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1. Introduction

Throughout this paper, all algebras considered are non-associative algebras,
that is, not necessarily associative algebras. We say that an algebra is auto-
morphic if it admits a group of automorphisms which acts transitively on its
one-dimensional subspaces. We say that an algebra is finite if it contains
finitely many elements.

DEFINITION. An algebra is called a quasi division algebra if and only if the
non-zero elements of the algebra form a multiplicative quasi-group.

The obiect of this paper is to show the following:

TEOREM 1. Let A be a finite automorphic algebra with ground field F. If F
contains more than two elements, then either A 0 or A is a quasi division
algebra.

The principal application of this theorem concerns Boen’s problem, and its
generalizations. A finite p-group P is said to be p-automorphic if it admits a
group of automorphisms G which transitively permutes the elements of order
p in P. In [1], Boen considered the problem of showing that p-automorphic
p-groups of odd order are abelian. Despite the efforts of several workers [1],
[2], [13], [16], [17], [6], [15] this problem has remained open up to the present
time.
A more natural setting of this problem is in terms of algebras. It was shown

in [2] that ifP is a p-automorphic p-group minimal with respect to being non-
abelian, then there is associated with P, an algebra A over the field of p ele-
ments with the property that A is anticommutative and A2 0. Moreover if
G is the group of automorphisms which acts transitively on the elements of
order p in P, then G also acts as a group of operators on the algebra A, in such
manner that A and fll (Z (P)) are isomorphic as Z G-modules. Accordingly,
Kostrikin introduced the notion of homogeneous algebra, i.e. a finite-dimensional
algebra which admits a group of automorphisms transitively permuting its
non-zero elements. A proof that finite homogeneous algebras over fields of
odd characteristic are zero-algebras would then solve the corresponding prob-
lem on p-automorphic p-groups. In [16] Boen’s problem was generalized
slightly in another direction by considering semi-p-automorphic p-groups (spa-
groups), i.e. p-groups whose cyclic subgroups of order p are transitively per-
muted by a group of automorphisms. The construction of an algebra canoni-
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TABLE 1

Type of Algebra

homogeneous

spa-algebra

Author(s)

Higman
Boen
Boen, Rothaus and Thompson
Boen, Rothaus and Thompson
Kostrikin
Dornhoff
Shult
Shult
Dornhoff
Passman

Assumptions

G is cyclic

n<6
n3 < q
n--6<q
2n--3q
n is prime
G is p-solvable
2n-3<q
G is p-solvable

Reference

[11]
[1]
[2]
[2]

[13l
[6]

[16]
[ZT]
[6]

[15]

cally associated with a minimal non-abelian spa-group still carries through and
motivates the corresponding notion of spa-algebra, i.e. automorphic algebras
which are antieommutative [16]. The fact that every finite dimensional homo-
geneous algebra is a spa-algebra follows from

LEMMA (Kostrikin [13]). If A is a finite dimensional homogeneous algebra
over a field of odd characteristic, then A is anticommutative.

To show that p-automorphie p-groups of odd order are abelian, it suffices to
prove that either finite homogeneous algebras or finite spa-algebras are zero-
algebras if they have odd characteristic. Several authors have obtained such
proofs in the presence of special additional assumptions. These results are
summarized in Table 1. Throughout Table 1, A is either a homogeneous algebra
or a spa-algebra. A has dimension n over GF (q) where q is assumed to be odd.
G denotes a group of automorphisms of A satisfying the appropriate transitivity
condition. The results are listed in approximate chronological order; although
the first four items were proved for q a prime, the proofs apply equally well to
algebras over fields containing an odd number q of elements.

All of the results of Table 1 are contained in

COROLLARY 1. Finite spa-algebras of odd characteristic are zero-algebras.

More can be said about finite automorphic algebras over fields of charac-
teristic 2. Consider

COROLLARY 2. Let A be an autoraorphic algebra over GF(q) and let
G Aut (A). Let d be the number of G-orbits in A A (0). If q 1 > d,
then A O. In particular, if q > 2, and A is a homogeneous algebra, then
A O.

The provision that q > 2 in the homogeneous case is necessary, as can be
seen by the following:

Example. Let F GF(2). Let denote the automorphism of F
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defined by (a)" 2-
a Define a new product a on F by he rule

a (a)" for any a, in F. Then it is easy to see that F becomes a quasi-
division algebra over GF (2) relative to the operations and field addition.
Moreover this algebra is a homogeneous algebra since scalar multiplication by
a primitive (2" 1)st root induces an automorphism of the algebra which
transitively permutes the non-zero elements of F.
A number of group-theoretic corollaries follow"

COIOLLAa 3. Let P be a p-group which admits a group of automorphisms
transitively permuting its subgroups of order p. Then if p is odd, P is abelian.

COROLLAI 4. Suppose G is a group containing one conjugate class of sub-
groups of odd prime order p. Then a p-Sylow subgroup S of G is abelian if and
only if (

_
z( ).

The following corollary is a generalization of a result of Gaschiitz and Yen
[9].

COROLLIY 5. Let p be an odd prime. Suppose G is a p-solvable group whose
subgroups of order p are conjugate in the automorphism group of G. Then G has
p-length 1 and abelian p-Sylow subgroups.

All of these corollaries are proved as consequences of Theorem I in Section 1
of this paper.

In Section 3 we consider algebras A over a field F and algebras A (R) K
where K is a galois extension of F. The embedding A -- A (R) 1

___
A (R) K

induces aniniection Aut (A) -Aut (A (R) K). A canonical semiautomorphism
of A (R) K is defined which has the property that A (R) 1 comprises the

fixed points of in A (R) K and Aut (A) is isomorphic to the subgroup of
Aut (A (R) K) consisting of those automorphisms of A (R) K which commute
with . Facts concerning Aut(A) impose multiplicative conditions on eigen-
vectors for these automorphisms in A (R) K. The utility of lies in the
fact that the multiplication table of A can then be recovered from the struc-
ture constants of A (R) K. As a consequence, and A (R) K provide a
vehicle for deriving information concerning the algebra A from Aut(A).
These methods can be utilized to define a class of quasidivision algebras which
admit irreducible automorphisms.
In Section 4, our attention centers on elements in a linear group which have

prime order and which act irreducibly on the underlying vector space. A very
useful trichotomy (Theorem 3) is obtained for linear groups acting on finite
vector spaces of characteristic prime to the group order.

If n denotes the dimension of the underlying space, one proves that either G
is metacyclic, is a central extension of LF (2, 2n - 1 (where 2n -- I is a prime)
or that if x is an irreducible element of prime order in G, then 0 (x) n -- 1.
As an application we prove an E-theorem which may be regarded as a modu-
lar analogue of a theorem of Blichfeldt.
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Section 5 contains the main result of the paper (Theorem 4). The section
then concludes with a proof of Theorem 1. The essential idea involves a shift
away from automorphic algebras to a consideration of a left ideal B in an
algebra A which satisfy two conditions: (i) B 0 and left multiplication by
any element x e A induces a nilpotent transformation of B; (ii) The group H of
automorphisms ofA leaving B invariant acts transitively on the 1-dimensional
subspaces of B. The result is that AB O. This approach admits a more
powerful use of induction, leading at once to the case that H has order prime to
the field characteristic. Under these conditions the trichotomy of Section 4
can be exploited.

2. Proof of the corollaries

We begin with a few basic ideas of Chevalley [4]. Let R denote the cartesian
product of n copies of GF (q) and let P GF (q)[xl, x] be the commuta-
tive ring of polynomials in n variables with coefficients from GF (q). Any
polynomial F in P can be associated with a mapping R -- GF (q) by assigning
values in R to the n-tuple (xl, x) and evaluating F. Two polynomials in
P are associated with the same mapping R GF (q) if and only if they are
congruent modulo the ideal I of P generated by x x, i 1, ..., n.
By a process of replacing x by x, any polynomial F can be converted to a
polynomial F such that no monomial summand ofF contains a power of x as
large as q (we say F is in reduced form) and F F mod I. F is unique with
these properties and is called the reduced form of F.

LEMMA 1 (Chevalley [4]). A polynomial in P which is in reduced form in-
duces the zero-map R 0 e GF (q if and only if it is the zero polynomial.

This essentially asserts that the polynomials in reduced form comprise a
system of distinct coset representatives of I in P.

LEMMA 2 (Chevalley [4]). If F is a homogeneous polynomial in P having
degree less than n (the number of variables) and F (0, O) O, then there exist
an n-tuple in R, such that (0, 0) and F ( 0 (i.e. F has a non-trivial
zero on R ).

This is Chevalley’s theorem that finite fields are quasi-algebraically closed.
Let A be a non-associative algebra. We say that A is left (right) nil if and

only if the linear transformation L (R) ofA induced by left (right) multi-
plication by x is a nilpotent linear transformation. We say A is a nil algebra
if it is both left and right nil.
The following is a minor variation on a lemma of Boen, Rothaus and Thomp-

son [2].

