proves the
lemm.
Having reduced/, we now simplify U.

LEMMA 6.18. Suppose that (6.5) holds whenever we assume, in addition to
(6.10) and (6.13) that

(6.19) (PFB on U) is irreducible.
Then (6.5) holds whenever (6.10) is satisfied.

Proof. By Lemma 6.12 it suffices to prove (6.5) under the hypotheses that
(6.10) and (6.13) hold.

Let t be the family of all irreducible Z [PFB]-factor modules of U. We do
not know that (PFB on U) is completely reducible, since p (E) muy equal r.
However, PB is a normal subgroup of PFB by (6.10, b, c) and (PB on U) is
completely reducible, by (6.10f). It follows easily that .ny irreducible compo-
nent of (PB on U) is Z [PB]-isomorphic to n irreducible component of (PB
on Y), for some Y e t. Using the complete reducibility of (P X D on U), we
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see from this that any irreducible component of (D on Cv(P)) is Zr [D]-iso-
morphic to an irreducible component of (D on C.(P)), for some Y e . It
follows that

(6.20) Ker (D on Cv(P)) [’ly Ker (D on C.(P)).

Suppose that W is a non-trivial irreducible component of (F on Dec(e)).
We adopt the notation (6.8). Then we need only show that W G Dcj(p).

By (6.20) there exists some Y such that W Dc,(e). Let 9r be the
family of all non-zero images in Y of elements I e 9. Define qy and Jr by
(5.19b, c) with Y, 9y in place of U, 9, respectively. Then P, E, F, B, Y, 9r
are easily seen to satisfy (6.10), (6.13), and (6.19). By hypothesis, they then
satisfy (6.5). So W G D/Ker (D on Cjr(p)).

It is obvious from (5.19b) that any Ir e qy is the image in Y of some I 09.
It follows that Jy is contained in the image of J. Since (P on J) is completely
reducible (by (6.10f)), this implies that Cr (P) is contained in the image of
Cz (P). Therefore

Ker (D on Cz(P))

_
Ker (D on Cy (P)).

From this and W G D/Ker (D on Cr (P)), we conclude that

W D/Ker (D on Cj(P))

which proves the lemma.
We get rid of the easy cases by

L,MMA 6.21. Suppose that (6.10) and (6.19) hold.
then (6.5) is true.

If [Z (B), P, P] 111,

Proof. Evidently P, B, D, U and 9 satisfy (5.22). Let U1 be an irreducible
Z[PB]-submodule of U. Since (PBF on U)is irreducible (by (6.19))and
PB is a normal subgroup of PFB, any irreducible component of (PB on U)
is Zr [PB]-isomorphic to (U1) , for some F.

Clearly [Z (B), P, P] is an F-invariant subgroup of B. If it centralizes
U, it therefore centralizes each (U) , F. Hence it centralizes U, con-
tradicting our hypotheses. So

[Z (B, ), P, P] >_ [Z (B), P, P] > 1},

for all irreducible Z [PB]-submodules U of U. Now Lemmas 5.25 and 5.33
tell us that (5.20) holds. This and the complete reducibility of (D on U)
imply that Dc() Dcz() So (6.5) holds and the lemma is proved.
We now prove several lemmas under the following hypotheses"

(6.22a) Conditions (6.10), (6.13) and (6.19) all hold.
(6.22b) Ker ((B) onV) {11.
(6.22c) I, (B) 1}.
(6.22d) [ (B), P, P] 1}.

First we draw some routine conclusions.
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LEMMA 6.23. Let (6.22) hold. Then Z (B q(B B’, i.e., B is non-
abelian and special. The representation (Ce(B) (P) on U) is faithful, primary,
and fully decomposable. The groups C(,)(P) and q(B)/[q(B), P] are both
cyclic of order 3. Finally, D n (B) 1}.

Proof. By (6.13) we have [B, E] B. So [BIB’, E] BIB’. Applying
the E-invariant epimorphism z -- z of BIB’ onto q (B)/B’ we get [q (B)/Bt, E]

q(B)/B’. This and (6.10g) imply that (B) B’.

Since q(B) _< Z (B) _< B (by (lAb))and (PE on B)is irreducible (by
(6.13)), either Z(B) B or Z(B) q(B). But Z(B) B implies
1} B’ (B), contradicting (6.22c). Hence Z (B) q (B), and the

first statement is true.
It follows from (1.4b) and (6.10g) that C(,)(P) is central in PFB. Since

(PFB on U) is irreducible (by (6.19)), we conclude that (C(R)(m (P) on U) is
primary and fully decomposable. It is faithful by (6.22b). So the second
statement is true.

Since (B) is a non-trivial elementary 3-group (by (6.22c) and (1.4c)),
the second statement implies that Ce(,)(P)I 3. The other half of the
third statement follows from this since P is cyclic.
From Lemma 5.36 we obtain

[[B, P], [B, p]2] < [q (B), p].+2+l-a [q (B), P]=.
This is 1 by (6.22d). Therefore [B, P]= is an abelian subgroup of B.
p (B) 3 does not divide IF (by (6.10f)), we have

[B, P] [[B, P]2, F] X C,el (F).

Since

The first factor is D by (6.2). The second contains [B, P] n q (B) by (6.10g).
Therefore the last statement is proved and the lemma is true.
The next lemma is merely an aide to the following one.

LEMMA 6.24. Let (6.22) hold. If e D {1} and " is any non-trivial
element of (, Ce(m(P)}, then there is some irreducible component W of
((, C(R)(m (P)) on U) such that neither nor r acts trivially on W.

Proof. Let be a generator for Ce(m (P) (which is cyclic by Lemma 6.23).
Then is central in B (by (1.4b)), so (t, C(R)(m (P)} (, } is abelian. It fol-
lows from the last statement of Lemma 6.23 that (}. This and (1.4d)
imply that (, } <t) )< (} is elementary of order 9.

Let W0 be any irreducible component of ((, } on U). By Lemma 6.23,
((/) on U) is faithful, primary and fully reducible. Hence

Ker ((, } on W0) n (} {1}.
But (, }0 must be cyclic. Therefore Ker ((, } on W0) (/}, for some
i 0,1,2.
The image of in/ lies in C (P) by (6.11a). So the map g -- f, (g, )

is a Za [P]-homomorphism of/ into (B)+. The last statement of Lemma
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6.23 implies that 0. Then the first statement of that lemma says that
g(/) 101. Since PI 3, weconcludethatg(/)n C(B)(P)+ IOl. But
C(m (P)+ is a one-dimensional subspace of (B)+, by Lemma 6.23. Hence
C(m (P)+

_
g (/). Therefore there exists some element e B such that

[, ] .
For each j 0, 1, 2 we have" [8, ’] f, [, J] 1. So normalizes

(8. ). Therefore W W0 " is also an irreducible component of ((8, ) on U).
Furthermore

Ker ((6,/) on W) Ker ((6,/5 on W0)i

((,))= ([’, ])= (+).
Both r and t are non-trivial elements of (, ). Hence we may choose
j 0, 1, 2 so that neither r nor lies in (/(+}. Then W satisfies the condi-
tions of the lemma.
Now comes the key step.

