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1. Introduction

In this paper, we shall study shrinkability conditions satisfied by certait
types of pointlike decompositions of E3. We shall show that if G is a point
like decomposition of E having a 0-dimensional set of nondegenerate elements
and such that the associated decomposition space is homeomorphic to E,
then G satisfies a well-known shrinkability condition. The results of this
paper carry over, with essentially no changes, to cellular decompositions of
arbitrary 3-manifolds with boundary.
In order to state our results precisely, we introduce some notation. If G

is an upper semicontinuous decomposition of E, then E/G denotes the asso-
ciated decomposition space, P denotes the projection map from E onto
E/G, and H denotes the union of all the nondegenerate elements of G.

Suppose that G is an upper semicontinuous decomposition of E such that
P[Ho] is 0-dimensional. Then we shall say that G is shrinkable if and only
if for each open set U containing H and each positive number e, there is a
homeomorphism h from E onto E such that (1) if x e E U, h(x) x,
and (2) if g e G, (diam h[g]) < e.
The importance of shrinkable decompositions is easily seen from the follow-

ing theorem, due to Bing [7], [8]: If G is a monotone decomposition of E
such that P[Ho] is 0-dimensional and G is shrinkable, then E3/G is homeo-
morphic to E.
The main result of this paper is the following theorem which provides a con-

verse, in the case of pointlike decompositions of E, to the theorem of Bing’s
stated above: If G is a pointlite decomposition of E such that P[Ho] is O-
dimensional and E/G is homeomorphic to E, then G is shrinkable. An analo-
gous result holds for cellular decompositions of arbitrary 3-manifolds with
boundary.
The significance of the two theorems stated above concerning shrinkabilty

of decompositions of E becomes clearer when it is pointed out that shrink-
ability provides one of the most commonly used criteria for deciding whether
the space of some particular decomposition of E is homeomorphic to E3.
Although the study of local properties of decomposition spaces is beginning
to provide some different ways of showing that spaces of various decomposi-
tions of E are topologically distinct from E, such methods seem as yet more
difficult to apply than those involving shrinkability.
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Various special cases of the main result of this paper have been established
previously. In [1], it was shown to hold in case P[Ha] is countable. In
[2], it was established in case P[Ha] is a compact 0-dimensional set.
In Section 5, we show that if G is a shrinkable monotone decomposition of

E such that P[H] is 0-dimensional and E3/G is homeomorphic to E, then
each element of G is cellular. A number of questions related to the problems
studied in this paper are considered in Section 6.

2. b4ottion and terminology
The statement that M is a 3-manifold with boundary means that M is a

separable metric space such that each point ofM has a neighborhood which is a
3-cell. A point x of a 3-manifold with boundary M is an interior point of M
if and only if x has an open neighborhood in M which is an open 3-cell. The
interior of M, Int M, is the set of all interior points of M. The boundary of
M, Bd M, is M IntM.
A subset X of a 3-manifold with boundary M is cellular in M if and only if

there is a sequence C1, C., C3, of 3-cells in M such that (1) for each i,
Ci+l c Int Ci, and (2) X A=I Ci. A cellular set in a 3-manifold with
boundary M lies in Int M. The statement that G is a cellular decomposition
of a 3-manifold with boundary M means that G is an upper semicontinuous
decomposition of M into cellular sets.
A subset X of E is pointlike if and only if X is a compact continuum such

that E X is homeomorphic to E {0}. G is a pointlike decomposition
of E if and only if G is an upper semicontinuous decomposition of E into
pointlike sets. It is well known that in E, "pointlike" and "cellular" are
equivalent; see [13]. By a monotone decomposition of a 3-manifold with bound-
ary M is meant an upper semicontinuous decomposition of M into compact
continua.

If A is a set in a topological space, then C1 A denotes the closure of A and
A denotes the (topological) boundary of A. If X is a metric space, then a
sequence A1, A., A, of sets in X is a null sequence if and only if for each
positive number e, there exists a positive integer n such that if i > n, then
(diam A) <: e. If e is a positive number and A is a subset of a metric space,
then V(e, A denotes the open e-neighborhood of A.

3. Preliminary Results

The following two lemmas are corollaries of Lemmas 3 and 4, respectively,
of [3].

LEMMA 1. Suppose that G is a monotone decomposition of E such that
P[H] is O-dimensional, and qi is an open covering (in E) of H such that

(1) each set of qi is a union of elements of G and
(2) if B is any bounded subset of E, U{ U U e qi and U intersects B}

is bounded.
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Then there exists an open (in E3) covering 2 of Ha by mutually disjoint bounded
sets such that

(1) each set of 0 lies in some set of and
(2) if B is any bounded set in E, then V V e X) and V intersects B} is a

null sequence.

