FURTHER GAPS IN THE DIMENSIONS OF TRANSFORMATION GROUPS

BY
L. N. Mann ${ }^{1}$

Introduction

It is well known [3] that if a compact Lie group G of homeomorphisms acts effectively on a connected m-manifold M,

$$
\operatorname{dim} G \leq m(m+1) / 2
$$

In addition, it has been observed previously [5, Chapter IV], [4] that the dimension of G cannot fall into the following two ranges:

$$
\begin{array}{cc}
(m-1) m / 2+1<\operatorname{dim} G<m(m+1) / 2 & (m \neq 4) \\
(m-2)(m-1) / 2+3<\operatorname{dim} G<(m-1) m / 2 & (m \text { large })
\end{array}
$$

In [2] we showed that the above two ranges of gaps in dimensions are part of a general pattern. Specifically we established the following result [2, Theorem 2].

Theorem A. Let G be a compact Lie group acting effectively on a connected m-manifold M. Then if the dimension of G falls into one of the following ranges:

$$
\begin{aligned}
(m-k)(m-k & +1)+k(k+1) / 2 \\
& <\operatorname{dim} G<(m-k+1)(m-k+2), \quad k=1,2,3, \cdots
\end{aligned}
$$

we have only three possibilities:
(i) $\quad m=4, G$ is isomorphic to $S U(3) / Z$ (Z denotes the center of the special unitary group $S U(3)$), M is homeomorphic to the complex projective plane $P^{2}(C)$ and G acts transitively on M.
(ii) $m=6, G$ is isomorphic to the exceptional Lie group G_{2}, M is homeomorphic to either the sphere S^{6} or real projective space $P^{6}(R)$ and G acts transitively on M.
(iii) $m=10, G$ is isomorphic to $S U(6) / Z, M$ is homeomorphic to $P^{5}(C)$ and G acts transitively on M.

In this paper we show that the pattern of gaps given by Theorem A is but a special case of a still more general pattern of gaps. This, in effect, settles a question which we raised at the end of [2]. Although our present result does not exhaust all possible gaps, we have reason to believe, as will be discussed later, that it produces the most general consistent pattern of gaps.

[^0]
2. Preliminaries

The following notation will be helpful. If n is a positive integer,

$$
\langle n\rangle=n(n+1) / 2
$$

$\Phi(n)=$ largest integer j such that $\langle n-j\rangle+\langle j\rangle<\langle n-j+1\rangle-1$.
In the statement of Theorem A, k runs from 1 to $\Phi(m)$. The following short table of values of $\Phi(n)$ will be of future assistance:

n	$\Phi(n)$
3	1
6	2
10	3
15	4
21	5
28	6
36	7

Lemma 1. $\Phi(n)=[(\sqrt{ }\{1+8 n\}-3) / 2]$ where $[x]$ denotes the largest integer $\leq x$.

Lemma 2. If $n_{1} \geq n_{2} \geq u \geq 0$,

$$
\left\langle n_{1}\right\rangle+\left\langle n_{2}\right\rangle \leq\left\langle n_{1}+u\right\rangle+\left\langle n_{2}-u\right\rangle .
$$

Lemma 3. If $n_{1} \geq n_{2} \geq 0$,
(a) $\left\langle n_{1}\right\rangle+\left\langle n_{2}\right\rangle \leq\left\langle n_{1}+n_{2}\right\rangle$,
(b) $\left\langle n_{1}-n_{2}\right\rangle \leq\left\langle n_{1}\right\rangle-\left\langle n_{2}\right\rangle$.

Lemma 4. $\langle n+1\rangle-\langle n\rangle=n+1$.
Lemma 5. $\quad n-\Phi(n) \geq\langle\Phi(n)\rangle+1$.
Lemma 6. $n \leq\langle n-\Phi(n)\rangle$.
Lemma 7. $\langle n-j-1\rangle+\langle j+1\rangle \leq\langle n-j\rangle+\langle j-\Phi(j)\rangle$ for $j \leq \Phi(n)$, $j \geq 1$.

Proof. The result of course follows immediately from the definition of $\Phi(n)$ for $j \leq \Phi(n)-1$. We let $j=\Phi(n)$. Now

$$
\begin{align*}
& \langle n-\Phi(n)-1\rangle+\langle\Phi(n)+1\rangle \tag{1}\\
& \quad=\langle n-\Phi(n)\rangle+\langle\Phi(n)+1\rangle-(n-\Phi(n))
\end{align*}
$$

by Lemma 4. Applying Lemma 5,

$$
\begin{align*}
& \langle n-\Phi(n)-1\rangle+\langle\Phi(n)+1\rangle \\
& \leq\langle n-\Phi(n)\rangle+\langle\Phi(n)+1\rangle-\langle\Phi(n)\rangle-1 \tag{2}\\
& \leq\langle n-\Phi(n)\rangle+\Phi(n) \\
& \text { (Lemma 4) }
\end{align*}
$$

Since by Lemma 6,

$$
\begin{equation*}
\Phi(n) \leq\langle\Phi(n)-\Phi(\Phi(n))\rangle \tag{3}
\end{equation*}
$$

the result follows.
We have reduced the next lemma which will be used heavily in the sequel to the following technical form.

Lemma 8. Let $K, k, u, t_{j}(j=1,2, \cdots, r), v, q$ be non-negative integers satisfying the following conditions:
(i) $v=0$ or $v \geq 3, u \geq 1, k \geq 2$,
(ii) $k \leq \Phi(K)$,
(iii) $K-k-u \geq t_{j}$, all j,
(iv) $k-v-q+u \geq 0$,
(v) $\sum_{j=1}^{r} t_{j} \leq k-v-q+u$.

Then

$$
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \leq\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q .
$$

Proof. It could be checked directly that with the hypothesis above

$$
\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q \geq 0
$$

This fact, however, will of course be established indirectly through the course of the proof.