LEMMA 3. If A is a finite automorphic algebra then either A is nil or A is a
quasi-division algebra.
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Proof. Given any two elements a, b in A, there exists an element
g e G Aut (A) and a scalar f e F, the ground field of A, such that a fibg.
If La denotes the linear transformation of A induced by left multiplication by
a, then La and Lb are always proiectively similar.
Suppose {a} is an F-basis of A and let {7’k} be a fixed set of structure con-

stants forA relative to this basis. Then the transformations Lai can be repre-
sented by matrices relative to the basis lad which depend only on the con-
stants 7j. For a general element

a hi al -t- -t- h, a. O,

the transformation La M Lal + + X, La. is represented by a matrix whose
entries are linear expressions in the X. It follows that all principal j j
minors of this matrix are homogeneous polynomials of degree j in the variables
),1, . If the characteristic equation of La is

z"- C (x ,..., x,)x"- + C_(x ,..., x,)z + C, (x ,..., x,)

then each Cj, being a linear combination of these principal j X j minors, is a
homogeneous polynomial of degree j in the h. Moreover, if we write
(X1 ,..., X,)g for (X’I,.-., X’,) whenever ag h’ a,we have that

c(x, ..., x,) c;((x,, ..., x,))

for each q e G andn-tuple (hi, X,) in F X X F, since the similarity of
La and Lo forces them to have identical characteristic equations. For any
other element b e A, Lb is projectiveiy similar to La. Thus for any second n-
tuple (al, a,) there exists a scalar such that

iCjQu,’-’,X=) C(al, -",a) for j_< n.

Thus if there exists a choice for (X, X,) # (0, 0) which is a zero
for C, then C. vanishes for all n-tuples in F X X F. By Lemma 2, such a
choice exists for eachj < n. Thus either L has characteristic equation x 0
for each a e A, or else La has characteristic equation x C (a) for each a e A
where C. (a) 0 for all a e A (0). Thus either La is nilpotent for
a A or La is non-singular for each a e A (0). A similar dichotomy holds
among the set of right multiplications. If A is left (right) nil, then some right
(left) multiplication is singular and so A is also right (left) nil. Thus either
A is nil or A (0) is a quasi group.

LEMM.4. 4. Let F be a finite field and let R be the vector space of n-tuples with
entries from F. Let p be a homogeneous polynomial of degree n in F[xl x,].
Suppose G is a group of linear transformations of R which acts transitively on the
one-dimensional subspaces of R and suppose

p (v) p (v)

for every v R and g e G. Then either
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(i) p(v) 0forallveRor
(ii) the stabilizer in G of a one-dimensional subspace of R fixes every vector

in that subspace;
i.e. for any v e R, g e G, vg kv for some k e F implies h l or v O.

Proof. Let d be the number of G-orbits on R (0); let L be the subspace

{(,o, ...,o) F}

of R, and let H be the stabilizer in G of L. Then, because G is transitive on the
l-dimensional subspaces of R, d also represents the number of H-orbits on
L (0). For any u e L (0) and h e H,uh k (h)u for some scalar , (h) F
depending on h and independent of u. It is easy to see that , (hl)k (h2)
k (hi h2) for (hi, h2) H H and so }, defines a homomorphism X’H --. F*, the
multiplicative group of non-zero elements of F. Thus for all u e L (0), the
H-orbit uH (h)u h e H} has cardinality independent of u. As there are d
such orbits and F* is cyclic of order q 1, we have

X (H) Z(_)/.

Now suppose p does not vanish on R. Then for some v e R, p (v) 0.
F* vgWe can find g e G and e such that (, 0, 0) and so

o p(,o,...,o) p((,o,...,0))
p(x(h), 0, ..., 0) ?,(h)p(, 0,..., O)

For every h e H since p is homogeneous of degree n. Thus , (h) 1 for all
h e H so (q 1)/d divides n, or (q 1 divides nd.
We now show that (p (x, x))d is constant on R (0). Set

k (p(1,0,...,0))d.
F* vFor any v e R (0) there exists (, g) X G such that (t, 0, 0).

Then

(p (v)) (p (/, O, 0)) / k, independent of v,

since 0 and q 1 divides nd. Set

f / (1 II% (1 x- ).

Then both f and p have value k on R (0) and value zero on (0, ,0).
It follows from Lemma 1, that since f is in reduced form, it is the reduced form
of pd. Thus

nd deg (p) >_ deg (f) n(q- 1)

so d >_ q- 1. Since d divides q- 1, d q- 1 and (ii)holds.

LEMMA 5. If A is a finite automorphic algebra, then either A is nil, or
G Aut (A) does not move an element of A to a distinct scalar multiple of itself
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(i.e. d q 1 where q is the cardinality of the ground field of A and d is the
number of G-orbits on A (0).).

Proof. From Lemma 3, if {ai} is an F-basis for A and a a,
h e F, then the characteristic equation ofL has the form

x- C(,..., ) 0.

IfA is not nil, C (},, ),) p (a) is not zero for all z e A. Now p stisfies
the conditions on p in Lemma 4 and so (ii) holds for G and A.
We can now prove all the corollaries assuming Theorem 1 as a hypothesis.

Proof of Corollary 1. If A is a finite spa-algebra, anticommutativity and odd
characteristic force a 0 for each a A. Then if A (0) then A contains at
least three elements and A is not a quasi-division algebra. As A is auto-
morphic, and the ground field is not Z2, the result follows from Theorem 1.

Proof of Corollary 2. If q 1 > d, by Lemma 5, A is nil. By Theorem 1,
since A is not a quasi-division algebra A 0.

Proof of Corollary 3. Let P be a p-group of odd order chosen minimally
with respect to being non-abelian and satisfying the hypothesis of Corollary 3.
Then the Frattini subgroup D (P), and P/]I (Z (P)) are both homocyclic
abelian p-groups. Thus [P, P] tl (Z (P)) is elementary and so p-th powers
are central and generate D(P). Then there exists a power mapping
_P P/D (P ---> 2 (Z (P which is a G-isomorphism between these spaces
viewed as G-modules. Since D (P) Z (P), commutation defines a skew-
symmetric bilinear mapping

")"P X P I(Z(P)).

Setting A P, a G-module, the composition of the G-homomorphism
--1

A XA PXD " ;(Z(P))- )P A

defines a productA A A relative to which A is a non-associative algebra
and G is an operator group. Thus, since A

___
ta (Z (P)) A is a spa-algebra.

Since A 0 by Corollary 1, the mapping /is the zero map and so P is abelian.
This contradicts the choice of P and proves the corollary.

Proofof Corollary 4. Suppose 2 (S)

_
Z (S). By Burnside’s fusion theorem

and the hypothesis of this corollary, ap-complement Q of S in No (S) acts as a

group of operators of the p-group S transitively permuting its subgroup of
order p. As S is odd, S is abelian by Corollary 2. The converse part is
trivial.

Proof of Corollary 5. Clearly we may assume 0, (G) 1. Let S be a
p-Sylow subgroup of G and set P 0 (G). We may assume P > 1. Then
[h (S) t (P). Next we observe that the semidirect product H Aut(G) G
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is a group of operators of P transitively acting on its subgroups of order P.
Thus P is abelian. Let Q be a p-complement in 0, (G). By a Frattini
argument we may write H NH (Q)P. If S P we are done. Assuming
S > P, wehaveQ > 1. Then

N, (Q) n 2 (P) Z (0, (G)) n 2 (P)

is an H-invariant subgroup of 21 (P) which is clearly an irreducible H-module.
Thus either 21 (P)

_
C. (Q) or N, (Q) n 21 (P) 1. In the former case, by a

theorem of Huppert [12], since P is abelian, P is centralized by Q. This is
contrary to Lemma 1.2.3 of Hall and Higman [10]. Thus N. (Q) is a comple-
ment in H to P. Since 2 (S) _< P, Na (Q) is a pr-group; hence P S, and
the proof is complete.

3. The canonical semi-automorphism group
Recall that if V is a vector space over a field K, a mapping

f’v-v
is called a semi-linear transformation of V if and only iff (u -t- v) f (u) -t- f (v)
for all u, v e V and there exists e Aut (K) such that f(au) af(u) for all
ueVandaeK.

DEFINITION. Let B be an algebra over the field K. A mapping

f:B----. B

is called a semi-automorphism of B if and only if f (a)f (b) f(ab) for all a,
f e B and f is a semi-linear transformation of B.