LEMMA 6.25. Let (6.22) hold. Fix a generator r for P.
suppose that we can find an element satisfying

Forany6eD- {1t,

(6.26a) (r-- 1)
(6.26b) f( (r 1 )i, (r 1)’) C(m (P)+, for all i, j O, 1, 2, where

is the image of in [. Then (6.5) holds.

PROOF. If (D on Cj (P)) is faithful, then Dej(v) Dcv(v) D and (6.5)
holds. So we need only prove that each element e D {1} acts non-
trivially on Cs(P).

Fix 6 e D {1}. Choose e B satisfying (6.26). Let B be the inverse
image in B of the Z [P]-submodule (, (r 1 ), (r 1 )) of/t. Then B is a
non-trivial P-invariant subgroup of B containing 8. So P, B, (), U and
satisfy (5.22).
Next we prove

(6.27) (a) X ,I, (B) _< Z (Bx).

Obviously q (B) <_ Z (B) n B <_ Z (B). Since e D 1}, the last statement
of Lemma 6.23 implies that (t. (B)} (8} X q (B). So we need only show
that is central in B. It clearly suffices.to prove that f ( (r 1 , $) 0,
fori 0,1,2. If i>_ 1, then

fB((--- 1)i,g) =f(,$)(r-- 1) =f(,(r-- 1))(’-- 1) 0

by (6.26a, b). If i 0, then (6.26) implies that

fB (’, fB @, " (’rr" 1 ) fB (" (Tr-1 1 )2, f ( (. 1 )271--2,
fB(r-e, ) f(, ),

since $ e C (P). But f is alternating and p (B) 3 is odd. So f (, g)
f, ($, ) implies fB (, $) 0, which finishes the proof of (6.27).
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Let r be an element of B1 having the image in /.
ti (mod (B)). If P centralizes we take

we take r In either case we have

By (6.26),
Otherwise,

(6.28) a
(-1)(-1) (a(-l)) <, Ca(,)(P)) {ll,for i 1, 2.

Indeed, (6.27) implies that C()xa(,)(P) (6} X Ca(,)(P). If P centralizes
r(-l) then r(-1).-1 e (B) n C,(P) implies (6.28) for i 1. If P does not
centrulize r(-i). -1 [ (B), P]. So (6.28)then (6.27) gives 1
for i 1 follows from (6.22d) in this case. Therefore (6.28) always holds for
i=1.
We compute

But a(-l) e (r(-l), (B)) () X (B) g Z (B1), by (6.26a) and (6.27).
Therefore a

(-1) commutes with [a(-1)]-1, nnd we have

O.(r2--1)(r--1) O.(r--1)2T(r--1) [ff(w--1)2]2,
since a

(-1) is centralized by . Therefore (6.28) always holds.
By Lemm 6.24, there is n irreducible component W of

(<, C(,) (P) > on U)
such that neither a

(-’) nor acts trivially on W. We decompose U into ir-
reducible Z [PBi]-modules as in (5.24). There must be some i 1, s,
say i 1, such that W is an irreducible component of (<6, C(,)(P)> on U).
By Lemmu 5.25, P, B, <6>, U and 9, stisfy (5.22). Since <6> is central in
PB (by (6.27) and (6.11)), (U,)<> is a completely reducible primary Z
module.
The element a

(--1)2
e [B1, p]2 acts non-trivially on W. So [B, P] acts

non-trivially on U. Hence (PB on U) is ample and irreducible. There-
fore Cv (P) {0} by Proposition 3.10.
We wish to prove that C (P) {0}. If , then J U and this

follows from the preceding paragraph. So we may assume that .
Fix I e 1. By Lemma 5.32 and (6.27) we have

C, (I) (, Ca(,) (P)} Ker ((ti, Ca(,) (P)} on U)_
Ker ((i, Ca(,)(P)} on W).

We chose W so that a
(-) does not lie in the last group. This und (6.28)

imply that z, I satisfy (5.29) with B in place of B. So Lemma 5.28 tells us
that C (P)

Because acts non-trivially on W, it acts non-trivially on U. Since
(U) () is
acts non-trivially on the non-trivial Z,[(ti)]-submodule C (P). So acts non-
trivally on C,(P), which completes the proof of the lemmu.
One possibility in (6.22) is now easy to handle.
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LEMMt 6.29. If (6.22) holds with [(b(B), P] {1}, then (6.5) is true.

Proof. Let/ be an element of D 1/and be its image in/. By Lemma
6.25, we need only find an element e/ satisfying (6.26) for some generator
r of P. By (6.2), e [/, P] =/ (r 1 )2. So there exists some e/ satisfy-
ing (6.21a). Condition (6.26b) obviously holds, since (B)+ C(,) (P)+.
Therefore the lemma is true.

For the other possibility in (6.22) we need more information about the
tion of P on B.

LEMMA 6.30. Let (6.22) hold with [(B), P] {1}. Then is a free
Z3 [P]-module.

Proof. We may choose a finite algebraic extension field Z of Z3 so that
Z is a splitting field for all subgroups of PE. Since Z is a finite field, Z is
normal separable extension of Z. We denote by G the Galois group of Z
over Z. Then G operates naturally on the extension Z (R) z3 / of/ to
Z[PE] module, by (z (R) )z (zz) (R) , for all z e Z, e B, e G. There are
absolutely irreducible Z[PE]-submodules [1, [t of Z (R) / so that

(6.31a) Z (R) [ f31 @ @ [t (as Z[PE]-modules),
(6.31b) for any i, j 1, t, there exists r e G such that ([i) a is Z[PE]-

isomorphic to

(See Theorem V, 13.13 of [4].
The subgroup E is normal of prime index 3 P in PE. It follows from

Clifford’s theory, (Theorem V, 17.3 of [4]) that there are two possibilities"
either (Z[E] on /) is irreducible, or / is induced from some irreducible
Z[E]-submodule.