Case I. $v+q \leq k+1$. By repeated application of Lemma 2,

$$
\begin{equation*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \leq\langle K-k-1\rangle+\sum_{j=1}^{r}\left\langle t_{j}^{\prime}\right\rangle \tag{1}
\end{equation*}
$$

where

$$
t_{j}^{\prime} \geq 0, \quad \text { all } j, \text { and } \sum_{j=1}^{r} t_{j}^{\prime} \leq k-v-q+1
$$

Applying Lemma 3(a) and then Lemma 3(b),

$$
\begin{align*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle & \leq\langle K-k-1\rangle+\langle k-v-1+1\rangle \\
& \leq\langle K-k-1\rangle+\langle k+1\rangle-\langle v+q\rangle \tag{2}\\
& \leq\langle K-k-1\rangle+\langle k+1\rangle-2 v-q .
\end{align*}
$$

The last step follows since $v=0$ or $v \geq 3$. Finally, applying Lemma 7,

$$
\begin{equation*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \leq\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q \tag{3}
\end{equation*}
$$

Case II. $v+q \geq k+2$. Let $\eta=k-v-q+u \geq 0$. Therefore $\eta<u$. Now,

$$
\begin{align*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle & \leq\langle K-k-(u-\eta)\rangle \quad \text { (Lemma 2) } \\
& \leq\langle(K-k-1)-(u-\eta-1)\rangle \\
& \leq\langle K-k-1\rangle-\langle u-\eta-1\rangle \tag{4}\\
& \quad \text { (Lemma 3(b)) } \\
& \leq\langle K-k-1\rangle-\langle v+q-k-1\rangle .
\end{align*}
$$

Subcase (a). $v+q \geq k+4$. Now,

$$
v+q-k-1 \geq 3 \text { and }\langle v+q-k-1\rangle \geq 2(v+q-k-1)
$$

Hence,

$$
\begin{align*}
\langle K-k-1\rangle-\langle v+q-k & -1\rangle \tag{5}\\
& \leq\langle K-k-1\rangle+2(k+1)-2 v-2 q
\end{align*}
$$

Now,

$$
\begin{equation*}
2(k+1) \leq\langle k+1\rangle \text { for } k \geq 2 \tag{6}
\end{equation*}
$$

Combining (4), (5), and (6),

$$
\begin{align*}
&\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \\
& \leq\langle K-k-1\rangle+\langle k+1\rangle-2 v-2 q \tag{7}\\
& \leq\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q \quad(\text { Lemma } 7)
\end{align*}
$$

Here $k=1$ can also be handled by an individual check; so far we have not had to enforce the condition that $k \geq 2$.

Subcase (b). $v+q=k+3$. From (4),

$$
\begin{align*}
\langle K-k-u\rangle & +\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \\
& \leq\langle K-k-1\rangle-3 \tag{8}\\
& \leq\langle K-k\rangle+\langle k-\Phi(k)\rangle-\langle k+1\rangle-3 \quad(\text { Lemma } 7) .
\end{align*}
$$

Now for $k \geq 3,2(k+3)<\langle k+1\rangle+3$. Hence,

$$
\begin{align*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle & <\langle K-k\rangle+\langle k-\Phi(k)\rangle-2(k+3) \tag{9}\\
& <\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q
\end{align*}
$$

Here $k=2$ can also be handled as a special case. The result, however, is not valid for $k=1$ in this subcase.

Subcase (c). $v+q=k+2$. From (4),

$$
\begin{aligned}
\langle K-k-u\rangle & +\sum_{j=1}^{r}\left\langle t_{j}\right\rangle \\
& \leq\langle K-k-1\rangle-1 \\
& \leq\langle K-k\rangle+\langle k-\Phi(k)\rangle-\langle k+1\rangle-1 \quad(\text { Lemma } 7)
\end{aligned}
$$

For $k \geq 3$,

$$
\begin{equation*}
2(k+2)<\langle k+1\rangle+1 \tag{11}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\langle K-k-u\rangle+\sum_{j=1}^{r}\left\langle t_{j}\right\rangle & <\langle K-k\rangle+\langle k-\Phi(k)\rangle-2(k+2) \tag{12}\\
& <\langle K-k\rangle+\langle k-\Phi(k)\rangle-2 v-q
\end{align*}
$$

Again $k=2$ can be handled by a special check, while the result is not valid for $k=1$.

3. Statement of main result

G will denote a compact Lie group acting on a connected m-manifold M. The action of G on M is said to be almost effective if the normal subgroup K of G formed from all elements of G which act trivially on M is finite; an almost effective action is said to be almost free if G / K acts freely on M. Although Theorem A was stated in [2] in terms of almost effective actions, the proof given in [2] actually provides the statement as given here [2, p. 545 top].

A compact connected Lie group G can be expressed in the following form

$$
G=\left(T^{q} \oplus S_{1} \oplus S_{2} \oplus \cdots \oplus S_{a}\right) / N=\bar{G} / N
$$

where T^{q} is a q-torus, $q \geq 0$ (T^{0} is assumed to be trivial), each S_{j} is a compact connected, simply-connected simple Lie group and N is a finite normal subgroup of \bar{G}. If $q=0, G$ is called semi-simple.

We use the standard notation: $\mathrm{A}_{r}(r \geq 2, r \neq 3), B_{r}(r \geq 1), C_{r}(r \geq 3)$, $D_{r}(r \geq 3), G_{2}, F_{4}, E_{6}, E_{7}$, and E_{8} for the classification of the compact simple Lie groups. The simply-connected representatives of the classes A, B, C and D are $S U(r+1)$, $\operatorname{Spin}(2 r+1), S p(r)$ and $\operatorname{Spin}(2 r)$ respectively. The simple observation that for G of type B, C or D , the dimension of G is of the form

$$
\operatorname{dim} G=\langle l\rangle \quad \text { for some integer } l,
$$

will be of particular future interest. We are now able to state our main result.

Theorem B. Let G be a compact Lie group acting effectively on a connected m-manifold M. Let $k_{i}(i=0,1, \cdots, s+1)$ be any sequence of positive integers satisfying the conditions:
(a) $k_{0}=m$,
(b) $k_{i+1} \leq \Phi\left(k_{i}\right), 0 \leq i \leq s$.

Then if the dimension of G falls into the range:

$$
\begin{aligned}
\sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-\right. & \left.k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle \\
& <\operatorname{dim} G<\sum_{\substack{s-1 \\
i=0}}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}+1\right\rangle
\end{aligned}
$$

we have only three classes of possibilities.
In each case the action of G on M is transitive and G is semi-simple and locally isomorphic to

$$
S_{1} \oplus S_{2} \oplus \cdots \oplus S_{s+1}
$$

where the S_{i} are simple simply-connected Lie groups with, for $1 \leq i \leq s, S_{i}$ of
type B or D and $\operatorname{dim} S_{i}=\left\langle k_{i-1}-k_{i}\right\rangle . \quad$ The three classes of possibilities are:
(i) $k_{s}=4, k_{s+1}=1$, and S_{s+1} isomorphic to $S U(3)$.
(ii) $k_{s}=6, k_{s+1}=2$, and S_{s+1} isomorphic to the exceptional Lie group G_{2}.
(iii) $k_{s}=10, k_{s+1}=3$, and S_{s+1} isomorphic to $S U(6)$.