If A is an algebra over a field K and F is a subfield of K, then the set S (A)
of semi-automorphismsf of A satisfying f(aa) af(a) for all a e A and scalars
a lying in the subfield F, forms a group. Clearly Aut (A) SK(A and is a
normal subgroup of S (A). If P is the prime subfield of K, Se (A) is the full
semi-automorphism group of A. Moreover if F L K where L is a normal
extension of F, then SL (A) <:1_ S (A) and S (A)/SL (A) is a subgroup of the
Galois group G (L/F).
Now suppose A is an algebra over F and K is an extension field of F. In

the usual way A (R) K can be endowed with the structure of a K-algebra by
asserting that

(a @ a)(b (R) ) (ab) (R) ()
for all a, b e A and a, e K. Then the mapping

a---a(R)l

induces an embedding A A (R) K as algebras over F. There is also an em-
bedding

’Aut (A)--Aut (A (R) K)
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uniquely defined by the requirement that (a (R) a) (g) ag (R) a for all
g e G, aeA and a e K.
In this paragraph we assume that K is a finite normal separable extension of

F. Wenowdefineinacanonicalwayafinitesubgroup, Y (A, K) of S,(A (R) K)
with the properties

(1) Y(A, K) G(K/F),
(2) Y(A,K) nAut (A (R) K) 1,
(3) Y(A, K)Aut (A (R) K) SF(A (R) g).

Suppose [K:F] n and let {e}, (r e G (K/F) be a normal F-basis of K.
Since

(4) A (R)K=A

where {(r} G(K/F), the mapping :a (R) e a (R) e(,,) for all a e A and
fixed (r e G (K/F) can be extended F-linearly to A (R) K, permuting the subsets
A (R) e, as wholes. Clearly each is a semi automorphism of A (R) K satisfy-
ingb (aa) a(a) for all a e A, a e K. Since kk, , (viewingS (A (R) K)
as a right operator group), the set

{k [(re G (K/F)

forms group Y(A, K). Clearly 1 1 is the only element in
Y(A, K) nAut (A (R) K). IffeSF(A (R) K) thenf(aa) a’f(a) for all
a e A, a e K and some fixed r e G (K/F) independent of a and a. Clearly
ilk,-1 and b,-1 f both belong to Aut (A (R) K) and so

Y(A, K)Aut (A (R) K) S(A (R) g).

We can now prove

TEORE 2. Suppose A is an algebra over F and K is a normal separable
finite extension of F. Then

(5) A (R) 1 C.(Y (A, K)

Moreover,

(6) Aut (A) CA() (Y (A, K))

Proof. Suppose a e A (R) K is an element fixed by Y(A, K). Then he
decomposition (4) yields

and for b Y (A, K), (a, (R) s,)" a, (R) s, whence the a are all equal.
Thus a has the form al (R) e A (R) 1, from he separability of K/F. Ob-
viously (a (R) 1)b a (R) I is a fixed point of Y (A, K) and so (5) holds.

Suppose g Aut (A) and b Y(A, K). Then for any a A,
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Since (g) and are F-linear maps which commute when restricted to the
a (R) whose F-span is A (R) K, (Aut (A)) is centralized by Y (A, K). Now
suppose is an automorphism of A (R) K which commutes with all semi-
automorphisms in Y(A, K). Then induces an automorphism on the fixed
point setA (R) 1. Thus (a(R) 1)= ag(R) lforsomegeAut (A)andallaeA.
Since is K-linear, (a (R) a) ag (R) a whence / (g). Thus we see from
(1), (2), and (3) that Y(A, K) normalizes the subgroup Aut (A (R) K) of
S(A (R) K) and this group for fixed points of Y(A, K) in Aut (A (R) K) is
precisely (Aut (A)). Thus (6) holds.
The next two lemmas will be required for Section 4.

LEMMA 6. Suppose A is a finite algebra over F. Let g be an element of order
m in Aut (A) where char F does not divide m. If U is a g-irreducible subspace
of A and K is an extension of F containing m-th roots, then U (R) K has a basis of
eigenvectors for (g) which are transitively permuted by Y(A, K).

Proof. Set FI q. There exists an m-th root 0 and an eigenvector
u0e U (R) K, such that (Uo) OUo. Y(A, K) G(K/F) is cyclic, and
is generated by an element b such that b (aa)1= aqb (a). Setting d dim U,
the eigenroots for g are 0, 0q, ..., 0-, and so setting u u0,
i 0, d 1, the u generate U (R) K and d (u0) flu0 for some/ e K.
If q has exponent n mod m, d divides n and b 1. Thus

’bO qn--d’O.
Since 1 -f- q -f- qa -t- -4- q=-d divides (q" 1)/(q 1), it follows that
is a (qa 1)st power. Hence we can find 3’ e K such that 3"-1 /-1. It
follows that a fixes 3"u0 and we may use the -orbit of 3"u0, as the desired
eigenbasis of U (R) K.

LEMMA 7. Suppose A is a finite algebra over F with left ideal B and suppose
x e Aut (A) has order m, prime to char F and that x leaves B invariant and acts
faithfully and irreducibly on B. Let U be an x-irreducible subspace ofA different
from B and let K be an extension field of F containing primitive m-th roots of
unity. Form U (R) K and B (R) K and let Uo, ua_l be an eigenbasis of
U (R) K relative to the transformagon x. Suppose uo (B (R) K) is one-dimensional.
Then lef$ multiplication of B by any non-zero element u e U, induces a linear
transformation of B which is similar to a semilinear transformation of K. In
particular, such a transformatiin is non-singular and so uB B for 0 u e U.

Proof. Set F q, dim B n and let 0 be a primitive m-th root of unity.
Then x acts on B (R) K, with n distinct eigenvalues 0, 0, 0"- and q has
exponent n modulo m. Similarly x acts with eigenvalues
where kq 1 mod m. Let generate Y (A, K) where b (ha) ab (a) for
all a e K and a e A. By Lemma 6, there exist eigenbases u0, ua_ and
b0, b_ of U (R) K and B (R) K respectively. By hypothesis uo(B (R) K)
has dimension 1. On the other hand, for some c and e, u0 b 7b 0 and
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u0b= 0foric. This forceskWq= qemodm. If

Oli Ui

is fixed by , then a0 a
q q
,-1 a,-. aq-1 a. Thus if L is an

intermediate field such that F L K and [LF] d, then for each a e L
we may associate a unique element u (a) q’

a u in U (R) 1, the fixed points
of b in U (R) K. Similarly for each e K, we may uniquely associate the
element

in B (R) 1, the fixed points of b in B. Then

u (a )b ( ,-1

d--1i--0 q +
a u(q’ b+. + q’

b (qc- (a)q"-’)
Thus left multiplication of B by u u (a) in U U (R) 1, corresponds to the
transformation

for all

which is semilinear. The conclusions of the lemma now follow.
The essential result of the previous lemma can be used for the construction

of finite quasi-division algebras which admit an automorphism which acts
irreducibly on the algebra.

Suppose q is a fixed prime power and that q has exponent n modulo some
integer m prime to q. Suppose there exists a congruence of the form
1 -t- q q rood m. Set F GF (q), K GF (q) and let V be an n-dimen-
sional vector space over K. We may regard V as U (R) K where U is an n-di-
mensional space over F. Then there is an irreducible linear transformation
x on U satisfying x 1, and we can let x’ denote its extension to V. Regard-
ing both U and V as algebras for the moment, the mapping corresponding to
the semiautomorphism b satisfying b (av) aq (v) for all a e K, v E V can be
defined. There exists a -invariant eigenbasis v0, v_ of V relative to x.
We convert V to a non-trivial algebra A by defining v0 v ,v for some fixed, e K and setting

Vi Yi-ba qYi-b
where the subscripts are red modulo n. Then x’ e Aut (A), and b generates
S(A) rood Aut (A). It follows that U is a subMgebra over F. In fact U
is isomorphic to the following algebra U"
As a vector space over F identify U with K. For any two elements a and

/ in K define a product a o by the equation

Ol 0 a
qn-bqa-bqn-b
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where juxtaposition denotes field multiplication. This algebra U’ --- U ad-
mits x’ so that it induces an automorphism corresponding to the linear trans-
formation x in U. In U’ it corresponds to scalar multiplication by a primitive
m-th root in K.
The quasidivision algebra mentioned in Section 1 corresponds to the case

that q 2, a 0, b 1 and x is scalar multiplication by a (2 1)-st root.

4. The trichotomy

Let V (n, pS) denote the n-dimensional vector space over the field GF (pS)
and let G be a linear group acting on V (n, p’). If p does not divide G, the
Brauer character of the representation of G on V (n, pS) is an ordinary charac-
ter and many of the facts concerning G can be learned from this character. As
useful as this procedure may be, many facts concerning the action of G qua
linear group are lost in passing to the ordinary complex character. In par-
ticular we lose information concerning which subgroups of G act irreducibly on
V (n, p*). We shall recoup some of this in Theorem 3 below.
We begin with a standard

LEMMA 8. Let , (x) denote the cyclotomic polynomial whose roots are the
primitive n-th roots of unity and let be an integer. Then

(7) n() "e’al as
i/1 p

where n rXnl and r i rood nl (which maes r the largest prime divisor of n)
and p I rood n. Moreover, p does not divide m() for any m < n. If
n 2, e--Oorl.

