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1. Statement of results
Let A be a uniform algebra on the compact Hausdorff spce X, that is, A

is a closed subalgebra of C (X) which separates the points of X and which
contains the constants. The maximal ideal space of A will be denoted by
M. The Shilov boundary of A will be denoted by bA.
The A-convex hull/ of a closed subset E of X is the set of all eM

which extend continuously to the uniform closure (A I)- of the restriction
algebra A I in C(E). Equivalently, e/ if nd only if I(f)

_
ilf lI for

all f e A. The maximal ideal space of (A I)- can be identified with /.
The first two results extend theorems in [9] and [14].

THEOIE 1. /f {E} is a closed cover of X such that A I is closed in
C (E), 1

_
j < oo, then M [J.

THEOREM 2. If {E.} is a closed cover of X such that A I C(E),
1 _j < oo, thenA C(X).

The next theorem extends a result of Stolzenberg [11]. If f C(M),
let [A, J] denote the uniform algebra generated by A and f on M.
THEOREM 3. Let {E}- be a closed cover of M.. If f e C(M.) satisfies

f l.eA l, 1

_
j < oo, then b[A, f] bA and M../] M,.

The remaining results deal with the situation in which, instead of assuming
thatf ] e A ]., we assume that f I e (A Is)-. That is, instead of assuming
that f belongs to A on E, we wish to assume that f is uniformly approximable
on E. by functions in A.

THEOREM 4. Let E E.} be a closed coer ofM. and let g e A. Iff e C (M)
satisfies f [j e (A [)-, j 1, 2, and f Ix g Ix, then f =-- g.

THEOREM 5. Let {El, E.} be a closed cover of M. If f e C (M.) satisfies
f lj (A I)-, J 1, 2, then MA.fl M..

In Theorem 5, it is not necessarily true that b[A, f] bA, even if A is the
algebra P (A) of functions continuous on the disc A {I z

_
11 and analytic

on the interior of A. Also, Theorems 4 and 5 cannot be extended to closed
covers of M by three sets, even if A P (A).
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2. Proofs of the theorems

It will be convenient to introduce first some of the ingredients of the proofs.
A positive measure on X is a Jensen measure for e Ma if Jensen’s in-

equality is valid"

log o(f) _< f log If] du, f e A.

Each e Ma has a Jensen measure on X, and every Jensen measure for is a
representing measure for , that is, satisfies q (f) f f d, f e A (cf. [3] ).

GLI(3KSBERG’S LEMMA [7]. Let U be a relatively open subset of bA. If f A
vanishes on U, then f also vanishes on the set V Ma\ (bA\U)^. Moreover, V
is an open subset of Ma and V n U is dense in U.

The lemma is proved by noting that if is a Jensen measure on bA for
q e M, and if (bA\U)^, then tz cannot be supported on bA\U. Conse-
quently (U) > 0, and

o(:) --< exp f log lfl d 0

whenever f e A vanishes on U. The last statement of the lemma follows from
the fact that bA is a minimal closed boundary for A.
Another prime ingredient is Rossi’s local maximum modulus principle [8],

which states that for any closed subset E ofM we have

(L) b[ (A In)-] (E n bA u bE.

Proof of Theorem 1. Let e Ma, and let ts be a Jensen measure on X for .
Since X U.I E., there is an index m such that tz (Era) > 0. With A de-
noting the kernel of , either A Im A Im or A Im is a maximal ideal in

IfAlm Aln., there is afunctiongeA such thatgi 1. Then
log (1 g)[ 0, while f log 1 g dz oo. This contradicts Jensen’s
inequality.

It follows that A, 1. is a maximal ideal in A [,, and so e/m.

Proof of Theorem 2. By the theory of anti.symmetric sets [6], we can assume,
restricting A to a maximal set of antisymmetry, that the only real-valued
functions in A are the constants.
From A Ij C (E.), it follows that/- E.. By Theorem 1,

Ma UIE X.

By the Bire etegory theorem, there is n index m such that int (E) is not
empty. Since A Im C (E), every eompaet G-set F int (E) is a local
pek set for A. By Rossi’s local pek set theorem [8], F is pek set of A.
By [6], u belongs to A whenever u e A, this for 11 eompet Gn-sets
F int (E). It follows that every u e A" stisfies u (int (Era)) 0.
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Let f be a real-valued function in C (X) such that f 0 off int (Era), while
f does not vanish identically. Then f f d 0 for all e A’, so f e A. By
antisymmetry, f is constant, and this constant is not zero. Consequently
Xiat (Era) is empty, and X int (E) must consist of ust one point. Evi-
dently A C(X).