Condition (b) of Theorem B assures that $k_{i} \gg k_{i+1}$ for $0 \leq i \leq s$ Theorem B is the appropriate generalization of Theorem A as evidenced by the following proposition.

Proposition 1. Let $k_{i}(i=0,1, \cdots, s+1)$ be a sequence of positive integers with

$$
k_{i+1} \leq \Phi\left(k_{i}\right), \quad 0 \leq i \leq s
$$

Then for $0 \leq r<s$,

$$
\begin{aligned}
& \sum_{i=0}^{r}\left\langle k_{i}-k_{i+1}\right\rangle<\sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle \\
& \quad<\sum_{\substack{s-1}}^{s=0}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}+1\right\rangle \leq \sum_{i=0}^{r}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{r+1}\right\rangle
\end{aligned}
$$

Proof. The first and second inequalities are clear. We prove the third inequality.
Now

$$
\left[\sum_{i=r+1}^{s}\left(k_{i}-k_{i+1}\right)\right]+1=k_{r+1}-k_{s+1}+1 \leq k_{r+1}
$$

Applying Lemma 3(a),

$$
\sum_{i=r+1}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}+1\right\rangle \leq\left\langle k_{r+1}\right\rangle
$$

from which the result follows.

4. Proof of Theorem B

The first part of the following lemma appeared as Lemma 4 in [2]. The remaining parts are proved in an entirely analogous fashion and consequently depend upon knowing the maximal dimensions of proper closed subgroups of the compact simple Lie groups. This last information may be found in the table on p. 539 of [2].

Lemma 9. Let G be a compact connected simple Lie group acting almost effectively on a connected m-manifold M. Then
(a) If G is of type A or exceptional type,

$$
\begin{gathered}
\operatorname{dim} G<\langle m-\Phi(m)\rangle \quad \text { for } m \geq 17 \\
\operatorname{dim} G<\langle m-\Phi(m)-1\rangle \quad \text { for } m \geq 24
\end{gathered}
$$

(b) If G is of type C ,

$$
\begin{gathered}
\operatorname{dim} \mathrm{G} \leq\langle m-\Phi(m)\rangle \text { for } m \geq 8 \\
\operatorname{dim} G \leq\langle m-\Phi(m)-1\rangle \text { for } m \geq 12
\end{gathered}
$$

Proof of Theorem B. We may suppose that G is connected for otherwise we would consider the action of its identity component on M. As mentioned previously G can be expressed in the form

$$
\begin{equation*}
G=\left(T^{q} \oplus S\right) / N \tag{1}
\end{equation*}
$$

where S is a direct sum of compact simply-connected simple Lie groups. Let

$$
\begin{equation*}
\bar{G}=T^{q} \oplus S \tag{2}
\end{equation*}
$$

Now \bar{G} acts almost effectively on M. Moreover it is known that \bar{G} acts almost effectively and of course transitively on a principal orbit P (see [1, Chapter IX] for terminology) with

$$
\begin{equation*}
p=\operatorname{dim} P \leq m \tag{3}
\end{equation*}
$$

Consider the action of T^{q} on P. By [2, Lemma 3], S acts almost effectively and transitively on the compact manifold $M_{0}=P / T^{q}$ where

$$
\begin{equation*}
m_{0}=\operatorname{dim} M_{0}=p-q \tag{4}
\end{equation*}
$$

We now restrict our attention to the action of S on M_{0}. Following the proof of [2, Theorem 1] we may decompose S as

$$
\begin{equation*}
S=V \oplus Q \oplus R \tag{5}
\end{equation*}
$$

where
(α) $\quad V, Q$ and R are each direct sums of simple factor groups of S,
(β) $\quad V$ and R each act almost freely on M_{0} with

$$
\operatorname{dim} R \leq \operatorname{dim} V=v
$$

(γ) $\quad Q$ acts transitively and almost effectively on $M_{1}=M_{0} / V$ where

$$
m_{1}=\operatorname{dim} M_{1}=m_{0}-v
$$

Moreover, we may express Q as

$$
Q=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{r}
$$

where
(δ) $S_{j}, j=1,2, \cdots, r$, are simple factor groups of S with

$$
\operatorname{dim} S_{j} \geq \operatorname{dim} S_{j+1}
$$

(ع) S_{j} acts almost effectively on the compact manifold

$$
M_{j}=M_{j-1} / S_{j-1} \quad\left(S_{0}=V\right)
$$

Let l_{j} be the least integer such that

$$
\begin{equation*}
\operatorname{dim} S_{j} \leq\left\langle l_{j}\right\rangle \tag{6}
\end{equation*}
$$

We consider first the sequence $S_{1}, S_{2}, \cdots, S_{d}$ where

$$
\begin{equation*}
d=\min (s-1, r) \tag{7}
\end{equation*}
$$

The case $s=1$ will be handled by later considerations. Since $k_{s+1} \geq 1$, it follows that

$$
k_{s} \geq 3, \quad k_{s-1} \geq 10 \quad \text { and } \quad k_{s-2} \geq 66
$$

We show

$$
\operatorname{dim} S_{1}=\left\langle m-k_{1}\right\rangle=\left\langle k_{0}-k_{1}\right\rangle
$$

and that S_{1} is of type B or D .
Now S_{1} acts almost effectively on the compact connected m-dimensional manifold

$$
N_{1}^{m}=M_{1}^{m_{0}-v} \times S^{m-m_{0}+v}
$$

(Here we agree that S^{0} denotes a point rather than the actual 0 -sphere.) Since $m=k_{0} \geq 66$, it follows from Lemma 9 that if S_{1} is of type A, C or exceptional type that

$$
\operatorname{dim} S_{1} \leq\langle m-\Phi(m)-1\rangle \leq\left\langle m-k_{1}-1\right\rangle
$$