Proof. This is essentially the content of Theorems 94 and 95 of Nagell’s
book [14].
The primes p, p occurring in equation (7) are hereafter denoted the

normal prime divisors of n (q).
Now suppose x is an element of prime order p, lying in GL(n, p’)where

n 1. Then x acts irreducibly on V (n, p’) if and only if p’ has exponent
n rood p. It follows that p divides (p’), that p I rood n and that any
other element of order p in GL(n, p’) also acts irreducibly on V (n, p’).
In this section, r will denote the set of primes dividing the order of G such

that if x is an element of prime order, r, in G, then x acts irreducibly on V (n,
if and only if r e r. It is easily seen that if r0 is the set of normal prime
divisors of , (p’) then r is the subset of those primes in r0 which divide the
group order.

LEMMA 9. Assume n and q p" fixed. Then ro is empty only if n <_ 2 or
else n 6, and q 2 (so ,,(q) 3).

Proof. This standard result is Theorem 6 of [5].

LEMMA 10. Let G be a linear group on V (n, p’) and let r be the set ofprimes
indicated above, i.e. r r(G) n ro. If r e r, let S be an St-subgroup of G.
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Then
()
(b)

(d)
izes.

Ca (1 (S ) is cyclic and is Ca (S ).
Na(I (S) Na(S) and [Na(S) :C(S)] divides n.
S is a TI set in G.

(S) centralizes every {p, r} -subgroup of odd order in G which it normal-
A similar conclusion holds with S replacing 1 (S).

Proof. Since all parts of the lemma hold for n 1, assume n _> 2.
Let x be an element of order r lying in the center of S. Let 0 be a primitive

r-th root, set

K GF(p"’) GF(p’)(O) and V V(n,p’) (R) K.

Then x acts on V as a matrix similar to diag (0, 0q, 0q-I ), and has distinct
eigenvlues. It follows that the centralizer of x in GL(n, K) consists of
diagonal matrixes and so Ca (x) is an irreducible abelian subgroup of GL (n, p" ).
As a result, Ca (x) is cyclic. From our choice of x, Ca (x) centralizes S and so
(a) holds.
Since 2 (S) is characteristic in S, Na (S)

_
Na (1 (S)). The latter normal-.

izes Co (t (S) ) and its characteristic subgroup S. Thus Na (2 (S)) Na (S).
Since Aut (h (S)) is cyclic, so is Na( (S))/Ca( (S)). Thus Ne (1 (S))
induces a cyclic 1/2-transitive permutation group on the eigenvalues 0q’ and so
the order of this cyclic group divides dimK V n, and (b) holds.

If 1 < L S n S, for some x G then h (S)

_
L so both S and S centralize

h (S). As S is the only St-subgroup of Ca (t (S)), S S. Thus (c) holds.
Let N be a {p, r}’-subgroup of G which is normalized by (S) and suppose

N is not centralized by 21 (S). Since S and N have coprime orders, for each
prime dividing IN [, N contains an St-subgroup normalized by (S). We
can find a prime such that the normalized St-subgroup of N is not centralized
by 2 (S). Choose T minimal in this subgroup with respect to being normal-
ized but not centralized by (S). Then T is a special t-group whose Frattini
factor group has order and is acted on irreducibly by 2 (S). Form the
p-subgroup H 1 (S)T and view V0 V (n, p’) as an H-module. Then V0
has an absolutely irreducible constituent V00 whose kernel H does not contain
T. If H0 D(T), H/Ho is Frobenius, and dim V00 r

_
dim V0 n.

This contradicts r---1 mod n. Thus TIT Ho is extraspecial and so
dim V00 n. Since r is a prime exceeding n - 1 and r divides 1,
r equals 1/2m -- 1. Since n >_ 2 and r e 0, r is odd. Then r / + I forces

2 contrary to the hypothesis of (d). Thus (d) holds, completing the
proof of the lemma.
The following lemma concerns TI sets and ordinary complex characters.

LEMMA 11. Let H be a TI set in G. Suppose H is abelian and that H is em-
bedded in G so that

(a ) t

_
Na (H implies H H,

(b) 1 < Ho

_
H implies Co (Ho Ca(H).

If G has a faithful character of degree

_
H / 1 then H G.



Proof. If H

_
L

_
G, then the hypotheses of the pair (H, G) inherit to

the pair (H, L). Thus if H <3_ L < G, by induction, H L. Thus we may
assume thatN(H) is the unique maximal subgroup of G containing H. Now
supposeH_ N<3 G. ThenH

_
N_ Na(H) forallxeG. By (a), this

implies H <:l G and we are done. Thus H is not contained in any proper
normal subgroup of G. Now set H H 1}, and set

No {(J,e(x)} -Z(G) Ca(H)-Z(G) by (b).

If x e No N, both H and H lie in Ce (H). Thus either No N No or 0.
Now set N Na (N0). Then N Na (Ca (H)). Clearly, Na (H) normal-
izes Ca(H) soNa(H)

_
N. For anyyeN,H

_
Ca(H) soH Hby

(a). Thus N N (G). We have thus verified the hypotheses 24.1 of [7].
It now follows from Theorem 24.3 of [7] that x(1) > H / 1 for every
faithful character of G. As this is a contradiction, H <:1_ G.

LEMMA 12. If S is an S-subgroup of a linear group G acting on V (n, p)
then S satisfies the conditions (a) and (b) of Lemma 11.

Proof. For any x G, S

_
Na(S) implies S S since S is the unique

S,-subgroup of Na (S).
Also if 1 < So

_
S, then 2 (S)

_
So. Thus Ca (S)

_
Ca (So) <_ Ca( (S))

and all three are equal by Lemma 10, part (a).

THEOE 3. Let G be a linear group on V (n, p’) and let be the set of primes
r (G) n ro If p G [, then one of the following three cases holds"

(a) G contains a normal irreducible cyclic subgroup C of index dividing n;
(b) G is a central extension of LF (2, 2n + 1) and - {2n + 1} or

/n - 1,2n + 1};
(c) contains at most the single prime n + 1, where (n + 1) / G I.
Proof. Suppose r e . Let 2 be the Brauer character of the representation

of G on V (n, p). Then 2 is a faithful ordinary complex character of G of
degreen. Let S be anSi-subgroup of G. If SI/ 1 _> n, S G by
Lemmas 11 and 12. Then G Na (S) and so (a) holds by Lemma 10. Now
r --- 1 mod n, by the definition of 0. If r > 2n -t- 1, again S <:l_ G and (a)
holds by a fundamental theorem of Feit and Thompson [8]. Thus r 2n - 1
or n -t- 1. If r 2n - 1, r divides G[ to the first power only and (b) holds,
by a deep theorem of Brauer [3]. Thus we may assume {r} {n -t- 1}.
Suppose S r where a _> 2. Then IS "/ >_ q n -t- 1 so IS 11/2 1 _> n
contrary to what we know about S. Thus (c) is proved.
To illustrate the usefulness of the trichotomy of Theorem 3, we include as

an easy application, an

E-THEOREM. Suppose G is a p’-group acting on V (n, p). Let - be defined
as in Lemma 9. Then either G contains a -Hall subgroup or both n 1 and
2n 1 are primes and G is a central extension of LF (2, 2n 1 ).

Proof. We may assume I1 >_ 2. Theorem 3 applies to force case (b).



ON FINITE AI]’TOMORPHIC ALGEBRAS 639

If r r0, case (c) of Theorem 3 holds when m {n - 1} and (n - 1)2
does not divide (pS). It will be useful to us to determine at iust what values
of p’ and n this can occur.

LEMMA 13. Suppose tc is an integer greater than 2, and suppose n is a positive
integer. Let r be the largest prime dividing n. Then if b 0 or 1, we have

() r(n + 1)

only in the following cases."

n 2, any integeroftheform 2- 1 or 3.2- 1;

n 4, k 3, r(n+ 1) 10;

n 6, 3, a 0, b 1;

=5, a=b=l.

Proof. The proof proceeds by a series of short steps.

(a) Let r and r be primes. Then r- max (r, r).

If r r, r- rl max (r, r2), and if rl < r then r-1 22-1 > r.

(b) Suppose n nln where (n n) l and n > n > 2. Let r, r and
r be the largest prime divisors of n, nl and n2 respectively. Then r max (r, r).
if

( 1) () > rl (n + 1)

then ( 1)() > r(n + 1).

Clearly
(k-1)() ((- 1)(,))( > r-(n + 1)

max (r,r)(nn + 1) r(n + 1).

(c) Let q be a pime number. Then if k 3

( 1) (q-)q"- > q (q + 1)

unless 2 and k 7, q 3, 4 and 4 or q 5 or S and 3.

First we directly verify the inequality when q 2, 3, 5 and k 3, when
q 2a,5and=4,orq 2,3and 5. If q" 2, it is easily seen that
the inequality implies > 6. Now suppose for some value of b and that

(k 1) (q-)q- > q (q + 1).

Then raising both sides to the q-th power

(- 1) (q-)q > (q)q+ 1))q > qq(qq + 1q) > q(q+ + 1).