LEMA 2. Suppose that V1, V2 Va is a sequence of mutually disjoint
bounded open sets in E such that if B is any bounded set in E, V V inter-
sects B} is a null sequence. Suppose that for each i, hi is a homeomorphism
from C1 Vi onto C1 Vi such that hil V is the identity on Vi. Let h be the
function from E into E such that

E h(x) x, and(1) if x e Ui=i Vi,
(2) if i is a positive integer and x V h(x) hi(x).

Then h is a homeomorphism from E onto E.
The following result is established in [4].

THEOREM 1 OF [4]. Suppose that M is a 3-manifold with boundary and G
is a cellular decomposition of M such that M/G is a 3-manifold with boundary
N. Suppose that U is an open set in Int N such that P[Ha] c U. Then
there is a homeomorphism h from C1 P-I[U] onto C1 U such that h IP-I[U]
P IP-I[u].

4. The main result
ToM 1. If G is a pointlite decomposition of E such that P[H] is O-

dimensional and E3/G is homeomorphic to E, then G is shrinkable.

Proof. Suppose U is an open set in E containing Ha and is a positive
number. With the aid of Lemm 1, it follows that there exists a covering
{V1, V2, Va, -../ of Ha by mutually disjoint open sets in E such that (1)
for each i, V U and (2) if B is any bounded set in E, then Vi V inter-
sects B} is a null sequence. Notice that for each i, t]V and Ha are disioint,
V is u union of elements of G, and C1 V is compact.

Our first step is to construct, for each i, homeomorphism h from C1 V
onto C1 Vi such that hilVi is the ideatity and hi shrinks nondegenerute ele-
ments of G in Vi. Hence suppose i is some positive integer. Since by
hypothesis, Ea/G is homeomorphic to Ea, then by Theorem 1 of [4], there is
homeomorphism fi from C1 V onto C1 P[V] such that
Since C1 P[Vi] is compact and fI is continuous, there is positive number

such that if A is ny subset of P[Vi] and (diam A) t, then
(diem f-[A]) < e.

Since V is union of elements of G, P[Vi] is open. By arguments similar
to those used to establish Lemmas 1, 2, and 3 of [3], it may be shown, since
P[Vi] n P[Ha] is 0-dimensional, that there exists an open coveting of P[V]
P[Ha] by mutually disjoint open sets Vi, Vi, Via,." such that (1) for
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each positive integer j, C1 Vi c P[Vi] and (diam Vi.) < ii, and (2)
Vi2, V3, is a null sequence.

If j is a positive integer, then by Theorem 1 of [4], there is a homeomorphism
/i" from C1 Vi onto C1 p-lIvid.] such that ]il Vi- P-1 [V.. Observe
that - -1

Now define a function hi as follows: (1) If x e Vi, hi(x) x.
(2) If x Vi [.Ji= P-I[Vi], then hi(x) =fi P(x). (3) Ifjisa positive

p-1 --i --Iinteger nd x e [Vi.], then hi(x) f ]ii(x).
It is esily verified that hi is well defined, from Cl Vi into Cl Vi, nd is

one-to-one. By an argumen similar to that given for Lemma 4 of [4], it
may be shown that both hi and h are continuous. The following rgument
shows that hi has Cl V s its range. Let Q be 3-cell containing CI
Define a function h from Q into Q as follows" (1) If x e Vi, h(x) hi(x).
(2) If xeQ- Vi, h(x) x. It is easily seen that h is a continuous
function from Q into Q and h’ Bd Q is the identity. If hi does not have all
of C1 Vi as its range, there would exist a retraction from Q onto Bd Q. Conse-
quently, the range of hi is C1

E (2)Define a function h as follows (1) If x e =1 V, h(x) x
If iis a positive integer and xeV, h(x) h(x). By Lemma 2, his a
homeomorphism from E onto E3.

EIt is clear that if x e U, h(x) x. In order to complete the proof
of Theorem 1, we need only to show that if g e G, then (diam h[G]) <
Suppose that g is a nondegenerate element of G. There is some positive in-
teger i such that g c V. There is a positive integer j such that P[g]
First we shall show that

h[g] f-l[Y.].
Clearly g P-I[Vi]. Now -1 .-:-l]-lp-1 -1 -1hP [Vi] ji ,vi. [Vi], but k.P [Vi]
Vi. Hence hi P-[Vi] f.l[Vi], so hi[g] f-(l[Vi]. Now by construc-
tion, (diam Vi) < i and hence (diam f[Vi’]) < e. Therefore

(diam hi[g])

and since h[g] hi[g], it follows that (diam h[g]) < . Hence if g is any
element of G, (diam h[g]) < e.

Consequently, G is shrinkable, and Theorem 1 is proved.