If S_{1} is of type B or D , it follows from the form of the dimension of S_{1} that $\operatorname{dim} S_{1}=\langle l\rangle$ for some l. Moreover if $\operatorname{dim} S_{1} \geq\left\langle m-k_{1}+1\right\rangle$ we have by Proposition 1 that
$\operatorname{dim} G \geq \operatorname{dim} S_{1} \geq\left\langle m-k_{1}+1\right\rangle>\left\langle m-k_{1}\right\rangle+\left\langle k_{1}\right\rangle$

$$
\geq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}+1\right\rangle
$$

which of course is a contradiction to our assumption concerning the range of $\operatorname{dim} G$. Hence, if S_{1} is of type B or D ,

$$
\operatorname{dim} S_{1}=\left\langle m-k_{1}\right\rangle \quad \text { or } \quad \operatorname{dim} S_{1} \leq\left\langle m-k_{1}-1\right\rangle .
$$

It is sufficient therefore to eliminate the case where

$$
\operatorname{dim} S_{1} \leq\left\langle m-k_{1}-1\right\rangle
$$

Now

$$
\begin{align*}
\operatorname{dim} G=\operatorname{dim} \bar{G} & =\operatorname{dim} T^{q}+\operatorname{dim} S \\
& =q+\operatorname{dim} V+\operatorname{dim} R+\operatorname{dim} Q \leq q+2 v+\sum_{j=1}^{r}\left\langle l_{j}\right\rangle \tag{8}
\end{align*}
$$

Since Q acts almost effectively on M_{1}, it follows from [2, Theorem 1] that

$$
\begin{equation*}
\sum_{j=1}^{r} l_{j} \leq m_{1}=m_{0}-v=p-q-v \leq m-q-v \tag{9}
\end{equation*}
$$

Consequently,
(10) $\operatorname{dim} Q=\operatorname{dim} S_{1}+\sum_{j=2}^{r} \operatorname{dim} S_{j} \leq\left\langle m-k_{1}-u\right\rangle+\sum_{j=2}^{r}\left\langle l_{j}\right\rangle$ where
(i) $v=0$ or $v \geq 3, u \geq 1, k_{1} \geq 10$,
(ii) $k_{1} \leq \Phi(m)$,
(iii) $m-k_{1}-u \geq l_{j}$, all $j \geq 2$,
(iv) $k_{1}-v-q+u \geq 0$,
(v) $\sum_{j=2}^{r} l_{j} \leq k_{1}-v-q+u$.

Hence we are precisely in the setting of Lemma 8. We conclude

$$
\begin{align*}
\operatorname{dim} Q & \leq\left\langle m-k_{1}\right\rangle+\left\langle k_{1}-\Phi\left(k_{1}\right)\right\rangle-2 v-q \tag{11}\\
& \leq\left\langle m-k_{1}\right\rangle+\left\langle k_{1}-k_{2}\right\rangle-2 v-q
\end{align*}
$$

Combining (8) and (11) we obtain

$$
\begin{equation*}
\operatorname{dim} G \leq\left\langle m-k_{1}\right\rangle+\left\langle k_{1}-k_{2}\right\rangle \tag{12}
\end{equation*}
$$

which is a contradiction to our assumption concerning the range of $\operatorname{dim} G$. Hence $\operatorname{dim} S_{1}=\left\langle m-k_{1}\right\rangle$ and S_{1} is of type B or D. If $d \geq 2$, we continue with S_{2}.

Let $\alpha_{1}=$ maximal dimension of the orbits of the action of S_{1} on M_{1}. Then

$$
\begin{equation*}
m-k_{1}=l_{1} \leq \alpha_{1} \tag{13}
\end{equation*}
$$

Consider the almost effective action of S_{2} on $M_{2}=M_{1} / S_{1} . \quad$ By [2, Lemma 1],

$$
\begin{equation*}
m_{2}=\operatorname{dim} M_{2}=m_{1}-\alpha_{1} . \tag{14}
\end{equation*}
$$

We wish to show $\operatorname{dim} S_{2}=\left\langle k_{1}-k_{2}\right\rangle$ and that S_{2} is of type B or D. Now S_{2} acts almost effectively on the compact connected k_{1}-dimensional manifold

$$
N_{2}^{k_{1}}=M_{2}^{m_{1}-\alpha_{1}} \times S^{m-m_{1}} \times S^{\alpha_{1}-\left(m-k_{1}\right)}
$$

Since $k_{1} \geq 66$ it follows from Lemma 9 that if S_{2} is of type A, C or exceptional type that $\operatorname{dim} S_{2} \leq\left\langle k_{1}-k_{2}-1\right\rangle$. As in the previous step for S_{1} it is again sufficient to eliminate the case $\operatorname{dim} S_{2} \leq\left\langle k_{1}-k_{2}-1\right\rangle$. Now,

$$
\begin{equation*}
\operatorname{dim} Q \leq\left\langle k_{0}-k_{1}\right\rangle+\left\langle k_{1}-k_{2}-u\right\rangle+\sum_{j=3}^{r}\left\langle l_{j}\right\rangle \tag{15}
\end{equation*}
$$

where
(i) $v=0$ or $v \geq 3, u \geq 1, k_{2} \geq 10$,
(ii) $k_{2} \leq \Phi\left(k_{1}\right)$,
(iii) $k_{1}-k_{2}-u \geq l_{j}$, all $j \geq 3$,
(iv) $k_{2}-v-q+u \geq 0$,
(v) $\sum_{j=3}^{r} l_{j} \leq k_{2}-v-q+u$.