Suppose that (Z[E] on/) is irreducible. By (6.31b), (Z[E] on/i) is ir-
reducible, for i 1, t. These modules are absolutely irreducible by the
choice of Z. It follows from this and Schur’s Lemma that

dimz (/ (R) z//[/ (R) /’, E])

___
1, for all i, j 1, ..., t.

Since P 3, the only one-dimensional Z[P]-module is the trivial one.
Therefore P centralizes (/i (R) //[/i (R) /’, E]), for i, j 1, t. This
and (6.31a) imply that P centralizes

(Z (R) $) (R); (Z (R) $)/[(Z (R) ) (R) ; (Z (R) $), El.
Hence P centralizes/ (R) z3 //[/ (R) /, E] But fB defines a Z[PE]-homo-
morphism g of / (R) / into (B)+. By (6.10g), the kernel of g contains
[/ (R) /, E]. Therefore P centralizes the image of g. This image is clearly
(B’)+, which equals (B)+, by Lemma 6.23. By hypothesis, [ (B)+, P] 0/.
The contradiction proves that (Z[E] on/) cannot be irreducible.
We now know that/ is Z[PE]-isomorphic to Y, for some irreducible

Z [E]-module Y1. Therefore (/) is a free Z[P]-module. Hence so is Z (R)
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/, by (6.31). It follows easily that / is a free Z3[P]-module. Therefore
the lemma is true.
We investigate fB (e, ) (mod [ (B)+, P] more closely.

LEMMA 6.32. Let (6.22) hold. Then the function
h (, f, (e, (r 1 + f (, r (r 1 + [ (B)+, P]

is a symmetric, bilinear map of [ [ into (B)+/[(B)+, P]. Its radical is
C (P ). And the subspace [B, P] is h-isotropic.

Proof. The first statement is obvious from the definition of h.
For the second, notice that the Inap

g(e, ) f,(e, ) + [(B)+, P]

is a PE-invariant (by (6.10g)) alternating bilinear map of / X / into
(B )+/[ (B +, P]. Since B’ (B) (by Lemma 6.23), the map g is not

trivial. So the radical of g is a PE-invariant proper subspace of /. By
(6.13), this radical must be {0}, i.e., g is non-singular.
For any e, e/ we compute

(6.33) h(e, ) g(e, (r 1)) + g(, e(r 1))

(, (- 1)) + g((- 1), )

(,( 1)) (, (-’ 1))

(-, (- 1)--’),
using the PE-invariance of G and the fact that PE centralizes (B)/[ (B), P].
Since g is non-singular, we conclude that lies in the radical of h if and only if
/ (r 1 )r-1 0, i.e., if and only if e C (P). This is the second statement
of the lemma.

If e, e B, then

g((- 1), (- 1)) (, (- 1)(-’- 1))

-(, -(- 1)--’) o,
since(r-- 1)3 (r3_ 1) (1-- 1) 0. The third statement of the
lemma follows directly from this and (6.33). So the lemma is true.
At last we can prove

LEMMA 6.34. Let (6.22) hold with [q (B ), P] # {1}. Then (6.5) is true.

Proof. By Lemma 6.30,/ is a free Z[P]-module. So there is some integer
n > 0 such that / has dimension 3n, [/, P] has dimension 2n, and
[/, P] Ca (P) has dimension n. Therefore/1 [/C (P) has dimension
2n.

Lemma 6.32 says that h induces a non-singular symmetric bilinear form hi
on J91 X / to (B +/[ (B +, P]. The latter space is one-dimensional, by
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Lemma 6.23. So we may apply the ordinary theory of quadratic forms to hi.
The subspace [/, P]/[, p]2 is hl-isotropic, by Lemma 6.32, and has dimension
n, which is one half the dimension of/. Therefore there is some comple-
mentary h-isotropic subspace Y such that

Y1 @ [, P]/[, P]
(see Theorem 3.8 of [1]). It follows that the inverse image Y of Y1 in/ is
h-isotropic and satisfies Y -t- [/, P] /.
Now let/t be any element of D, and $ be the image of in/. By (6.2),

$ e [/, p]2. If r is a generator for P, then [/, P] /(r 1)=
(Y + [/, P]) ( 1 )2 y( 1 )2, since [/, P] ( 1)2 =/( 1)3 {0}.
So there exists e Y such that $ ( 1 )2, i.e., so that (6.26a) holds. Be-
cause Y is h-isotropic, we have

0 h (, /) 2f, (, ( 1 -t- [ (B)+, P].

Hence f, (/, ( 1 e [ (B)+, P]

_
Ca(,) (P)+ (by (6.22d)).

We compute

f,(/, (v 1)2) f,((-i 1)., )
f.((r 1)2r-2, )

= ,f. (, - ( ))

(mod [ (B)+, P])

(mod [ (B)+, P])

(mod [ (B)+, P] ),

since f, is alternating, P-invariant, and bilinear, and (7 1) C. (P).
Since 3 is odd, we conclude that f,(, (r 1)2) e [(B)+, P].

Finally, f, (/ (r 1 ), (r 1 )) e [ (B)+, P] by Lemma 5.36. Therefore
(6.26b) holds for 0 _< i < j _< 2. Because f, is alternating, this proves
(6.26b) in all cases. So Lemma (6.25) says that (6.5) holds. This finishes
the proof of this lemma.
We collect the results of this section in

THEOREM 6.35. If (6.1) holds, then (F on D) is weakly equivalent to
(F on D).

Proof. By Proposition 6.6, it suffices to show that (6.5) holds whenever
(6.10) does. Lemma 6.18 says that it is enough to prove (6.5) when (6.10),
(6.13) and (6.19) all hold, i.e., when (6.22a) holds.

The subgroup Ker ((B) on U) is E-invariant (by (6.10g)) and PB-
invariant by (6.10d). It follows that P, F, E, B/Ker ( (B) on U), U, also
satisfy (6.22a). Clearly Dcv(e) and Dcj(p) re unchanged when we replace B
by B/Ker ( (B) on U). So it suffices to prove (6.5) when (6.22a, b) hold.

If (B) 1}, then B is abelian. So

Dv <_ [By, P, P] [Z (By), P, P].

If Dv 1}, then (6.5) holds by Lemma 6.21. If Dv 1}, then (6.5) is
trivial. Therefore it suffices to prove (6.5) when (6.22a, b, c) hold.
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If [4 (B), P, P] {1}, then (6.22b) implies that

11 [(I) (Be), P, P]

_
[Z (By), P, P].

Again Lemma 6.21 proves (6.5). So it suffices to prove (6.5) when (6.22)
holds.

If [4 (B), P] 1}, Lemma 6.29 proves (6.5). If [4 (B), P] 1}, Lemma
6.34 proves (6.5). Therefore (6.5) holds in all cases and the theorem is true.

7. Proofs of the basic theorems
We shall carry out a large part of the proofs of Theorems 2.6, 2.7 and 2.13

simultaneously. For the first two theorems we assume that (2.5) holds. For
Theorem 2.13, we assume in addition that p 3 and that A1, ..., At has
been extended to an augumented Fitting Chain At, ..., At, {B} on which H
also acts.
We may also assume that

_
3 for Theorem 2.6,

_
4 for Theorem 2.7,

and

_
6 for Theorem 2.13. In particular, > i0, where i0 is defined by

(4.19). In view of (2.5c), Theorem 4.20 gives us an integer j satisfying"

(7.1a) l_j_ i0< t.
(7.1b) p(Aj) p.
(7.1c) {0} i’+,ample (defined with respect to (PA on 2i.+)).