Thus (c) holds by induction, if we can prove the inequality for a 1, q > 5.
It sces to show this when 3, q 7. Butingeneralifs 7, then
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2’- > s (s - 1 since this holds for s 7, and if it holds for s t, then
2(+)- 2.2t- > 2t(t + 1) > t(t - 1) -t- 2(t - 1) (t-t- 1)(t-I- 2)
and it holds for + 1. Thus (c) is proved.

(d) If k >_ 3, the inequality

(8) (k- 1)*(=) > r(n + 1)

holds except possibly when n has the form 2.q, where q > 5 and q is an odd
prime, or when n has the form n 2a3b5 where 0

_
b, c

_
1 and 0

_
a

_
3.

This is a consequence of combining (b) and (c).

(e ) The inequality (8) holds if n 2q where (q 1)q- >_ 6 and a > 1"

We apply the inequality 2s-1 > S (8 -{- 1) established in the proof of (c).
Thus if (q- 1 )qa-i

_
6,

2 (q--)q- > (q- 1 )2q2a-2
__
3(q- 1)qa- + 2.

Sinceq >_ 3, q+ 1 > 4qor (q- 1) > 2q. Thus

2 (q--1)qa--1 > 2q- + 3(q- 1)q- + 2

> 2q"+ +q q(2q+ 1) r(n+ 1)

ira > 2.

(f) The inequality (8) holds {f n 2q where q is a prime > 7.

First, 28 > 161 9(2.9-t- 1). If2t-1 > t(2t + 1)then

2 > t(2t- 1)-[- 3(2t-t- t) > t(2t- 1)-t-4t-t-3 if t_> 3.

(g) If n 0 mod 15, then (8) holds.

Ifn 30, or 15, (k- 1)* () >_ 2 256whiler 5andr(n- 1 80 or
155. From (b) with n 15, the cases n 60 and 120 are also covered.

(h) If k >_ 3, ,(l) > r(n + 1) unlessn 8, 10, 12, or 14 with k 3,
n 3or4withk

_
4, n 2withk

_
7, orn 6, withk

_
5.

>-
where o ranges over the primitive n-th roots of unity (equality holds only
when n 1). But the right side exceeds r (n -t- 1) except possibly when
n 14 (from (f)), when n 5, 8 (with k 3), n 3, 4 (with k

_
4),when

n 6, 12, 24 orn 10, 20 or 40 with k 3 (from (g)). Ifn 5,
(k) _> (3) 131 and this exceedsS(5-t- 1) 30. Ifn 20 or 40,
2(n) 2s> 5.41. If n 24, 2() 2s> 3.25 75. The possibilities
are thus those specified in (h). The bounds on k are determined from
2 ()

_
r (n -[- 1) in each case.

We are now in a position to prove the lemma. From Theorems 94-95 of
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[14], if n > 2, the exponent of r iu (]c) is at most’ 1, and all other prime
divisors are congruent to unity modulo n. Thus if (n -[- 1 occurs as a factor,
n 1 is a prime number. Thus in the case that n 3, 8 or 14, we have

(]) 3, 2 or 7, respectively. For n 3, this would imply ]c 1. If
n 8 or 14, (/c) _> 2 () > 24 > max (2, 7), and so these cases are im-
possible. If n 2, the equation reads/c 1 2a. 3 so any/ 1 rood 2 or
3.2 provides a solution. If n 10, or 12, either b (It) 5 or 3, 11 or 13, or
else O(k) r(n -t- 1) 55 or 39. In the former case,
> 24> 13 and so the equation cannot hold. Thus10(3) 55or1:(3) 39,
since /c 3 in these cases in order to avoid the inequality (8). But
10 (3) >_ 55 so the inequality in (b) holds. Similarly 1 (3) 34 3 + 1
73 39. Thus n 10 and 12 are excluded. Now suppose n 4. We then
have ] + 1 r" (n -t- 1 )b 2"5. The only possible solution here is/ 3,
a 1 b. Finally ifn 6, we have/- /-t- 1 3.7

_
21. Here we

obtain a solution when/ 5, a b 1, or/ 2, a 1, b 0, against

In the proof of the main theorem of the next section, we require two minor
number-theoretic results.

]EMMA 14. If n > 14 and q > 2, then

1

Proof. Suppose n > 14. Then from

n___l
_
] < 3 and 15

we obtain from q > 2 that n g 3- q-. Thus n (q" 1)/(q- 1)
and the result follows.

LEMMA 15. If n 12, 3- > (2n + 1)a.

Proof. This follows at once from (27/25)a < 3.

5. The main theorem

The title of this section refers to

THEOREM 4. Let A be a finite-dimensional algebra over GF (q) and let B be
a left ideal in A with the property that B O. Then left multiplication of all
the elements of B by a fixed element a in A induces a linear transformation
L:B -- B. Suppose La is nilpotent for every a in A and suppose A admits a
group of automorphisms G which leaves B invariant and acts transitively on the
one-dimensional subspaces of B. If q > 2, then AB O.

Proof. First we replace A by another algebra A* also satisfying the hy-
potheses of this theorem, and such that the conclusion of the theorem holds
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for A if and only if it holds for A*. Let W A/B as a GF (q)G-module and
formally set A* W (R) B as G-modules. We define multiplication as follows.
Set W B BW O. For b e B and w W we have that w is a coset a -t- B,
and that in A the products (a + B)b a b, is a unique element of B, since
B 0. Thus if w a + B, and b B, we may unambiguously define the
product wb in A* to be ab. It is now clear that A* is a non-associative algebra,
containing B as a left (indeed 2-sided) ideal and that as a G-module, A* admits
G as a group of operators preserving all algebraic operations in A*. Clearly
A*B 0 if and only if WB 0 if and only if AB O. If

O G/(Co (A/B) n Co (B))

(G mod the stabilizer of the chain A >_ B >_ 0) then G acts as a group of
automorphisms of A*, transitively permuting the one-dimensional subspaces
of its left ideal B. Thus without loss of generality we may assume the
following

HYPOTHESES. (i) A is a non-associative finite algebra over GF (q ).
(ii) A W (9 B where W B BW O and O WB <_ B.
(iii) A admits a group of automorphisms G leaving both subalgebras W and

B invariant, and acting transitively on the 1-dimensional subspaces of B.
(iv) For each w e W, the mapping Lo B B defined by b --> wb for all

b e B, is a nilpotent transformation of B.
(v) q>2.

The proof now proceeds by a series of short steps utilizing induction on
dim A.

(a) If we W and wB O, then w O.

If Wo {wlw W, wB 0} then W0 is a G-invariant subspace of W.
By (ii) W0 < W. Then At (W/Wo) @ B is a well-defined algebra ad-
mitting G G/ (Co (W/Wo) n Co (B) as a group of automorphisms. Clearly
hypotheses (i) through (v) hold with At, W/Wo, B and G in the roles of
A, W, B, and G, respectively. If W0 > 0, dim A < dim A and induction
applies to force (W/Wo)B O. Thus WB 0 against (ii). Thus W0 0
and (a) holds.

(b) W is an irreducible G-module.

If W is not irreducible, we can find a non-trivial submodule U. Since
W 0, U (9 B is a proper subalgebra of A, admitting G as a group of opera-
tors, in such manner that U @ B, U, B and G G/Co(U @ B)satisfy the
roles of A, W, B and G in hypotheses (i) through (iv). By induction,
UB O. By (a), U (0), contrary to the choice of U. Thus (b) holds.

(c) G acts faithfully on B.

Let H Co (B) so H <:1_ G. Then for any h e H, w e W and b e B we have
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wb (wb ) whb so (w w)b 0sow wby (a). ThusHfixesboth
W and B. Whence H consists of the identity automorphism alone. Thus
(c) holds.

(d) G is a pP-group, where p is the characteristic of GF (q).

Suppose G has a non-triviM ST-subgroup P. Set

Z1 {bib b forall xeP}
and inductively define

Z {bib beZ_ forall xeP}.

We thus form a "central series"

0 < Z < Z < < Z,,, B.

Since P > (1), and (c) implies that P acts non-trivially on B, we have m > 1.
Form a similar "central series"

for W. Then
O< U< U.< < U+W

aU (R) Z {a[aeA, a forall xeP}

and clearly forms a subalgebra of A, and Z is an ideal in U1 @ Z. From a
theorem of Burnside, N((P) PQ acts transitively on the one-dimensional
subspaces of Z, so that U @ Z, U1, Z and Q/Co (U @ Z) satisfy the roles
of A, W, B and G in hypotheses (i) through (iv). (Note that for u e U,
the restriction of L, to Z1 is still nilpotent. Since Z < B, induction applies
to yield U Z 0. Now suppose for some integer j, such that 0 < j < m,
we have UsZ 0. Then for anyueU.+l, zlZlxeP,

(uz) uZ uz / (u- u)Z uz,

sinceux- ueZjandZ.B 0. ThusuzeZ. Then U.+ @ Zisasub-
algebra of A and Uj+ (R) ZI, Uj, Z, Q/C(U+ @ Z) satisfy the roles of
A, W, B and G in hypotheses (i) through (iv). Since Z1 < B, induction on
dim A applies to force U..+i Z 0. Mathematical induction on j now
yields WZ UZ 0. By (iii),Z (ZilgeG) BandsoWB 0
against (ii). This contradiction forces P i so (d) holds.