5. Cellularity of elements of G
Suppose G is a monotone decomposition of E such that (1) E/G is homeo-

morphic to E and (2) P[H,] is 0-dimensional. It is not known whether,
under this hypothesis, each element of G is cellular. Indeed, if (2) above is
replaced by "P[Ho] is compact and 0-dimensional," it is not known whether
each element of G is cellular) Some information is available in cases where
additional hypotheses are satisfied. For the case where P[Ho] is countable,

See Section 6.
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see [10], and for the case where P[He] lies in a compact 0-dimensional set,
see [2] and [6]. If each element of G is a compact absolute retract or, indeed,
satisfies certain weaker hypotheses, then each element of G is cellular; no
hypothesis concerning the dimension of P[H] is necessary. See [11] and [5]
for these and related results.
There is an example due to Bing [9] of a monotone decomposition G of E

such that E/G is homeomorphic to E3, P[He] is an arc, but each nondegener-
ate element of G is non-cellular. This shows that, in the case of monotone
decompositions of E3, some condition on P[Ha] is necessary.

It follows from results of [2] and [7] that if G is a monotone shrinkable
decomposition of E such that P[H] is a compact 0-dimensional set, then each
element of G is cellular. Our next result extends this to the case where
P[Ha] is 0-dimensional.

THEOIEM 2. Suppose that G is a monotone shrinkable decomposition of E
such that P[Ha] is O-dimensional. Then each element of G is cellular.

Proof. Suppose that g is an element of G. We shall first show that if U
is any open set in E containing g, then there is a 3-cell C such that g c Int C
andC U. Let U be an open set in Econtainingg. Let Vbe an open
set in E containing Ha such that (1) each component of V is bounded and
(2) if V0 is the component of V containing g, then C1 V0 U. Let W be
an open set in E containing Ha such that W V and if W0 is the component
of W containing g, then C1 W0 c Vo.

Let {C1, C2, Cnl be a finite set of 3-cells in E such that {Int C1,
Int C., Int Cn} covers C1 W0 and each of C1, C2, and C lies in V0.
There exists a positive number such that any subset of C1 Wo of diameter
less than e lies in some one of Int C1, Int C2, and Int C.

Since G is shrinkable, there is a homeomorphism h from E onto E such
Ethat (1)ifxe W,h(x) xand (2) ifgeG, (diamh[g]) < e. Since

hie- W is the identity and V W, then hie- V is the identity.
Since both V0 and W0 are bounded, it follows by an argument similar to one
used in the proof of Theorem 1, that h[C1 V0] C1 V0 and h[C1 W0] C1 W0.
Since g V0, there is a positive integer i such that i

_
n and h[g] Int C.

Let C denote h-[Ci]. Clearly C is a 3-cell and g Int C. Since Ci c W0
and h[C1 Wo] C1 W0, it follows that h-l[C] C1 W0. Therefore

h-[C] U,
and hence C U.
We can now show that g is cellular. There is a 3-cell D such that

g Int D
and D V(1, g). There is a 3-cell D. such that

g IntD. and D2 (IntD) V(1/2, g).
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Suppose that l is a positive integer and there is a 3-cell Dk such that g c Int Dk
and D V(I//, g). Then there is a 3-cell D+I such that

gc IntD+1 and D+I (IntDk) n V(1/k-l- 1, g).

It is easily seen that (1) for each positive integer m, D,+I Int D, and
(2) g [% D. Hence g is cellular. This establishes Theorem 2.

6. Questions

The following two questions of considerable interest are closely connected
with the results of Section 5 and were mentioned there.

1. _Suppose G is a monotone decomposition of E such that (1) E3/G is
homeomorphic to E and (2) P[H] is 0-dimensional. Then is each element
of G cellular?

2. Suppose G is a monotone decomposition of E such that (1) E/G is
homeomorphic to E and (2) P[H] is compact and 0-dimensional. Then is
each element of G cellular? (Added in proof. Recently, D. R. McMillan, Jr.
and, independently, H.W. Lambert have answered the question affirmatively.)

It should be posible to define a notion of "shrinkable" for arbitrary de-
compositions of E (or 3-manifolds, or metric spaces). The definition used
in this paper is not useful unless P[H] is 0-dimensional.

3. Is there a definition of "shrinkable" for decompositions of E such
that the following are theorems? (a) If G is a monotone shrinkable decom-
position of E, then E/G is homeomorphic to E. (b) If G is a pointlike
decomposition of E such that E3/G is homeomorphic to E, then G is shrink-
able.

McAuley has considered shrinkability conditions for arbitrary decomposi-
tions of E (and other spaces); see [12] and [13]. In connection with part
(b) of question 3 above, it has been shown in [4] that in the case of cellular
decompositions of 3-manifolds into 3-manifolds, the projection map can be
approximated arbitrarily closely by homeomorphisms.
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