This integer j will be fixed throughout this section.
It is convenient to add one more term to our chain. Let q be any prime dif-

ferent from p (At). Form the semidirect product HAt_ At. Let At+ be the
regular Zq[HAt_I A t]-module written multiplicatively. If p (At) 3 and we
are proving Theorem 2.13, let Bt_ At_ and vt- be the identity isomorphism.
Since (At on At+) is weakly invariant under Aut (At), we easily verify that
H, P and At, A t+l or A, At+l, {B} satisfy the hypotheses of our
theorems.
We define subspaces S of A and subgroups E of A by

(7.2a) S. A., E. A.,
(7.2b) S is the sum of all ample irreducible Z(.)[PE_]-submodules of A

for i j + 1, + 1,
(7.2c) E [X, E_], where X is the inverse image in A of S,

fori j + 1, ,t + 1.

Clearly S andE are P-invariant wheneverE is. So it makes sense to form
the group PE_ in (7.2b).

PROPOSITION 7.3. Leti j 1, ..., + 1. Thenboth SandE are HE_-
invariant. The natural map of into fi is an HE-isomorphism of onto
S. Hence E is a direct sum of ample irreducible Z,(.)[PE_]-submodules.
Finally, defining fiI.,,e by (3.15) with respect to (PE on ), we have that
(E_ on A.,,o) is weakly equivalent to (E_ on E).
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Proof. By (7.2a), S and E. are H-invariant. Since HEi_1 acts on fii and
P is a normal subgroup of H, it follows from (3.9) that H permutes the ample
irreducible Z(A)[PE_l]-submodules of fi_ among themselves. Hence HE_I
leaves S invariant. By (7.2c), it also leaves E invariant. This completes
the inductive proof of the first statement.

By (3.9), Ei_ acts non-trivially on any ample irreducible Z()[PEi_I]-
submodule V of fi. Therefore [V, Ei_] V. We conclude that
Si [S, E_] is the image in fii of/i. Since p(A_) p(Ai) (by (2.2b))
we have

[E, Ei_] [X, Ei_l] [X, Ei_]

where X is as in (7.2c). Furthermore, Ei [Ei, E_1] @ C (Ei-). It fol-
lows that C (Ei_) {0} But the kernel of the natural map of Ei into
fiis [Ei n (A)/(Ei)]+, which is contained in C (E_) by (2.2c). There-
fore this kernel is/01 and the second statement is true.
The third statement follows immediately from the second and (7.2b).
Since p(Ai_) p(Ai), the action (Ei_ on 2i) is completely reducible.

It follows that any reducible component of (E_ on fi .m,o) is E_l-isomorphic
to one of (Ei- on S) and henceone of (E_ onEi). The converse is obvious.
So the last statement is true, which proves the proposition.
We define subgroups F by

(7.4a) F.=
(7.4b) Fi C(P) if p(Ai) p and i j + 1, + 1,
(7.4c) F+ C+.e-x(P), if p(A+) p,

p--1(7.44) F [[Ef, P] F_x], if p (A p and i j - 2, ..., + 1.

They satisfy

PtOPOSTON 7.5. For each ] j, ..., - 1, the subgroup F of Ei is
normalized by H and centralized by P. If p(A) p, then F <_ [E, P]-.
If i >_ j q- 1, then F_x normalizes F.

Proof. Since H normalizes P and also each Ei (by Proposition 7.3), it
follows easily from (7.4) and induction that H normalizes each

If F is defined by (7.4a, b, c), then it is clearly centralized by P. Assume
that (7.4d) holds and that P centralizes Fi_l. ThenF_ normalizes [Ei, p]p-i.
Since P is cyclic of order p p(A), we have [/, P] {0}. Hence
[Ei,P]

_
(E) <_ Z(Ei) (by (2.2a)and (1.4b)). For any r eP we easily

compute that/ a -- a is an Fi_-homomorphism of [Ei, P]- into (Ei).
Since Fi-x centralizes eb(E) _< )(Ai) (by (2.2c)), we must have

Fi [ISi, P]-, Fi_x] <_ Ker .
Therefore P centralizes F and the first statement is true.

If (7.4c) holds, then clearly F <_ [E, P]-I. If (7.4d) holds, then
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normalizes [E, piP-1 by the above argument. So the second statement is
true.

If i _> j -- 1, then F_I centralizes P and normalizes E (by Proposition 7.3 ).
The third statement follows directly from this and (7.4). So the proposition
is true.
The sections D are defined in most cases by

(7.6) D (F)+ for i j - 1, t, unless p(A) p 3.
From Theorem 5.40 we get

PROPOSITION 7.7. Suppose that p(A) p and E {1}, for some
i j - 1, ..., t. Then D is F_-invariant. If either p p(A_) or
p p (A_) >_ 5, then D 11 and (F_ on/) is weakly equivalent to
(F_ on b,).

Proof. It is obvious from (7.2) that E 1} implies E_ 1}. From
the first statement of Proposition 7.3 we see that P, B E_I, A E and
V fi+l satisfy (5.1a, c, d). Proposition 7.5 says that D F_ satisfies
(5.1b, i). Condition (5.1e) comes from (2.2b), since p p(A), Condition
(5.1f) comes from (2.2c), condition (5.1g) from Proposition 7.3, and condition
(5.1h) from (2.2d, e ).

By (7.4b) the section C of (5.11) is

Fi/F n Ker (F on

Proposition 7.3 implies that (F on 2:+.m,1o) is weakly equivalent to
(F on/+). Since p (A ) p (A +1) (by (2.2b)), we conclude that

Ker (Fi on fi i+l.,e) Ker (F on/+1).
So (7.6) says that C D.
Now (5.12) tells us that D is Fi_-invariant. The last statement of the

proposition comes from Theorem 5.40. So the proof is complete.
We can now finish the definition of D. Suppose that i j + 1, 1,

and p(A) p 3. Then p(A+) p by (2.2b). So D is defined by
(7.6). If F centralizes E+, then it centralizes D+. If F does not cen-
tralize E+, then E+I {1} and F normalizes D+I by Proposition 7.7.
Since F normalizes D+ in both cases, we may define

(7.8)
(7.8b)

D (F),+, if i j + 1, ..., t-- 1 and p(A) p 3,
Dt- Ft, if p(At) p 3.

The result corresponding to Proposition 7.7 for p (A) p is

PROPOSITION 7.9. Suppose that p (A) p >__ 3 for some i j + 1, t.