(e Let ro be the set of prime divisors of , (q) which are prime to n, where
n dim B and , (x) is the cyclotomic polynomial for n-th roots of unity.
Then if n > 1 all primes in ro divide G [, and one of the following hold:

(i) G contains a normal S-subgroup, for some r e ro.
(ii) r0 {n + 1, 2n + 1} or 2n + 1}, G is a central extension of

LF (2, 2n + 1 where 2n + 1 is a prime.
(iii) r0 is empty or consists of the prime n + 1 alone. In the latter case

(n + 1) does not divide G ].



644 ERNEST E. SHULT

Since G acts transitively on the (qn 1 )/(q 1 one-dimensional subspaces
of B, (q) divides GI or n 1. The last part follows from the trichotomy
theorem (Theorem 3).

(f) n>2.

If n 1, Lw being nilpotent implies wB 0 for all w W. This con-
tradicts hypothesis (ii).
Supposen 2. SelectwleW, wl 0. Then aswB O, there exists

bewBsuchthatwlb 0andb 0. SinceW(wB) 0impliesWB 0
(against (ii)), we have W(wB) 0 so w(wb) 0 for some w e W.
(Clearly w and w are linearly independent.) Nilpotence of Lw now shows
that w. wl b wB. Thus {w. w b, w b/is a basis for B and regarding the L
as left operators of B we have relation to this basis,

a L where a 0.

Clearly LI+ is non-singular, against (iii).

(g) 00.
By (v), q > 2. If r0 were empty, (q) is a power of the largest prime

divisor of n by step (f) and Lemma 8. Since q > 2, Lemma 9 applies to
force n 2 and q a Mersenne prime. This is excluded by (f) so r0 is not
empty.

This step shows that G contains elements of prime order which act irre-
ducibly on B. The next two steps concern the action of irreducible cyclic
subgroups of G.

(h) If C is an abelian subgroup of G with distinct absolutely irreducible
constituents on B (e.g., if C is cyclic and acts irreducibly on B ), then C is fixed
point free on W.

Suppose W’ is the set of fixed points of C in W. Then as C is irreducible on
B and acts faithfully there (by (c)), CI c is a divisor of q" 1. Let K
be a splitting field for C over GF (q) and form the algebra

A (R) K (W(R) K) @ (B(R) K).

Then C acts on B (R) K as a sum of n dictinct (if C is GF (q)-irreducible,
algebraically coniugate) absolutely irreducible representations. Since any
w (R) 1 e W’ (R) 1 < A (R) K generates a C-submodule of W (R) K affording the
trivial representation, left multiplication of B (R) K by this element is repre-
sentable as a diagonal matrix similar (in GLn, K)) to L, (as a linear trans-
formation of B). Since the latter is nilpotent and the former is diagonal,
similarity forces both to be the 0-transformation (or matrix). Thus w’B 0
sow 0by (a). Thus W 0, proving (h).
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(i) Suppose C is a cyclic subgroup of G having order c and acting irreducibly
on B. Then there exist at least two distinct residues b, b mod n and residues
a, a rood n such that the congruence

(9) 1 + q+- q- -{- q mod c

holds with a a (rood n ). (Here q has exponent n rood c.)

Let W be uny C-irreducible subspace of W snd let K GF (q"). Define
the integer/c by letting 0, oq, 0q"- be the eigenvalues on B (R) K and
0, 0q, ..., 0q- be the eigenvalues on Wx (R) K of the transformations in-
duced by generator, y, of C. (Here 0 is primitive c-th root in K since C
acts faithfully on B, although not necessarily faithfully on W.)

Let B (R) K (zo, z_) where z is ua eigeavector of y for the root
0q. If no residue a (rood n) exists such that

(10) 0’q" 0 0qb

for some b, then (W (R) K)(Zo) 0 as a set of products in A (R) K. Let
be generator of the cnonical group of semiautomorphisms of A (R) K
defined in the remarks preceding Theorem 2, whose fixed points comprise
A (R) 1. We ca then choose the z ia such manner that they are transitively
permuted by b. Since W1 (R) K is b-invariant, iteration of b forces
(WI(R)K)(z) Ofori 0,..-,n- 1. It follows thatW1B 0 (inA)
against (a) and our choice of W1.
Suppose only one pair of eigenvalues 0q and 0qb exists such that 0qa. 0 0qb.

’Then only one product between z0 and an eigenvector wa in W (R) K can be
non-zero. Under these circumstances, Lemma 7 shows that in A, for any
w e W1, Lw is a linear transformation of B which is similar (as a GF (q)-linear
mapping) to a semilinear transformation of GF (q’*). In particular, Lw is
non-singular for all non-zero w in W1. This contradicts hypothesis (iv).
Thus at least two distinct pairs of eigenvalues (0q, 0q) i 1, 2 can be

found satisfying (10). The two congruences

1 -t-/cqal ---- q mod c, 1 - kqa q mod c

follow upon equating exponents (mod c). Multiplying the congruences through
by q-a, i 1, 2, respectively, and equating the expressions for k which
result yields (9). (Note" If b ---- b., then kq kq modc and the two
pairs of eigenvalues would agree. Also b b implies a a mod n.)
A number of troublesome special cases are eliminated in the following two

steps.

(j) Suppose C is a self-centralizing subgroup of G which is not at ro-group.
Then INn (C C] < n.

Let S be an S-subgroup of C where r e 0 n (C). Then S acts irreducibly
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on B, and Co(S) >_ CNo<c> (S) C, where, by Lemma 10, all three members
of this chain are cyclic. Since C is self centralizing, C CNo< (S). Also
No(S) >_ No(C). Now No(C)inducesacyclic group of automorphisms of S,
and we can find an element of y such that <y, C> No (C). Suppose [No (C)" C]

n. Then B is an absolutely irreducible module for No(C) and y" lies in its
center. It follows that y" acts as multiplication by a scalar e GF (q). Since
Co<c> (S) C, and (n, r) 1, <y, S>/<yn> is a Frobenius group. For every
weW andbeB, (wb) w"b" (w"b o (wb ) sincewbeB. Thus
(w" w)B 0 and so w" w. Since el (S) acts irreducibly on B, S acts
faithfully on W, by (h). It follows that <y, S> is represented as a Frobenius
group on W and so y fixes a non-trivial element w0 of W. But y has p’-order
(by (d)) and B restricted to <y> affords the representation induced from the
irreducible representation of its subgroup <yn> defined by y" 0. It follows
that <y> is represented on B with absolutely irreducible constituents which are
distinct. It follows from (h) that y acts without fixed points on W, a con-
tradiction.

(k) n is not a prime number.

Suppose n s is a prime number. By Lemma 10, part (b), for each
r e r0 and S-subgroup S of G, [No(S)" Co(S)] divides n and so is 1 or n.
Since Co (S is self-centralizing, (j) implies No (S Co (S ). By Burnside’s
transfer theorem, S has a normal complement in G. Applying this result
for each prime in r0, a chain of Frattini arguments shows that G has a cyclic
r0-Hall subgroup H and a normal r0-complement N. If T is a t-subgroup of
N chosen minimally with respect to being normalized by a S,-subgroup S in
H but not centralized by 2 (S), then T is a special t-group, and every ab-
solutely irreducible representation of ST over a field of characteristic relatively
prime to ST either (a) has T in its kernel, (b) has degree greater than r 1
or (c) has degree r 1. Case (c) holds only when r 1 [T’D(T)]/.
Since T acts faithfully on B, (q, ST I) 1, and dim B n, absolutely
irreducible ST-constituents of B have degree n which divides r 1. But
now n and r n -t- 1 are both primes. This forces n 2, against (f). Thus
21 (S) centralizes every t-subgroup of N which S normalizes. A Frattini
argument coupled with the use of the Schiir-Zassenhaus theorem shows that
S normalizes at least one St-subgroup of N for each dividing IN I. Thus N
and H both lie in C( (S)), which by Lemma 10, part (a), is cyclic.

Since G is now a B-irreducible cyclic subgroup of G, by (i) there exist in-
tegers c, c, c (where c is distinct from c and c) such that for each integer
k such that 0 _< k_n- 1,

(11) q -t- q’+ q+ + q’+ modlG I.
Also G >_ 1 q - -t- q-. When all exponents are reduced mod n,

both sides of (11) represent distinct integers, one of which necessarily ex-
ceeds GI. Since n > 2, it follows that this integer is exactly 2q-. With
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/ 0, this forces c2 c3 n 1. Similarly, with k 1, we have
q -t- qCl+ 2 forcing 2q-1 q + ql+ so n 2, against (f).