Proof of Theorem 3. Suppose that b[A, f] bA. By the Baire category
theorem, there is aa index m and a non-empty relatively open subset U of
b[A, J\bA such that U

_
E. Choose f e A such that f f on Era. By

the Glicksberg lemma, f f vanishes on an open subset V of M such that
V n U is dense in U. By LMM, b[A, f] cannot meet V\bA. This contradicts
the fact that V\bA contains the non-empty subset U n V of b[A, f]. Hence
b[A, f] bA.

To show that MEa,] M, we employ an elegant argument due to Quigley
(unpublished). Let " MEa, -- M be the natural projection, which re-
stricts the homomorphisms in [A, f] to A. Let be the Gelfand transform of
the function g e [A, f]. If g e A, then g o r. Now ] o r belongs to [A, f]
on each set of the closed cover {-(E)} of M,]. Applying what we
have already proved to the algebras [A, ]], and [A, ], f o ], considered as uni-
form algebras on M,], we find that b[A, ], f o r] b[A, ] bA. Since
] f o r vanishes on b[A, , f o ], f o r must vanish on M,},o

___
M,].

Consequently f o , and is constant on each fiber - (x). It follows that
is one-to-one, and M,] M.

Proof of Theorem 4. We can assume that X bA. Replacing f by f g,
we can assume that f vanishes on bA. We must show that f ---- 0.

Let E M\intf- (0), and let B (A [])-. By LMM, bB bA t b.
So f vanishes on bB. Replacing A by B and E. by E. /, we can assume that
M is the A-convex hull of the set/f 0}.
By LMM, b (A )- (E bA t bE. Consequently bA int E. is a

relatively open subset of b (A !)- on which f vanishes. Since f e (A [)-,
we can apply the Glicksberg lemma and deduce that f vanishes on the subset
of E which does not meet the (A I)--convex hull of bE.. Consequently f
vanishes oa E.\ (bE)" E\]. So f vanishes off/. Since the A-convex
hull of/f 0} is M, we must have M /. Consequently bA

_
E.

Now take f e A such that f converges uniformly to f on E. Since f -- 0
uniformly in bA, we obtainf -- 0 uniformly on M4. Hencef 0.

Proof of Theorem 5. Theorem 5 follows from Theorem 4 and Quigley’s
argument, as in the proof of Theorem 3. In fact, let be the natural pro-
jection of M.] onto M. Thenf o r is uniformly approximable by [A, f] on
the closed sets - (E) and - (E), and f o agrees with the function
]e [A, f] on M

_
b[A, f]. Consequently f o ], and is constant on each

fiber - (x), x eM SoM M.
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3. Examples
Let K be a compact subset of the complex plane. By P (K) we denote the

subalgebra of C (K) of functions uniformly approximable on K by polynomials
in z. Mergelyan’s theorem states that P (K) consists of precisely the func-
tions in C (K) which are analytic on int (K), providing the complement of K
is connected.
A dirichlet algebra on X is a uniform algebra A on X such that Re (A) is

uniformly dense in C(X). By the Walsh-Lebesgue theorem, P(K) is a
dirichlet algebra on bK whenever the complement of K is connected.
We will base the examples on the following theorem.

THEOREM (Browder-Wermer [5]). Suppose A and B are dirichlet algebras
on X, such that every measure in A" is mutually singular with every measure in
B’. Then A n B is a dirichlet algebra on X, and (A n B )" is the vector space
direct sum of A" and B".

Let A be the closed unit disc {I z - 1}, and let bA be its boundary {1 z 1}.
Then P (bA) has maximal ideal space A, and we can identify P (hA) and

LEMMA 1. There is an arc F joining --1 to - 1 through int (A), dividing
int (A)\I’ into two components D+ and D_ such that the harmonic measures on

bD+ for points in D+ is mutually singular with the harmonic measures on bD_ for
points in D_.

This lemma will not be proved, as the same type of construction was made
for essentially the same purpose by Browder and Wermer [4]. It is a conse-
quence of the existence of a quasiconformal homeomorphism of the upper half-
plane whose derivative vanishes almost everywhere along the real axis [1], to-
gether with the fact that one can weld conformal structures together if the
boundary identification arises from a quasiconformal homeomorphism (cf.
[10] for the welding problem, especially Lemma 3).

LEMMA 2. Let F be the arc of Lemma 1, and let X F t bd. Let B be the
algebra of functions in C (X) which extend continuously to A to be analytic on
A\X. Then B is a dirichlet algebra on X.