It follows from Lemma 8 that

$$
\begin{equation*}
\left\langle k_{1}-k_{2}-u\right\rangle+\sum_{j=3}^{r}\left\langle l_{j}\right\rangle \leq\left\langle k_{1}-k_{2}\right\rangle+\left\langle k_{2}-k_{3}\right\rangle-2 v-q \tag{16}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\operatorname{dim} G \leq\left\langle k_{0}-k_{1}\right\rangle+\left\langle k_{1}-k_{2}\right\rangle+\left\langle k_{2}-k_{3}\right\rangle \tag{17}
\end{equation*}
$$

which is a contradiction. Hence $\operatorname{dim} S_{2}=\left\langle k_{1}-k_{2}\right\rangle$ and S_{2} is of type B or D.
We continue this process until we have exhausted $S_{1}, S_{2}, \cdots, S_{d}$. In general

$$
\begin{equation*}
\operatorname{dim} S_{j}=\left\langle k_{j-1}-k_{j}\right\rangle \tag{18}
\end{equation*}
$$

and S_{j} is of type B or $\mathrm{D}(j=1,2, \cdots, d)$. In the $(j+1)^{\text {th }}$ step of the process ($1 \leq j \leq d-1$) we are concerned with
$\alpha_{j}=$ maximal dimension of the orbits of S_{j} on M_{j}.

$$
\begin{gathered}
m_{j+1}=\operatorname{dim} M_{j+1}=m_{j}-\alpha_{j} \\
N_{j+1}^{k_{j}}=M_{j+1}^{m_{j}-\alpha_{j}} \times S^{k_{j-1}-m_{j}} \times S^{\alpha_{j}-\left(k_{j-1}-k_{j}\right)}
\end{gathered}
$$

Since at the $j^{\text {th }}$ stage, $\operatorname{dim} S_{j}=\left\langle k_{j-1}-k_{j}\right\rangle$ it follows that

$$
\begin{equation*}
k_{j-1}-k_{j} \leq \alpha_{j} \tag{19}
\end{equation*}
$$

Using induction and (19) it is easily established that

$$
\begin{equation*}
m_{j+1} \leq k_{j}-v-q \tag{20}
\end{equation*}
$$

In later considerations we will be concerned with α_{j} and N_{j+1} for $j \geq d$ and, in these instances, (19) and (20) will still hold true.

Suppose first that $r \leq s-1$. Now $d=r$ and

$$
\begin{equation*}
\operatorname{dim} Q=\sum_{i=0}^{r-1}\left\langle k_{i}-k_{i+1}\right\rangle . \tag{21}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\sum_{i=0}^{r-1}\left(k_{i}-k_{i+1}\right)=k_{0}-k_{r}=m-k_{r} \tag{22}
\end{equation*}
$$

and by [2, Theorem 1],

$$
\begin{equation*}
m-k_{r} \leq \operatorname{dim} M_{1}=m_{1} \leq m-q-v \tag{23}
\end{equation*}
$$

Hence

$$
\begin{equation*}
q+v \leq k_{r} \tag{24}
\end{equation*}
$$

Now

$$
\begin{equation*}
\operatorname{dim} G \leq \operatorname{dim} Q+2 v+q \leq \sum_{i=0}^{r-1}\left\langle k_{i}-k_{i+1}\right\rangle+2 v+q \tag{25}
\end{equation*}
$$

But since $r \leq s-1, k_{r} \geq 10$ and

$$
\begin{equation*}
2 v+q \leq 2 k_{r}<\left\langle k_{r}-\Phi\left(k_{r}\right)\right\rangle \leq\left\langle k_{r}-k_{r+1}\right\rangle . \tag{26}
\end{equation*}
$$

Hence from (25) and (26),

$$
\operatorname{dim} G<\sum_{i=0}^{r-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{r}-k_{r+1}\right\rangle \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle
$$

which is a contradiction.
We suppose therefore from now on that $r \geq s$ and we consider two cases.
Case I. $\left.\operatorname{dim} S_{s}\right\rangle\left\langle k_{s-1}-k_{s}\right\rangle$. Due to our assumption concerning the range of $\operatorname{dim} G, S_{s}$ must be of type A or exceptional type in this case. Now S_{s} acts almost effectively on $N_{s}^{k_{s-1}}$ of dimension k_{s-1} (N_{s} is defined in a completely analogous fashion to N_{j} for $\left.j \leq d\right)$. Hence bv Temma $9, k_{s-1} \leq 16$. Therefore

$$
\begin{equation*}
10 \leq k_{s-1} \leq 16 \tag{27}
\end{equation*}
$$

However it is now easily checked (for example, by using the table on p. 539 of [2]) that S_{s} must act transitively on N_{s} and, hence, on M_{s}. Therefore $r=s$.

For the remainder of Case I we assume $r=s$. Now by (20),

$$
\begin{equation*}
\operatorname{dim} M_{s}=m_{s} \leq k_{s-1}-v-q \tag{28}
\end{equation*}
$$

Since S_{s} acts almost effectively on M_{s} with $\left.\operatorname{dim} S_{s}\right\rangle\left\langle k_{s-1}-\Phi\left(k_{s-1}\right)\right\rangle$ it is easily checked that

$$
\begin{equation*}
m_{s}=k_{s-1} \tag{29}
\end{equation*}
$$

and hence

$$
\begin{equation*}
v=0=q \tag{30}
\end{equation*}
$$

For example if $k_{s-1}=10$ and $m_{s} \leq 9$,

$$
\operatorname{dim} S_{s} \leq \operatorname{dim} S U(5)=24<\langle 10-3\rangle \leq\left\langle k_{s-1}-\Phi\left(k_{s-1}\right)\right\rangle
$$

Consequently $\bar{G}=Q$ and

$$
\begin{equation*}
\operatorname{dim} G=\sum_{i=0}^{s-2}\left\langle k_{i}-k_{i+1}\right\rangle+\operatorname{dim} S_{s} \tag{31}
\end{equation*}
$$

If we consider the cases $11 \leq k_{s-1} \leq 16$ individually it is easily verified that

$$
\operatorname{dim} S_{s} \leq\left\langle k_{s-1}-k_{s}\right\rangle+\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle
$$

which combined with (31) is a contradiction to our assumption concerning the range of $\operatorname{dim} G$. For example, if $k_{s-1}=12, S_{s}$ must be isomorphic to $S U(7)$ and

$$
\operatorname{dim} S U(7)=48<\langle 12-3\rangle+\langle 3-1\rangle+\langle 1\rangle
$$

We are left with the case $k_{s-1}=10$. But here,

$$
\begin{aligned}
\operatorname{dim} S_{s}=\operatorname{dim} S U(6) & =35>\langle 10-3\rangle+\langle 3-1+1\rangle \\
& =\left\langle k_{s-1}-k_{s}\right\rangle+\left\langle k_{s}-k_{s+1}+1\right\rangle
\end{aligned}
$$

Combining this with (31) we again reach a contradiction. (Note that we must have $k_{s}=3$ above for otherwise $\operatorname{dim} S_{s}<\left\langle k_{s-1}-k_{s}\right\rangle$.)