(1) If case (i) of step (e holds, then G contains a normal cyclic subgroup
C of order a multiple of (d/n)(1 + q + + q’-) where d is a divisor of n
and d > 2. Moreover n < 14 in this case.

Case (i) of step (e) implies the normality of an St-subgroup S for some
r e r0. Set C Ca(S). Then C is cyclic, is its own centralizer, and
G/C N(S)/C(S) is a proper divisor n/d of n by Lemma 10 (b), and step
(j). Since G acts transitively on the 1 q q’- one-dimensional
subspaces of B, (d/n)(1 + q + -t- qn-1) divides C I.
Now suppose n > 14. By Lemma 14, for all q > 2,

(12) q(3/4), <_ l(q:--).n
By step (i), there exist integers b, a2 and b such that

(13) qk .. qk/b+a--a qk+a.--a .. q+b modlC
for/ 0, 1, n 1. For each integer a let c (also denoted a-) be defined
by a --- g mod n and 0

_
< n. If we rewrite equation (13) with exponents

replaced by the "barred" value of these integers, then both sides of (13)
represent distinct integers (since (0, (b W a. a)-) and ((a a)-, (b))
represent distinct pairs of residues mod n) which are congruent modlC I. It
follows that one of the integers exceeds C i, and hence by (12), exceeds
2q/4. Thus for every value of/, one of the four exponents

(], ( -t- b al)-, (/c + a a a)-, (/ -t- b.)-)

represents value between ()n and n 1 (inclusively). Put another way,
when the four values, 0, (b W a a)-, (a a)- and 2 are placed on the
circle of residues mod n, no gap can occur between adjacent members of the
quartette which exceeds one-fourth of the circle. Thus n is divisible by 4
and for some /c, the four exponents are congruent to 0, (1/4)n, (1/2)n, (1/4)n
(mod n) some order. In that case,

q (3/4) "1- q (1/) > C >_ 2q
an impossibility.

(m) Case (i) of step (e does not hold.
Suppose case (i) of step (e) holds. By steps (f), (k) and (1) we may as-

sume 4

_
n _< 14 and that n is not a prime number. Thus we have n 4, 6,

8, 9, 10, 12 or 14. By (i) we have a congruence

1 + q - qb --t- q modlCI,
(14)

(max (a, b, c) < n, a {b, c} and min (b, c( > 0)
where CI

_
(2/n)(1 -t- q + -t- q-). By multiplying congruence (14)
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through by qn-a if necessary, we may assume without loss of generality that
a, 1/2n.
Suppose n 4. Since q >_ 3, 2q _< 1/2 (1 -t- q - q q). Since one side

of the congruence (14) must represent an integer exceeding the modulus C I,
one of the exponents is at least 3. Since a < -n2 without loss of generality
we may assume c 3. Multiplying (14) through by q, (14) becomes

Then either (a - 1)- or (b -t- 1)- is 3. Thus either
(i) l+q ,
(ii) 2q 1-t-q
(iii) q-t- q---- 1 +q,or
(iv) q-l-. q3 2,

mod]CI. Case (iv) yields 1 - q 2qandcase (ii) yields2q 1 + q
and in both congruences neither side can represent an integer exceeding
1/2 (1 - q -t- q2 -t- q). In (i), q + q3 --- 1 -t- q so

(q- 1)(1-t-q)--0 modlC[
and this holds mod r for some prime r e 0. This contradicts the fact that q
has exponent 4 modulo such an r. In case (iii),

(q -t- 1)(q 1) -= 0 modlCI
and so (q -t- 1)(q 1)is a multiple 1/2(1 -t- q + q + q). Since
(q W 1)(q- 1) is positive and less than 1 + q-l- q-t- q,k 1. Then
2qW2q- 2q- 2 1-t-q-qWqasoqaWq 3(1 -q) soq 3, an
impossibility.
Supposen 6. Then lC] >_ (1 + q + + q5)/3, and sinceq _> 3

implies 3q - 3q _< 1 -t- q W -t- qS, and in the congruence (14), a _< 1/2n 3,
we may assume c max (b, c) _> 4, with equality holding only if also b 4.
Multiplying the congruence through by q2 and reducing exponents mod n,
the right side is at most q q, an integer less than [C [. The left side is
q W q+a and so a 3. Multiplying again by q, we have q3

_
1

q (b+3)- -t- q (+)-and since (b - 3)- _< (c - 3)- _< 2, neither side represents
an integer exceeding the modulus. Since a {b, c}, it cannot also represent an
equation between integers; hence the congruence (14) cannot hold.
Suppose n 8. Here

CI >_ (1/4)(1 - q- -qT).

SinceSq < (1 + 3-t- 3)q_< qsW q_ qT we have qS _t_ q5 < CI. Thus
if the sum of two powers of q exceed C I, at least one exponent is 6 or 7. In
congruence (14), we have a < (1/2)n 4 and b <_ c, so we may assume c >_ 6.
In addition 1 -t- q >_ 4 yields 4(q -t- q) <_ q - q -t- q + q and so
q-l-q< ICI. Thusq-qrexceedslCionlyiff= 5or6. Now ifc 7,
q + q+l 1 - q+andsincea+ 1 <_ 5, b-l- 1 7. Thenq + q+--
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1 -4- q modlC I, and this is a contradiction. Thus c 6, and q -t- qa+2
i -4- a cb+2-. Then a -t- 2 <_ 6 forces (b A- 2)- 7. Then q8 -t- qa+8 1 -4- q
so a -4- 3 7. This finally yields q -t- 1 q + q rood C I, an impossibility.
Suppose n 9. Then C > (1/2)(1 -t- q + -t- qS). Then q6 -4- q7 < C[

andc > 7. Ifc 8, q-4-q+= 1A-q+forcingb+ 1 8. Thisyields
q2 + qa+2 =__. 1 2[.. q rood ]C !, which is impossible. Hence c 7, b 7,
whence qa -4- q+a 2 mod lC l, another impossibility.

If n 10,

Ci > ()(1-t-q-4- -4-q9) and 10q7_< (1 A-qA-q2)q

so in congruence (14), c > 8. If c 9, q + q+ q+ -t- 1so (since
a -t- 1 _< 5), b + 1 > 8 forcing q2 A" qa+2 -. 1 + q or q -4- qa+3 1 + .
This means a A- 3 > 8, an impossibility. If c 8, q qa+2 qb+2 -t- 1 so
b -t- 2 > 8. Then q4 -4- qa+4 =__ q ,+- _f_ q2 where (b 4)- 0 or 1. This
forces a-f- 4 8 (since a _< 4). Thenq6 - 1 q+- -4- q modlCI,
which is impossible since (b A- 6)- _< 7.
Ifn 12,1Ci > (-)(1-t-q+ -t-q11). Sinceq> 3,1A-qA-q2> 12

so 12q <_ q -4- qlO -4- qn. Thus qe + qr > ()(1 A- A- qn)implies
max (,]) > 10. Thus in (14),c > 10, so

q2 -4- qa+ qb+2 -4- q (c+2)- modlC]
where (c-4- 2)- 0or 1. Thena-t- 2 < 7forcesb-t- 2 10 or 11 so
q + q -t-q where0 <_ (b+4)- < (c-4-4)-_< 5. Thus
a A-4 > 10 against a < 5.
Suppose n 14. Now

7q -t- 7qn _< q (ql0 -t- ql) < 1 -4- q -t- -t- qa.
Thus if 0 _< e

___
f _< 13 and q -t- q > () (1 -4- q + -f- q), then f > 11

and iff 11, thene 11 also. Thus in (14) c > 11. Ifc 12 or 13,
q2 + qa+2 qb+2 + q (c+2)- forcing b -4- 2 > 12. Then q4 -t- qa+
q(+)- -t- q(+)-where 0 < (b + 4)- < (c + 4)- < 5. This forces
a -f- 4 > 11 against a _< 6. Otherwise, b c 11, so qa + q+ --- 2 forcing
a A- 3 > 12, another contradiction. This completes step (m).

(n) Case (ii) of step (f does not hold.

Suppose case (ii) holds. Then 2n -t- i is prime and G/Z(G)
___

LF (2, 2n -t- 1). Moreover, B is an absolutely irreducible G-module. Thus
Z (G) acts on B as scalar multiplication by elements of GF (q). As a result,
Z (G) stabilizes every one-dimensional subspace of B and so the number of
one-dimensional subspaces of B divides the order of the central factor group
of G, i.e.

(15) l+q+ +q"- divides 2n(n+l)(2n+l).

By Lemma 15, if n > 12, q- > 3"-1 > (2n A- 1)a and (15) is impossible.
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From the above, and steps (f) and (k) we have 4 _< n < 12, 2n -t- 1 a prime
and n composite. This leaves n 6, 8 or 9.