If i > j + 1, we also assume that D_ 111. Then Ker (F on E+) 11,
F 11, and (Fi_ on/) is wealdy equivalent to (F_ on

Proof. (E on fi/+l) is faithful by (2.2d). It follows from this and (3.9c)
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that ([Ei, p],-1 on fi_ i-t-l,ample) is faithful. By Proposition 7.3, ([Ei, p]p-1 on
A+l,m,le) is weakly equivalent to ([E, pip-1 on /+1). Since p(Ai)
p(A+), this implies that ([E, p]-i on P2i+) is faithful. Proposition 7.5
says that F

_
[E, P]-I. Hence Ker (F on/+) 1/.

Supposethti =j + 1. WhenA.+,ample {0} by (7.1c). It follows from
Proposition 7.3 that Ey+l {0}. Since E.+ is a sum of ample irreducible
PE.-submodules (by Proposition 7.3) and p (A-) p (by (2.2b)), Proposition
3.10 implies that [/+1, P]- {0}. This and (7.4c) giveF.+ [1/. Since
F- 1} (by (7.4)), this proves the proposition for i j -b 1.

p-Suppose that i > j -[- 1. Since/ is a sum of ample irreducible E_-
modules and F_ C_1 (P), Proposition 3.10 says that (F_I on E) is
weakly equivalent to (Fi_ on [/, p]-l) and hence to

(Fi_l on [[/, P]P-, Fi_I] ).

We know that F_ centralizes F n (E) by (2.2c). It follows from this and
(7.4d) that (F_ on/) is weakly equivalent to (F_ on/). By (2.2b),
p(A_) p(A) p. Therefore D_I (F_) (F_),. Hence
/ {0}, which finishes the proof of the proposition.

In the case of Theorem 2.13 we must lso define sections C of B. They
are given by

(7.10) C Cx (P), where X is the inverse image in B of F, for all relevant
i=j+l,...,t-2.

Since v is a P-epimorphism of B onto A nd p (A) p 3, we conclude
from (7.4b) that

(7.11) vi(C) F,for allrelevant i j- 1, ,t 2.

Theorem 6.35 will give us

PROPOSITION 7.12. Suppose that p(A) p 3 and D_ {1}, for some
i j 2, ..., 1. Then F_ normalizes D, C_ normalizes D+I, and
(F
_
on/) is wealcly equivalent to (F

_
on b).

Proof. Proposition 7.9 tells us that F {1/ and Ker (F on E.) 1}.
Hence E 1/ and E+ 1/. Let E be the inverse image in B_ of E_I,
B be E, F be C_, A be E+ and V be fi/. The augmentation tells us
that PC_ E acts on A+. Since C_ centralizes P, it must leave S and
E+ invariant (by (3.9) and (7.2)). Hence E is PC_ E-invariant, and
(6.1a-e) hold. Condition (6.1f)comes from (2.2b), since p(A) 3. Con-
ditions (6.1g, i)come from (2.2c) Conditions (6.1h, i) come from Proposi-
tion 7.3. Finally, condition (6.1k) comes from (2.2e) and (2.10c).

Evidently (7.11) implies that the group D of (6.2) is the group F defined
by (7.4d). It follows from Proposition 7.3 that the section C of (5.11) is
Di+ (see the proof of Proposition 7.7). So (7.8a) becomes D D.
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Proposition 6.4 says that C_1 normalizes DI and F. Hence it normalizes
D. This and (7.11) imply that F_I normalizes Di.

Since F-I centralizes (Di), the action (F_I on/)) is weakly equivalent to
(F_I on D). Theorem 6.35 and (7.11) sy that (F_I on Di) is weakly
equivalent to (F_ on (F)+1). By Proposition 7.9, the group (F)+ is
just F. Since F_ centralizes (Fi) (by (2.2c)), (F_ on F) is weakly
equivalent to (F_ on F). This, in turn, is weakly equivalent to (F_i on
E) by Proposition 7.9. So the proposition is true.
We must return to the techniques of 5 to prove

PROPOSITION 7.13. If p (Aj+) p 3, then Dj+ 11.
Proof. If j -t- 1 t, this is clear from (7.8b) and Proposition 7.9.

may assume that > j -t- 1.
So we

Proposition 7.9 says that F+ 1} and Ker (F+ on/+) 1/. Hence
E.+. 1}. As in the proof of Proposition 7.7, this implies that P, B E.+I,
A E+, D F.+ and V fi.+a satisfy (5.1)with p(B) p 3 and
q p(A+a). Furthermore, the section C of (5.11) is D-+.. Since D.+ is
given by (7.8a) and F.+I by (7.4c) we are reduced to proving

(7.14) Suppose that (5.1) holds with p p (B 3 and D C,.e (P ).
If D Dz 1}, then D does not centralize .
Next we pass to the situation (5.22). Let the hypotheses of (7.14) hold

with D 1}. Then (5.16) and p (B) p (A) imply that D centralizes
Cz(P)/Cz(P) e(Q+). This and (5.10) imply that D centralizes
C (P)/C (P) e(N+). On the other hand D D is faithfully represented
on fi and hence on Cz(P) by (5.17). So D acts faithfully on C(P) e(N+).
Using the fact that e is a monomorphism (by Proposition 5.6), we conclude
that D acts faithfully on C (P) and centralizes C (P)/C (P). By (5.21),
this implies that D centralizes C (P) and acts faithfully on Cv (P). So we are
reduced to deriving a contradiction from the situation in which

(7.15a) conditions (5.22) hold,
(7.15b) p p(B) 3,
(7.15c) D C,,e (P
(7.15d) (D on Cv (P is faithful,
(7.15e) D centralizes C (P).

We define U, r, i, , J, for i 1, s, as in (5.24) and Lemmu 5.25.
Notice thut (5.26), p r, and (7.15e) imply

(7.16) D centralizes C (P)

_
r(Cz(P) ), for i 1, s.

The next step is to prove

(7.17) (-) Z(B) {1},for all B, eP.

Suppose thtz(-) e Z(B) {11, for somea e B, v e P. If 1, then
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(r(-l) 1. So r 1 and P @>. Sincp p (B) there exists an integer
n >_ 0 such that (r(-l)+ 1, and (r- 1. Replacing (r by (r(-’,
we may assume that (r_)3 1. Then

(r(-) e CEB.P (P) D.

Since (r(’-l)" e D {1}, condition (7.15d) and (5.24) give us an integer
i 1, s such that (r(- does not centralize Cv (P). Hence

0
"Or-1)9

(! Z (B) Ker (B on U).