Case II. $\operatorname{dim} S_{s} \leq\left\langle k_{s-1}-k_{s}\right\rangle$. Recall that l_{s} denotes the least integer such that $\operatorname{dim} S_{s} \leq\left\langle l_{s}\right\rangle$.

By assumption, $l_{s} \leq k_{s-1}-k_{s}$. Since $k_{s} \geq 3$ we may use Lemma 8 in the usual fashion to conclude

$$
\begin{equation*}
l_{s}=k_{s-1}-k_{s} \tag{32}
\end{equation*}
$$

We consider two subcases of Case II.
Subcase (a). $r=s$. Now

$$
\begin{equation*}
\operatorname{dim} Q \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle \tag{33}
\end{equation*}
$$

Moreover since $l_{i+1}=k_{i}-k_{i+1}, i=0, \cdots, s-1$ we apply [2, Theorem 1]
to conclude

$$
\begin{equation*}
m-k_{s}=\sum_{i=0}^{s-1}\left(k_{i}-k_{i+1}\right) \leq \operatorname{dim} M_{1}=m_{1} \leq m-q-v \tag{34}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
q+v \leq k_{s} \tag{35}
\end{equation*}
$$

Now

$$
\begin{equation*}
\operatorname{dim} G \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+2 v+q \tag{36}
\end{equation*}
$$

If $k_{s} \geq 7,2 v+q \leq 2 k_{s}<\left\langle k_{s}-\Phi\left(k_{s}\right)\right\rangle \leq\left\langle k_{s}-k_{s+1}\right\rangle$ and from (36),

$$
\operatorname{dim} G \leq \sum_{i=0}^{s}\left\langle k_{i}-k_{i+1}\right\rangle
$$

which is a contradiction.
We assume for the remainder of Subcase (a) that

$$
\begin{equation*}
3 \leq k_{s} \leq 6 \tag{37}
\end{equation*}
$$

and consider the individual cases. The cases $k_{s}=4,5$ and 6 give little difficulty. For example if $k_{s}=5$, it follows from (35) that

$$
2 v+q \leq 8<\left\langle k_{s}-\Phi\left(k_{s}\right)\right\rangle \leq\left\langle k_{s}-k_{s+1}\right\rangle
$$

and hence from (36), $\operatorname{dim} G<\sum_{i=0}^{s}\left\langle k_{i}-k_{i+1}\right\rangle$.
The case $k_{s}=3$ and $v=3, q=0$ appears to require a more subtle argument. Suppose first that $\operatorname{dim} S_{s}=\left\langle k_{s-1}-k_{s}\right\rangle$. Now

$$
\begin{equation*}
\operatorname{dim} G=\sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\operatorname{dim} V+\operatorname{dim} R+q \tag{38}
\end{equation*}
$$

Due to the range of $\operatorname{dim} G$,

$$
\begin{equation*}
4=\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle<\operatorname{dim} V+\operatorname{dim} R+q<\left\langle k_{s}-k_{s+1}+1\right\rangle=6 \tag{39}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\operatorname{dim} V+\operatorname{dim} R+q=5 \tag{40}
\end{equation*}
$$

But $\operatorname{dim} V=v=3, q=0$. Hence,

$$
\begin{equation*}
\operatorname{dim} R=2 \tag{41}
\end{equation*}
$$

which is impossible since R is a direct sum of simple groups. We assume therefore that $\operatorname{dim} S_{s}<\left\langle k_{s-1}-k_{s}\right\rangle$. By Lemma 8,

$$
\begin{equation*}
\left\langle k_{s-1}-k_{s}-1\right\rangle<\operatorname{dim} S_{s}<\left\langle k_{s-1}-k_{s}\right\rangle \tag{42}
\end{equation*}
$$

Consequently S_{s} is of type A or exceptional type. If we consider the almost effective action of S_{s} on $N_{s}^{k_{s-1}}$, we conclude from Lemma 9 that for $k_{s-1} \geq 17$,

$$
\operatorname{dim} S_{s}<\left\langle k_{s-1}-\Phi\left(k_{s-1}\right)\right\rangle \leq\left\langle k_{s-1}-k_{s}-1\right\rangle
$$

since $k_{s}=3 \leq \Phi\left(k_{s-1}\right)-1$. This contradicts, however, (42). We assume
therefore

$$
\begin{equation*}
10 \leq k_{8-1} \leq 16 \tag{43}
\end{equation*}
$$

However S_{s} acts almost effectively on $M_{s}^{m_{s}}$ with

$$
\begin{equation*}
m_{s} \leq k_{s-1}-v=k_{s-1}-3 . \tag{44}
\end{equation*}
$$

A case by case analysis for $10 \leq k_{s-1} \leq 16$ verifies the non-existence of such an S_{s} satisfying (42). For example, if $k_{s-1}=10$ and, consequently, $m_{s} \leq 7$,

$$
\operatorname{dim} S_{s} \leq \operatorname{dim} S U(4)=15<\langle 6\rangle \leq\left\langle k_{s-1}-k_{s}-1\right\rangle
$$

This concludes the case $k_{s}=3$ and Subcase (a) of Case II.
Subcase (b). $r \geq s+1$. From (32) we know that $l_{s}=k_{s-1}-k_{s}$. We wish first to eliminate the case $l_{s+1} \leq k_{s}-k_{s+1}$. If $l_{s+1}=k_{s}-k_{s+1}$, we may apply [2, Theorem 1] to conclude

$$
\operatorname{dim} G \leq \sum_{i=1}^{s}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s+1}\right\rangle .
$$

Hence let us suppose $l_{s+1} \leq k_{s}-k_{s+1}-1$. If $k_{s+1} \geq 2$, we may apply Lemma 8 directly to arrive at a contradiction. If $k_{s+1}=1$ and Lemma 8 is not applicable then we must be in Case II, Subcase (b) or (c) of the proof of Lemma 8. Hence

$$
\begin{equation*}
v+q=k_{s+1}+3=4 \quad \text { or } \quad v+q=k_{s+1}+2=3 \tag{45}
\end{equation*}
$$