If n 6, [G’Z (G)] 12.7.13 is a multiple of

(q -t- 1)(q -t- q + 1)(q q -[- 1).

Clearlyq5 < 12.7.13 soq4 < 4.7.13 soq < 5. Thusq 3, 4. Ifq 4,
q - 1 5, which doesa’t divide 12.7.13 as it should. And q 3 is impossible
because 3 does not have exponent 6 mod 13.
Ifn 8, [G:Z(G)] 16.9.17 < 115 so q < 11. Also qhas exponent

8mod17so17dividesq4- 1. Thusq 2, Sor9or15. q 2or15are
ruled out. Ifq 8, q-}- 1 5.13 must divide 16.9.17 while if q 9,
q -t- 1 2.5 divides 16.9.17, both absurdities.
Ifn 9, [G:Z(G)] 2.3.5.19. Ifq >_ 19, then

1 -t- q-l- q- qS > q6_> 193 (2n-l- 1)3 > 2n(n-[- 1)(2n-[- 1)

and (15) cannothold. Thusq 3or4. Ifq 4,1-t-q-t-q 3.7must
divide [G’Z(G)] 0 rood 7. But q 3, since 3 does not have exponent
9 rood 19 (9 (3) 0(19)). This concludes step (n).

(o) Case (iii) of (e) cannot hold.

Here r0 consists of n - 1 alone. Moreover, (n - 1)2 / G I, since other-
wise G has a normal 0-Hall subgroup and case (i) of (e) obtains, against (m).
Thus 4) (q) re(n -t- 1) where r is the largest prime dividing n. From
Lemma 13, n 2,4or6. Burn 2, by (f). Ifn 4,4(q) 5and
q 2, an excluded case, or else4(q) 10andq 3. Ifn 6, O(q) 7
or 21 which occurs with q 3 or 5. We examine these cases separately.

First suppose (q) 10, q 3. Here, B contains 40 one-dimensional
subspaces, so 4011G1. Suppose 1311GI. Let R be a 13-Sylow sub-
group of G. Then R acts oa B with an irreducible 3-dimensional subspace
[B, R] <b b x e R} and CB (R) GF (3) as an additive group. Since
G <_ GL(4, 3), which has order 29365 13, and since G is a 3’-group by step
(d), it follows that Na(R) is a {2, 13}-group. Since R is irreducible on the
3-dimensional space [B, R] stabilized by Na(R), it follows that Na(R)/Ca(R
is a subgroup of Z3. Since 3 G I, Na (R) Ca (R), and so R has a normal
complement in G. Since 511 G I, a Frattini argument shows that G must
contain a cyclic subgroup of order 65. This is impossible since such a group
does not lie in GL(4, 3). Thus 13 does not divide G I. It follows that G
divides 295 and so, by a famous theorem of Burnside, G is solvable.
By Lemma 10 (d), a 5-Sylow subgroup S of G centralizes O(G). Thus

0.2, (G) S "t- O(G) andso S is normalin G. By Lemm 10 (a), C Ca(S)
is cyclic, and acts semiregularly on the one-dimensional subspaces of B.
Since G/C is a subgroup of Z and 40 G I, we see that C has even order. An
involution in C is necessarily acting as scalar multiplication by -1, Let G
be the subgroup of G which stabilizes a one dimensional subspace of B.
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Then any element x in G1 n C stabilizes all of the 5 or more lines lying in some
C-orbit of the one-dimensional subspces, and acts on these lines as sclr-
multiplication by a common sclr a (x). It follows that G1 n C Z2. Since
G/C is abelin, G has normal supplement N such that N n G C a G.
Then, since N is itself transitive on the one-dimensional subspces of B, we
may assume N G and that G G1 C is generated by the transformation of
scalar multiplication by -1. Thus GI 80 and regularly permutes the
80 non-zero elements of B. Thus a 2-Sylow subgroup T of G has a unique
involution. Moreover 20 divides C I.
Now suppose CI 20. Then T possesses a factor group which is cyclic

of order 4 and so cannot be generalized quaternion. Thus T is cyclic and

G grp (a, x la 1 x16, x-ax a2}.
At this point, no help can be gained from the congruence of step (i) since solu-
tions exist modulo 20 as well as modulo 16, the orders of the maximal cyclic
subgroups of G. Instead, we argue that G is not a subgroup of GL(4, 3),
i. e. that G cannot act on B (recall from step (c) that G acts faithfully on
B). Let K be the field GF (34) GF (3)(0, t) where 0 and t are primitive
5-th and 4-th roots of unity. Then B (R) K is a KG-module. Suppose U is an
irreducible KG-submodule of B (R) K. Then U is a sum of homogeneous
KG-components U U0 -t- Us + U2 + U3 in which generator x4a of
(x4a} C acts on U as scalar multiplication by 03. The U are transitively
permuted by x and so x acts on U as scalr multiplication by . Since
dim(B (R) K) dimB 4, U B (R) K. But this is impossible since
[x4] --- Z4 and acts on B as two irreducible GF (3)(x4}-modules B and B2 of
dimension 2. Thus B (R) K contains at least two distinct algebraically
coniugte K(x}-modules associated with the two primitive 4-th roots t and

This contradicts the action of x forced above by the defining rela-
tions of G. Thus G cannot act on B and so we may dispense with this case.
Thus C 40 or 80. In either case, we must obtain a solution (a, b, b)

of the congruence

1 3-= 3 3 rood40

with a <_ 2, 0 b

_
b

_
3. Since 1 -t- 3 < 40, 3 -t- 3 must exceed 40.

Since the b are less than 4, this can only occur if b b 3. In that case
1 - 3 54 40 14, which has no solution for a. Thus 1CI 40 or 80
is impossible, and the case n 4, q 3 cannot occur.

Suppose n 6 and q 3. Then 13 G I. Then by a theorem of Brauer
[3], either G contains a normal 13-Sylow subgroup or else G is a central ex-
tension of LF(2, 13). In the latter case q 311GI against (d). Thus G
contains a normal subgroup of order 13 or 132. By Lemma 10, part (d),
this group is centralized by the 7-Sylow subgroup of G, and so G contains a
cyclic subgroup of order 91 which cts irreducibly on B. Thus by step (i)



652 ERNEST E. SHULT

we obtain a congruence of the form

1-t-3al--- 3bl W3b mod91

whereal 0, 1 or 2, b. <_ bl <_ 5, and {0, a} n {b, b2} is empty. Then
3bl 3b exceeds 91. If b is 5, then 3 -t- 3a+ ---- 1 - 3+1, so al -t- 1 _< 3
implies b2 -t- 1 5. Then 9 W 3"l+s --- 4 mod 91, which is impossible since the
left side is 18, 36 or 90. Thus b _< 4 and 9 - 3+s ---- 1 W 3+s. Since the
left side of this congruence is at most 90, the right side must exceed 91 whence
b. 2 5. The original equation is then 1 -t- 3"1 - 3 - 34 17 mod 91,
which is impossible since al 0, 1 or 2.
Now suppose n 6 and q 5. Then by a theorem of Feit and Thompson

[8], G contains a normal 31-Sylow subgroup, normalized by a 7-Sylow sub-
group of G. By Lemma 10 (d), G contains a cyclic subgroup of order 217,
which acts irreducibly on B. Again, we have a congruence

1 W 5--- 51 -}-5 rood217

with a 0, 1 or 2, bs _< b _< 5 and Ibm, b2} n {0, al} empty. The right side
must exceed 217 and so either b bs 3 or b >_ 4. Suppose b bs 3.
Then 53 W 5a+3 - 2. This is impossible since the possible residues for the
left side are 33, 99, or 214. Now suppose b 4. Then 5 -t- 5+s 1 -t- 5+s.
The left side of this congruence yields residues 50, 150, or 216. This excludes
b 0 or 4 so b2 1, 2 or 3, yielding 126, 200 or 90 as possible residues. Thus
bl 5 and 5 -t- 5+ 1 -t- b+ and so 4 _< bs 1 _< 5. Then 1 -t- 5+ 192
or 88 mod 217. Since 5 - 5+ 10, 30 or 130 the congruence is impossible.
The theorem now follows from the patent incompatibility of (f), (m),

(n) and (o).
We conclude with the

Proof of Theorem 1. Let A be a finite automorphic algebra which is not a
quasidivision algebra (this includes the assertion that A {0} ) and assume
the ground field contains q > 2 elements. By Lemma 3, A is a nil algebra.
Let G =Aut (A). Construct a G-module A @ A where u" A --. A is an
isomorphism as G-modules. Convert A @ As into an algebra by setting
A 0 A AA and defining products A A by setting

(a)s (b s (ab As for all a, b e A.

Then G acts as a group of automorphisms of A @ A, As is a lef ideal, and
as A is a nil algebra, left multiplications induced nilpotent transformations
of A. Thus A @ A., As and G satisfy the roles of A, B and G in Theorem 4.
This forces AA 0 and so #s(ab) 0 for all a, b e A, As s is monic,
As 0.
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