Furthermore, this and (7.16) give Ji < Ui. So there is some member I of
gi i. Now Lemma 5.32 tells us that (r

(-)" CB(I). Since (r
(-’)"

e Z (B),
we easily compute that (r(-)(-) [(r(-)"]. This does not lie in C(L),
since p (B) 3. Hence (r and I satisfy (5.29). Obviously Ui is a primary
Z[<(r(-l)"}]-module. So Lemma 5.28, applied to ((r(-)"}, tells us that (<(r(-)"}
on Cv (P)) is weakly equiwlent to (<(r(-)"} on C (P)) This is impossible
since (r(-)" centralizes Cz (P) but not Cv (P) and r p (B). Therefore
(7.17) holds
From (7.17) we will conclude that

(7.18) D [B, P] is generated by all (r(’-)", (r eB, r eP.

Suppose that (r eB, r eP, and (r(’-l)’ e [B, P] D. Then r

Hence (r(-) 1 (by (7.15c)). But [/, P] {0}, since p 3 p (B).
Therefore

(r(-"e(B) {1} ___Z(B) {1}

(by (1.4b)), which violates (7.17). We conclude that D contains (r(-l, for
all (r e B, r e P.
The subgroup [B, P] is generated by the elements (r(- and
e B, e P. The first elements lie in D. For the second we compute

(.-1)(,-) (.-),.z(.-) [z(.-)] e D,

since (-) e D is centralized by P. Hence [B, P] N D. TNs and (7.15c)
give (7.18).
Next we show that

(7.19) D n [((r(-l)2}, B] {11, for all (re B, we P.

Suppose that is a non-trivial member of D n [((r(’-)"}, B], for some (r e B,
r e P. Clearly @} P. By (7.15d) and (5.24), we may choose some
i 1, s so that ti acts non-trivially on Cv (P).

Let z, be the images of (r, i, respectively in B Bv. Since ti e D n B’
it follows from (7.15c) and (1.4b) that (} _< Z(PB) n (Bi). Because B
acts faithfully on the irreducibleZ [PB]-module U, the subgroup Z (PB) n B
is cyclic. From this, 1, and (1.4c) we conclude that

(} Z(PBi) n (Bi) C(,)(P).
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Since a e [(-)}, B], there exists n element r e B so that rz(-)" ] a
ff
(--1)Hence (B). It follows from this, (1.4d) and (7.20) that

Y (a-)) X (a) is an elementary abelian r-invriant subgroup of order 9 in
B. Clearly

ffr--l) (--1) (z--l)
ia ] (mod (B)).

( -1) (-1)So 1. Furthermore, (7.15c), (7.18) and (7.20) give

La ]-: e

Therefore both =-) and =-)(=-) are non-trivial elements of Y.
Let W be an irreducible Z [Y]-submodule of U. Since a is central in

PB and (PB on U) is irreducible, we know thut ((a) oa U) is primury,
completely reducible, and non-trivial. Hence ((a) on W) is non-trivial and

/q(=-1)Ker (Y on W) x a), for some e 0, 1, 2. Because r normalizes Y,
the translate Wr is also n irreducible Z [Y]-submodule of U, for each
k 0,1,2. But

Ker (Y on Wr) [Ker (Y on W)]
Wi(=-)aiera(=-)=iai, k]) Wi(=-)=aio+

(=-1) (=-1) (=-1)Therefore we may choose W so that neither a nor lies in Ker (Y
on W).
By (7.15c), (3.9), and the fact that a 1, the action (PB on U) is

ample. Proposition 3.10 says that we may take W Cv (P). The complete
reducibility of (Y on C= (P)) gives us Z [Y]-submodule X of Cv, (P) so
that

Cr: (P W @ X (as Zr [Y]-modules.

Since ((a) on U) is primary, completely reducible, and non-trivial, (7.16)
implies that Cz, (P) {0/. By (5.22e) and (5.19), this gives

Therefore there is some I e whoseproiection(I-b X) W is non-
trivial. We conclude that Cr(I)

_
Ker (Y on W). In particular, neither

(-1). nor (-1)(-1) lies in Cr (I). Hence , I satisfy (5.29).

Lemma 5.28, applied to (a), tells us that C (P) {0}, contradicting a state-
ment above. Therefore (7.19) holds.
Now we finish the proof of Proposition 7.13. By (7.15c) and (7.18) there

exists some a e B, r e P such that z
(-1) 1. We compute

(-1)(-) a(-)(-).[z-]-
O.(r--1)’T(r--1)2[O.(r--1)2 (0.r2--’)--l].

It follows from this and (7.18) that

[a(’-), (a"-’)-1] e D n [(a(-)’), B].
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So (7.19) gives

(7.21) [a(-n, a-] [a(-)’, (a-)-. a(-n"]- 1.

Next we compute

(-1)(-,) (-)-[-,
a(-)a(-n[a-, a-](-n (by (7.21)).

This and (7.18) give [a-, a-](-n e D. But

[ft.--l, if--l] (--1) [ff(v--1), ff--] [fly--l, ff--1]--1
[(’-) , -’][’-, -’+]
[(-’, ].

Therefore (7.19) gives

1 [- -]- [-)-’ ] [- ].

We conclude from this and (7.21) that a(-l) lies in the center of the group
--1 q(--l)B (a,a (B)).

Obviously a(-n e D C,.e (P) D. Therefore P, B, D, U and also
satisfy (7.15). But ac-n e Z (B) 1 violates (7.17). Ts final contra-
diction proves that (7.15) is impossible and that Proposition 7.13 is true.

Proofs of Theorems 2.6 and 2.7. In these cases either p(A) p or
p (A) p 5, for all i 1, t. So D is always defined by (7.6).

Weknowfrom (7.1c)andProposition7.3thatE+ {1}. If p(A+) p,
then Proposition 7.7 implies thut D+ {1}. If p (A+) p, then D+
F+ {1} by Proposition 7.9. So D+ {1} in both cases.

Suppose thatD_ {1},forsomei =jW 2,.-.,t. ThenE {1} by
(7.6). If p(A) p, thenD {1} by Proposition 7.7. If p(A) p, then
D F 1} by Proposition 7.9. So D 1} in all cases.

(7.22a) D {1},foralli =j+ 1,...,t.
.(7.225) E {1},foralli =j+ 1,...,t.

Now Proposition 7.9 implies thut D F whenever p(A) p. From
this, Proposition 7.5 and Proposition 7.7 we hve

(7.23) F_ normalizes D, for i j 2, t.

In view of (7.22), Propositions 7.7 and 7.9 also tell us that

(7.24) (F onE) is weakly equivalent to (F on D), for i j + 2, t.

We shall use Proposition 2.3 to show that D+, D is a Fitting sub-
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chain of A+I, At. We must verify (2.4).
Condition (2.4a) comes from (7.22a).
If i j -b 2,..., t, then F_I normalizes D by (7.23).

p(A_) p(A), it follows from (7.24) that

Ker (F_ on F) Ker (F_ on/)) Ker (F-1 on D).