By (4) of the proof of Lemma 8,

$$
\begin{align*}
\sum_{j \geq s+1}\left\langle l_{j}\right\rangle & \leq\left\langle k_{s}-k_{s+1}-1\right\rangle-\left\langle v+q-k_{s+1}-1\right\rangle \\
& \leq\left\langle k_{s}-k_{s+1}\right\rangle-\left(k_{s}-k_{s+1}\right)-\langle v+q-2\rangle \quad \text { (Lemma 4) } \tag{46}\\
& \leq\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle-k_{s}-\langle v+q-2\rangle
\end{align*}
$$

Now

$$
\begin{equation*}
\operatorname{dim} G \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\sum_{j \geq s+1}\left\langle l_{j}\right\rangle+2 v+q . \tag{47}
\end{equation*}
$$

Since S_{s+1} is a simple Lie group, $k_{s}-k_{s+1}-1 \geq l_{s+1} \geq 2$. Hence,

$$
\begin{equation*}
k_{s} \geq 4 \tag{48}
\end{equation*}
$$

Suppose first from (45) that $v+q=4$. Then $2 v+q \leq 7$ and it follows from (46) and (48) that

$$
\begin{align*}
\sum_{j \geq s+1}\left\langle l_{j}\right\rangle & \leq\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle-k_{s}-3 \tag{49}\\
& \leq\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle-2 v-q .
\end{align*}
$$

In light of (47) we have a contradiction. Hence we suppose $v+q=3$. If $k_{s} \geq 5$, we obtain a contradiction as above by using (46). Assume then $k_{s}=4$ and let

$$
l_{s+1}=k_{s}-k_{s+1}-u, \quad u \geq 1
$$

Since $k_{s}=4, k_{s+1}=1$ and $l_{s+1} \geq 2$, it follows that $u=1$. By [2, Theorem 1],

$$
\begin{aligned}
\operatorname{dim} G & \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}-u\right\rangle+\left\langle k_{s+1}+u\right\rangle \\
& \leq \sum_{i=0}^{s}\left\langle k_{i}-k_{i+1}\right\rangle .
\end{aligned}
$$

Hence we reach a contradiction and therefore from now on we suppose that

$$
\begin{equation*}
l_{s+1}>k_{s}-k_{s+1} \tag{50}
\end{equation*}
$$

At this point we have the following data:
(α) $\quad S_{i}$ is of type B or D and $\operatorname{dim} S_{i}=\left\langle k_{i-1}-k_{i}\right\rangle, i=1,2, \cdots, s-1$.
(β) $\quad l_{s}=k_{s-1}-k_{s}$.
(γ) $\left.\quad \operatorname{dim} S_{s+1}\right\rangle\left\langle k_{s}-k_{s+1}\right\rangle$.
Hence S_{s+1} is of type A or exceptional type and by Lemma 9

$$
\begin{equation*}
3 \leq k_{s} \leq 16 \tag{51}
\end{equation*}
$$

Moreover S_{s+1} acts almost effectively on the compact manifold $N_{s+1}^{k_{s}}$ of dimension k_{s}.

We examine the individual cases for k_{s}. For $k_{s} \geq 6$, it follows that $k_{i} \geq 28$ ($i=1,2, \cdots, s-1$) and by Lemma 9 and (β) above we conclude that
S_{s} is also of type B or D and $\operatorname{dim} S_{s}=\left\langle k_{s-1}-k_{s}\right\rangle$.
(A) $k_{s}=16$. Now $\operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(9)=80$. We may assume $k_{s+1}=\Phi(16)=4$ for otherwise $\operatorname{dim} S_{s+1} \leq 80<\left\langle k_{s}-k_{s+1}\right\rangle$. Now $l_{s+1}=13=k_{s}-k_{s+1}+1$ and by [2, Theorem 1],

$$
\begin{aligned}
\operatorname{dim} G & \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\operatorname{dim} S_{s+1}+\left\langle k_{s+1}-1\right\rangle \\
& \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+80+\langle 3\rangle \\
& <\sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle .
\end{aligned}
$$

Hence we have eliminated the case $k_{s}=16$.
(B) $k_{s}=15,14,13,11,9,7,5$. In all these cases we lack the existence of an S_{s+1} satisfying (γ). For example, if $k_{s}=11$,

$$
\operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(6)=35<\langle 8\rangle=\left\langle k_{s}-\Phi\left(k_{s}\right)\right\rangle
$$

(C) $k_{s}=12$. Now $\operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(7)=48$ and we may assume $k_{s+1}=\Phi\left(k_{s}\right)=3$. Clearly $l_{s+1}=10=k_{s}-k_{s+1}+1$ and by [2, Theorem 1],

$$
\begin{aligned}
\operatorname{dim} G & \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\operatorname{dim} S_{s+1}+\left\langle k_{s+1}-1\right\rangle \\
& \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+48+\langle 2\rangle \\
& \leq \sum_{\left.\substack{s=0 \\
i=0} k_{i}-k_{i+1}\right\rangle+\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle}
\end{aligned}
$$

(D) $k_{s}=10$. Here, $\operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(6)=35$ and $k_{s+1}=3$. Now

$$
\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle=34<35<36=\left\langle k_{s}-k_{s+1}+1\right\rangle .
$$

Hence, we have an exceptional case for $\operatorname{dim} G$ with S_{s+1} isomorphic to $S U(6)$. Clearly $v=0=q$ and

$$
\bar{G}=Q=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{s+1}
$$

where each $S_{i}, i \leq s$, is of type B or D . Finally to show the action of G on M is transitive we must show $p=m$.
We claim

$$
m_{j} \leq k_{j-1}-(m-p), \quad j=1,2, \cdots, s+1
$$

and we prove this fact by induction on j. Now $m_{1} \leq p=k_{0}-(m-p)$. Suppose then $m_{t} \leq k_{t-1}-(m-p), 1 \leq t \leq s$. We know $m_{t+1}=m_{t}-\alpha_{t}$. Hence from (19),
$m_{t+1} \leq m_{t}-\left(k_{t-1}-k_{t}\right) \leq k_{t-1}-(m-p)-\left(k_{t-1}-k_{t}\right) \leq k_{t}-(m-p)$.
Now S_{s+1} acts almost effectively on M_{s+1} with

$$
\operatorname{dim} M_{s+1}=m_{s+1} \leq k_{s}-(m-p)=10-(m-p)
$$

Since S_{s+1} is isomorphic to $S U(6)$ we must have $p=m$.
(E) $\quad k_{s}=8 . \quad \operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(5)=24$ and $k_{s+1}=2 . \quad$ Now $l_{s+1}=7$ and by [2, Theorem 1],

$$
\operatorname{dim} G \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+24+1
$$