Proof. Let B+ be the algebra of functions in C (X) which extend analyti-
cally to D+. Then B/ consists of the functions in P (/)+), extended in all
possible continuous ways to X\bD+. Consequently B+ is a dirichlet algebra
on X. Every measure on X orthogonal to B+ is absolutely continuous with
respect to harmonic measure for D+ (cf. [2]).
The algebra B_ is defined analogously. Then B B+ n B_. In view of

Lemma 1, every measure in B is singular to every measure in B+/-. By the
Browder-Wermer theorem, B is a dirichlet algebra on X.

Example 1. Let 1 be the arc of Lemma 1. In view of Lemma 2, there is

f C (A) such that f is analytic on D+ D_, while f attains its maximum
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modulus on a subset of X\b/. Then the Shilov boundary of [P (d), f] must
be strictly larger than bA bP (A). By Mergelyan’s theorem, f can be ap-
proximated uniformly by functions in P (A) on each of the sets/)+,/)_. This
shows that no statement about the Shilov boundaries can be made in
Theorem 5.

For the second example, we start with three half-open arcs 11, 1%, 13 in
int 4, such that each I’y begins at z 0 and continues through the sector
(j 1)2r/3 < arg z < j2/3 so that it clusters on the arc

{e" (j- 1)2/3

_ _
j2/3}

on the circle. Then int 4\ (rlu F2 u I’3) consists of three components
U, U, U.
The sets , 2, a form a closed cover of 4. The complement of each . is

connected. By Mergelyan’s theorem, every function in P (y) can be ap-
proximated uniformly on Uy by functions in P (/x).
The harmonic measure on bUy for points in U. is supported on the set of

points in bUy which are accessible from Uy (cf. [2]). By construction, only
three points on b/ are accessible from the sets Uy. Consequently the har-
monic measures for the U. are supported on the arcs F..
LEMMA 3. The arcs F F F can be chosen so that, in addition to the topo-

logical properties described above, the harmonic measure on bUy for points in Uy is
mutually singular with harmonic measure on bUk for points on Uk j .

Proof. This can be accomplished by first drawing smooth guide arcs with
the desired topological properties, covering the guide arcs with discs which
overlap only at their boundary points, and then replacing the segment inside
each disc by the arc r of Lemma 1. We have already shown that bA cannot
carry any harmonic mass. Neither can the countable set at which the discs
used in the construction touch. Since the harmonic measures are locally
mutually singular on the remainder, they are mutually singular.

LEMMA 4. Let the arcs F F2, F be as in Lemma 3. Let

X bAtFuF2uF,

and let A be the subalgebra of C (X) of functions which extend continuously to A
to be analytic on A\X. Then A is a dirichlet algebra on X. Moreover, bA is a
peat set for A. (In fact, bA is a peat interpolation set for A.]

Proof. Let A be the subalgebra of C(X) of functions which extend
analytically to Uj, so that A A1 n A n A3. Each A. is a dirichlet algebra
on X. By [2], every measure in A is absolutely continuous with respect to
harmonic measure on bUy for points of U. By the Browder-Wermer theorem,
A A -t- A. - A. EveryA’stisfies[l(bA) 0, because of the
correspoading fct for the harmonic measures. By [6], bA is a peak set for A.
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Example 2. Take g e A to peak on bA, and set f 1 g. Thenf vanishes
on bA. Mergelyan’s theorem shows that f is approximable on each of the sets
1, 2 and by functions in P (A). However, f-1 (0) bA is not P (A)-
convex. By the following lemma, MtP(),f] is strictly larger than A. And so
Theorems 4 and 5 do not extend to closed covers by three sets.

LEMMA [13]. Let A be a uniform algebra, and let f eC(M.).
M.,f] M. then each of the level sets off is A-convex.

Proof. Suppose the level set f- (a) is not A-convex. If

ff- (.),

then the functional P (k0 gkf) =0 (g)a, g e A, determines an ex-
tension P e ME,/] of which does not coincide with evaluation at .

It might be coniectured that if each level set of f were A-convex, then
ME,/] would coincide with M. That this is not the case is demonstrated by
the function f (z) z, z e A, which is a homeomorphism of the unit disc A,
but which satisfies Mp().f] A.
We remark that S. Scheinberg has modified an unpublished example of J.

Wermer, connected with the main theorem of [12], to produce a polynomial f
on degree five in z and such that f is one-to-one on A, Of/O does not vanish,
and Mr(),/] is strictly larger than A. The polynomial is

f(z) z + (z 1)(z + i)/1000.

Note added in proof.
(unpublished).

R. Mullins had independently obtained Theorem 2
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