Since

This and (7.6) imply that D_ normalizes D and Ker (D_ on Di) /1},
which are (2.4b, c).
Let i .7" - 3, t. By (2.2e), (E_I on i) is weakly F_.-invariant.

Since F_2 centralizes P (by Proposition 7.5), it follows easily from (3.9) and
(3.15) that (E_ on A.mplo) is weakly F_.-invariant. By Proposition 7.3,
(E_ on E) is weakly F_-invariant. Hence (F_ on E) is weakly F_-
invariant. By (7.24), (Fi_ on /)) is weakly F_2-invariant. Therefore
(Di_l on /)) is weakly D_:-invariant, which is (2.4d).
Now D-+I, D is a Fitting subchain of Aj+,_, At by Proposition

2.3. Proposition 7.5 and (7.6) imply that P centralizes each Di. Since H
normalizes each F (by Proposition 7.5) and E+ (by Proposition 7.3), it
normalizes each D (by (7.6)). From (7.1a) and (4.19a, b) we see that
j 1 _< 3 in the case of Theorem 2.6 and j -t- 1 _< 4 in the case of Theorem 2.7.
So Da, D (respectively D, D) satisfy the conditions of Theorem
2.6 (Theorem 2.7). This completes the proofs of these theorems.

Proof of Theorem 2.13. In this case p 3.

We know from (7.1c) and Proposition 7.3 that E.+ 1}. If p(A+) p,
then (7.1b)and Proposition 7.7 give D.+ /1}. If p(A) p 3, then
D.+ {1} by Proposition 7.13. So D. 1} in both cases.
Suppose thatD_l /1},forsomei =j 2,.-.,t. ThenE {1} by

(7.6) and (7.8). If p (A_) p p (A ), then D 1} by Proposition 7.7.
If p(A_) p, then (7.8a) and D_ /1} imply that D {1}. If
p (A) p and i t, then D F 1} by (7.8b) and Proposition 7.9. If
p (A) p and i < t, then (7.6) and Proposition 7.12 give

{11 D_ (F_), (F_1)5.

Hence D 11 in all cases, so that (7.22) holds.
Now Propositions 7.7, 7.9, and 7.12 tell us that (7.23) holds. In place of

(7.24), they now give

(7.25) (F_ on /) is weakly equivalent o (F_ on /)), for all
i j + 2,..., such tha p(A_) 3.

In addition, Proposition 7.12 says that

(7.26) C normalizes D+2 for each relevant index i j - 1, 2.

We shall use Proposition 2.11 to show that D.+I, D,, {C} is an aug-
mented Fitting subchain of A+, A,, IBm}. We must verify (2.12).
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Condition (2.12) comes from (7.22a).
If i j -t- 2, nd p (A_) 3, then (2.12b, e) come from (7.25) as

(2.4b, c) cme from (7.24). If p (A_) 3, they come from the definition
(7.8) and the remarks preceding it.
Condition (2.11c)comes from (7.11)and (7.6).
Condition (2.12d) is (7.26).
Condition (2.12f)comes from (7.25)as (2.4d)cme from (7.24).
Let i j -t- 1, 3 be relevant index. It follows from (7.11) and

Proposition 7.3 that C normalizes E+. Since C centralizes P (by (7.10))
it must permute the mple irreducible Z(+)[PE+]-submodules
among themselves. So it leaves S nd E invariant. It follows from
(2.10c) that (E on fi+) is weakly C-invariant. Since C centralizes P,
it follows that (E+ on fi +.,,) is wekly C-invariant. By Proposition 7.3,
this implies that (E on E) is weakly C-invariant. Hence so is
(F+ on/a). Since p(A+) p(A+) 3, it follows from (7.25)that
(F+ on/)+a) is weakly C-invariant. This proves (2.12g).
NowD+ Dr, C} is an augmented Fitting subchain of A+ At,

{B} by Proposition 2.11. Proposition 7.5, (7.6), nd (7.8)imply that P
centralizes each D. By (7.10), P centralizes each C. Since H normalizes
each F (by Proposition 7.5) and E (by Proposition 7.3), it follows easily
from (7.6) and (7.8) that it normalizes each D. Since H normalizes each
B and P, it normalizes each C (by (7.10)). From (7.1u) and (4.19c) we see
that j + 1 _< 6. Therefore D, Dv, Dr, {C} satisfy the conditions of
Theorem 2.13. This completes the proof of that theorem.

8. Thompson’s conjecture
We first prove Thompson’s coniecture in the special cse of solvable groups

G whose Carter subgroups have normal complement. We use the following
lemm, which was mentioned to me by R. Carter"

LEMMA 8.1. Let G be a finite solvable group whose Carter subgroups have a
normal complement K. Let H be a Carter subgroup of G and L be an H-invariant
subgroup of K. Then H normalizes some Sylow system of L.

Proof. Since H is Carter subgroup of G and H

_
HL, it is u Carter sub-

group of HL (see Lemm VI, 7.9 and Theorem VI, 12.2 of [4]). So there is
system normlizer N of HL contained in H (see Theorem VI, 12.8 of [4]).
Let C/D be ny chief section of H. Then CL/DL

_
C/D is chief section of

HL, since L is complement to H in HL. Clearly the nilpotence of H makes
CL/DL central chief section of HL. So it is covered by N (see Theorem
11.10 of Chapter VI of [4]). Hence N covers every chief section C/D of H.
Therefore N H. If {S} is Sylow system of HL normalized by N H,
then {L n S} is Sylow system of L normalized by H. So the lemm is true.

To construct H-inwriant Fitting chains we use

LEMMA 8.2. Let K be afinite solvable group and H be a group acting on K and
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leaving fixed some Sylow system of K. Then there exist sections A C/D of
K, for i 1, h h(K), satisfying:

(8.3a)
(8.3b)
(S.3c)
(8.3d)
(8.3e)
(s.3)
(S.3g)
(8.3h)
(8.3i)

Aea, for i 1, h.
Ais H-invariant, for i 1, h.
p(A) p(A+l),for i 1,..., h 1.
C normalizes A, for 1 <_ i <_ j <_ h.
D Ker (C on A+I), for i 1, h 1.
D {1}.
(H. IIi< C on fih) is irreducible.
[)(A+I), C] {1},for i 1, ..., h- 1.
c _< F(K).

Proof. We use induction on h.
h 1, let C1 be any minimal H-invariant subgroup of K and D1 1}.
relevant conditions (8.3) are immediately verified in this case.