Since

$$
\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle=24<24+1<28=\left\langle k_{s}-k_{s+1}+1\right\rangle
$$

we must have $q=1$ for $\operatorname{dim} G$ to be in the correct range. But S_{s+1} acts almost effectively on M_{s+1} with

$$
\operatorname{dim} M_{s+1}=m_{s+1} \leq k_{s}-v-q=7
$$

by (20). However this directly contradicts the fact that S_{s+1} is isomorphic to $S U(5)$. Hence the case $k_{s}=8$ is eliminated.
(F) $\quad k_{s}=6$. Now $\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle=13$ and $\left\langle k_{s}-k_{s+1}+1\right\rangle=15$. Hence S_{s+1} must be isomorphic to the exceptional Lie group G_{2}. As in (D) we have an exceptional case for $\operatorname{dim} G$ with $v=0=q$ and

$$
\bar{G}=Q=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{s+1}
$$

where each $S_{i}, i \leq s$, is of type B or D . We show the transitivity of the action by the same method which was employed in (D).
(G) $k_{s}=4$. Here $\operatorname{dim} S_{s+1} \leq \operatorname{dim} S U(3)=8$ and since $l_{s+1}=4=k_{s}$,

$$
\operatorname{dim} G \leq \sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+\operatorname{dim} S_{s+1}
$$

by [2, Theorem 1]. Since

$$
\left\langle k_{s}-k_{s+1}\right\rangle+\left\langle k_{s+1}\right\rangle=7<8<10=\left\langle k_{s}-k_{s+1}+1\right\rangle
$$

we once again have an exceptional case for $\operatorname{dim} G$. Since now $k_{s}<6$ we know
that S_{i} only for $i \leq s-1$ is of type B or D . It follows, however, that since $\operatorname{dim} G=\sum_{i=0}^{s-1}\left\langle k_{i}-k_{i+1}\right\rangle+8$, we must have that $\operatorname{dim} S_{s}=\left\langle k_{s-1}-k_{s}\right\rangle$. Since $k_{s-1} \geq 15, S_{s}$ is not of type C by Lemma 9 . Moreover for $k_{s-1} \geq 17$, S_{s} is not of type A or exceptional type by Lemma 9. Finally, a simple check for $k_{s-1}=15,16$ verifies that S_{s} must be of type B or D. Again as in (D) and (F)

$$
\bar{G}=Q=S_{1} \oplus S_{2} \oplus \cdots \oplus S_{s+1}
$$

and G acts transitively on M.
(H) $\quad k_{s}=3$. Now $\operatorname{dim} S_{s+1} \leq\langle 3\rangle$ and since S_{s+1} is simple,

$$
\operatorname{dim} S_{s+1}=3 \leq\left\langle k_{s}-\Phi\left(k_{s}\right)\right\rangle
$$

which eliminates this case.
The proof is now complete with cases (G), (F), and (D) corresponding to the three classes of possibilities, (i), (ii), and (iii) respectively of Theorem B.

5. Final remarks

There are obvious examples of the three possibilities of Theorem B. For example, the product action of
$G=S O\left(m-k_{1}+1\right) \oplus S O\left(k_{1}-k_{2}+1\right) \oplus \cdots \oplus S O\left(k_{s-1}-4+1\right)$
$\oplus S U(3)$
on

$$
M^{m}=S^{m-k_{1}} \times S^{k_{1}-k_{2}} \times \cdots \times S^{k_{s-1}-4} \times P^{2}(C)
$$

provides an example of (i).
In the statement of Theorem 1 of [2] a decomposition of G somewhat different from that assumed in the proof of Theorem B is used. In [2, Theorem 1] pairs of simple factor groups S_{j} isomorphic to Spin (3) in \bar{G} are combined as copies of the non-simple Lie group Spin (4). If one checks through the proof of Theorem 1 in [2], it can be seen that this technicality does not affect the application of Theorem 1 in the proof of Theorem B. In particular, the above mentioned technicality does not actually arise in the consideration of the subgroup Q of \bar{G}.

Theorem B does not exhaust the total range of gaps. In particular, there are certainly additional gaps α where $\alpha<\langle m-\Phi(m)\rangle$. For example it can be verified that there is no effective pair $\left(G, M^{20}\right)$ with $\operatorname{dim} M=20$ and $\operatorname{dim} G=\langle 15\rangle+14$ (note $\langle 15\rangle+14<\langle 20-\Phi(20)\rangle)$. If we restrict our attention to $\alpha>\langle m-\Phi(m)\rangle$ it can be verified that if α is a gap not covered by Theorem B, α must be in the range

$$
\sum_{i=0}^{t-1}\left\langle k_{i}-k_{i+1}\right\rangle<\alpha<\sum_{i=0}^{t-1}\left\langle k_{i}-k_{i+1}\right\rangle+\left\langle k_{t}-\Phi\left(k_{t}\right)\right\rangle
$$

where
(a) $k_{0}=m$
(b) $k_{i} \leq \Phi\left(k_{i-1}\right), i \leq i \leq t$.
(Note that $k_{1}, k_{2}, \cdots, k_{t}$ are uniquely determined by α.) When we search for gaps α in the above range we run into a situation comparable to that where $\alpha<\left\langle m-\Phi\left(k_{m}\right)\right\rangle$. In the latter case Lemma 9 is not directly applicable and simple factor groups of type A and exceptional type enter significantly into the picture. In principle, the techniques of the proof of Theorem B could be used to track down all possible gaps. However, the program would appear hopelessly tedious, and the final listing of all possible gaps α particularly cumbersome.

References

1. A. Borel, et al., Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton, 1960.
2. L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math., vol. 10 (1966), pp. 532-546.
3. D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955.
4. H. Wakukawa, On n-dimensional Riemannian spaces admitting some groups of motions of order less than $\frac{1}{2} n(n-1)$, Tôhoku Math. J. (2), vol. 6 (1954), pp. 121-134.
5. K. Yano, The theory of Lie derivatives and its applications, Bibliotheca Mathematica, Amsterdam, 1957.

University of Massachusetts, Amherst, Massachusetts

[^0]: Received December 8, 1967.
 ${ }^{1}$ Supported in part by a National Science Foundation grant.