If h 0, there is nothing to prove. If
The

Now assume that h > 1 and that the lemma is true for all smaller values of h.
Since F(K) is a characteristic subgroup of K, the group H acts on
K* K/F (K). The images in K* of the groups forming an H-invariant
Sylow system of K are obviously the members of an H-invariant Sylow system
of K*. For each x a, b, i, let (8.3x)* be (8.3x) with K, A., C., D., h
replaced by K*, A, C, D, h 1, respectively, for all indices j. Clearly
h(K*) h 1. So induction gives us sections A C/Di of K*, for
i 1, h 1, satisfying (8.3)*.,

Let S be a p (Ah_)-Sylow subgroup of K belonging to a Sylow system fixed,
by H. Then S n F2 (K) is an H-invariant p (A_)-Sylow subgroup of F2 (K),
and N N(S n F(K)) is an H-invariaut subgroup of K. Consider-
ing S nF(K) as a p(A*_l)-Sylow subgroup of the normal subgroup
(S a F: (K))F (K) of K, we see by the Frattini argument that NF (K) K.
We denote by the natural epimorphism of N onto K/F (K) K*.
For each i 1, h 2, we define C and D to be the inverse images

under of C, D*, respectively. Since defines an H-isomorphism of
N/N F (K) onto K*, we see from (8.3)* that those parts of condition (8.3)
involving only those C, D and A C/D with i

_
h 2 are all satisfied.,

The image (S n F (K)) is the p (A_)-Sylow subgroup of F (K*)
F(K)/F(K). From (8.3f, i)* we see that C*

_ _
q (S a F (K)). Let C_

be the inverse image in S F2 (K) of C*
_

under . Since N is the normulizer
of S a F(K), it follows from (8.3b, d)* that H. IIi<h_ C normalizes C_1.
Because A_ e a, we have A_ 1} (by (1.4a)). It follows that

C_ > SaF(K)Ker SnF(K)..So there must exist some prime p p (A-) such that C_1 does not centralize
the p-Sylow subgroup T of F(K). Then H.]I< c normalizes T and
[T, Ch_] 1/. The Hall-Higmau theory (see Theorem III, 13.5 of [4] gives
us an H. II< C-invariant special subgroup C of T such that (H. II< c
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on ) is irreducible, (C_ on C) is non-trivial, nd [(C), C_] I1}. If p
is odd, we even hve exp (C) p. Hence C e a.
Now define D_ by D_ Ker (C_ on C). Since F (K) is nilpotent nd

p p (A_), the subgroup S F (K) centralizes T. So D_ >_ S a F (K).
But S a F (K) is the kernel of the ntuml epimorphism of C_ onto A_ (by
(8.3f)*) The image E ofD_ in *A- is evidently H. IX<- *C-mvrmnt nd
not equal to A-. By (8.3g)* we must hveD_ _< (A*_). Defining A_
to be C_/D_, we see that induces nturl isomorphism of fi_ on
toil_*

Condition (8.3)ori h- 1 comes from 1 < A_ A_/E nd (1.5).
Condition (8.3b) for i h 1 comes from the construction of C_ nd D_.
Condition (8.3c) for i h 2 comes from (8.3c)*, since p (A_) p (A_)
nd p (A_) p (A_). Condition (8.3d) for j h 1 comes from the
construction of C_, D_. Condition (8.3e) for i h 2 comes from
(8.3e)*, since p (A_) p (A_) implies

Ker (A_ on A_) Ker (A_ on A_)
nd

Ker (A-. on A_) Ker (A_ on A_)

nd induces n isomorphism of Ker (A_ on fi_) onto Ker (A’_ on
Finally, condition (8.3h)for i h- 2 comes from (8.3h)*.

Set D {1} nd A C/D. The constructions of A nd D_ give
those conditions (8.3) involving A, C or D with no difficulty nd complete
the inductive proof of the lemm.
Now we cn prove the special cse of Thompson’s coniecture.
THEOREM 8.4. Let G be a finite solvable group whose Carter subgroups have

normal complement K. If H is a Carter subgroup of G, then h(K) <_
5 (2() 1).

Proof. By Lemma 8.1, H normalizes a Sylow system of K. So Lemma 8.2
gives us chuin A, A, h h (K), of sections of K sutisfying (8.3). By
(8.3d, e), A normalizes A, for i 1, ..., h- 1. We claim that
A, A with these actions is u Fitting chain, i.e., that it satisfies (2.2).
Indeed, property (2.2u) comes from (8.3), property (2.2b) from (8.3c),
property (2.2c) from (8.3h) and property (2.2d) from (8.3e). Since C nor-
realizes both A and A +. (by (8.3d)), the action (A+ on A+) is C-in-
variant and therefore A-invrint. So (2.2e) holds, and A, A is an
H-invariant Fitting chain (by (8.3b)).

Let i 1, 2, 2 be relevunt index. By Lemmu 8.1, H leaves in-
variant some p(A)-Sylow subgroup B of C. Let be the natural epi-
morphism of B onto A C/D. By (8.3d), B normalizes

This gives as natural action of B on A. Clearly B satisfies (2.10a,b).
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Since BiAi+2 acts on A i+3, condition (2.10c) is also satisfied if i

_
h 3.

The H-iavariance of B implies that A1, Ah, B} is an H-invariant aug-
mented Fitting chain.
Because H is a Carter subgroup of G and H n K 1/, it centralizes no non-

trivial section of K. Furthermore, H is nilpotent. So Theorem 2.14 tells us
that h

_
5 (2(H) 1), which is this theorem.

At last we hve

THEOREM 8.5. Let H be a Carter subgroup of a finite solvable group G. Then
h (G) __< 10 (2(") 1) 41 (H).

Proof. By induction on l(H). If l(H) 0, then H {1} and
G {1/. Soh(G) 0 10(2- 1)-4.0, and the theorem is true in this
CS.

Now assume that > 0, and that the theorem is true for all smaller values
of (H).

Fix a Carter subgroup H of G. The Fitting series satisfies

{1} Fo (G < FI (G ( (F(G) G,

where h h (G). So there exists an integer/ >_ 0 such that

(8.6) F(G) aH
(8.6b) F+(G)H {1}.

Let G G/F+ (G). The image H of H in G is Carter subgroup of
G1 (see Lemma VI, 12.3 of [4]). By (8.6b) we have l(H) < /(H).So in-
duction gives

h(G) h- k-- 1 <_ 10(2’(") 1) 41(H)
(8.7)

_< 10(2-- 1) --4(/- 1).

The subgroup G H.F (G) contains the Crter subgroup H of G. So H
is Carter subgroup for G2 (see Lemma VI, 7.9 and Theorem VI, 12.2 of [4] ).
Clearly (8.6a) says that F (G) is a normal complement to H in G. From
Theorem 8.4 we conclude that h (F (G)) /c

_
5 (2 1). Adding this to

(8.7) we get

h= l--k k-b (h-k-1)

_< 1 + 5(2- 1) + 10(2-- 1) -4(/- 1) 10(2- 1)

So the theorem is true.
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