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1. Introduction
Let C be an algebra and let L be a linear subspace of 9. The set . of

(left) multipliers for L is defined as ,. {x e xL c L}, that is, left
translation by a member of leaves subspace L invariant. It is easy to see
that. is a subalgebra of 9C and that if 9 has a unit and L contains the unit
then9 is contained in L. We will be concerned with the case where C is the
continuous real functions on a compact Hausdorff space X and L is closed
subspce of C (X) containing the constants. Now, L is ordered by the order in
C (X), so that the conjugate Banach space L* is ordered; we find it necessary
to assume that L* is a lattice in this ordering. Under this hypothesis we prove
that L is the maximum subalgebra of L; that is, every subalgebra of C (X)
contained in L is sublgebr of. An example will show that the assump-
tion that L* is a lattice is not superfluous. Our characteri.ation of involves
the ideas and methods associated with Choquet’s theorem.

2. Generalized harmonic functions
References for Choquet’s theorem are Phelps [1] and the Edwards lecture

notes [2]. In the present section we obtain a generalization of a result of Bauer
[3] concerning generali.ed harmonic functions.
Let X be a compact Hausdorff space and let C (X) be the algebra of con-

tinuous real functions on X. We identify the conjugate Banach space of
C (X) with the space rca (X) of signed Radon measures (regular Borel meas-
ures) on X. We denote by rca+ (X) the nonnegative members of rca (X), and
by prob (X) the probability measures in rca (X). For x e X, prob (X)
will denote the evaluation measure at x. On several occasions we will deliber-
ately confuse x with , choosing to regard X as a subset of w* rca (X).

Let L be a closed subspace of C (X) containing the constants. We assume
to begin with that L separates the points of X; at the end we drop this s-
sumption. Sometimes we will tret L s Bnch spce in its own right, nd
we denote by L ---+ C(X) the iniection into C(X). The d]oint
$ L$

rca (X) ---> does the following things"

(i) maps rca (X) onto L*; the mapping is w* w* continuous and pre-
serves order;

(ii) maps prob (X) onto the convex w* com]ae.t set
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the set K will always have the relative weak * topology;
(iii) maps X w* rca (X) homeomorphically onto a subset X0 of K;
(iv) maps the Choquet boundary B c X homeomorphically onto the set

of extreme points of K.

The set K is a base for the nonnegative cone (L*)+ in L*. In Theorems 1 and
2 we will make the assumption that L* is a lattice; this is the same as assuming
that K is a Choquet simplex [1, 9].
The equivalence relation in rca (X) is defined by m iff (f, m (f, )

for all f e L. It is easy to see that the annihilator L rca(X) of subspace L
can be represented as

L" Ira- m" m rca+(X) and m’}.

(If +- -eLthen+-.)
The order relation < in rca (X) is defined as follows. Let L c C (X) be the

set of all functions g/ / g for all m and all g, ..., g L. Then
< iff (f, ) _> (f, ) for all f e L. The < relation refines the relation;

that is, < implies . The < relation is equivalent to the one defined
by Bishop and de Leeuw [4].

If x e X is given, a measure # e prob (X) with the property is said
to be a representing measure for x. It is known that if e prob (X) and

then < [2].
For given rca+ (X) the functional p, (f), f e C (X), is defined by

p, (f) inf (g, ) g e L and g _> ft
(-p(-f) sup {(g, ) g e - and g _< fl.)

By p(f) we will mean p (f), x X. It is known that p, (f) has equivalent
representations

p,(f) sups, {(f, ) # e rca+(X) and

f dx ).

(--p(--f) inf,, {(f, ’) rca+(X) and

f [-- p(-f)]#(dx).)

For each e rca+ (X) the functional p (f) has the following properties [2]"

(i)
(ii)
(iii)
(iv)
(v)

p(f q- g) _< p(f) q- p,(g), f, g e C(X),
p.(cj’) cp (y), c > o.y. v(x).
P. (f) --< t I1 il f II, c (x),

p. (f) > (f. ). f e C (X). with equality when
p (f) --p, (--y) (, #), y, L,
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(vi) p (f) (f, ) for all/ C (X) iff # is maximal in the ordering < ;in
particular,

(vii) p (f) f(x) for all f C (X) iff x B.

The functions f C(X) for which p(f) -p(-f)(=f(x)) for every
x X are called L-harmonic by Bauer [3]. We denote by
harmonic functions; ,. is a closed linear subspace of C (X), and L C,. by
(v). It is of interest to determine when C L. We remark that the an-
nihilator of is w*-spanned by the set

{dt z v e prob (X) and < , x X},

while the annihilator of L is w*-spanned by

{ v , e prob (X) and x };

the problem of whether or not L is equivalent to the problem of whether
or not such measures #x tz. are w*-spanned by measures

It will be convenient to consider also the functional q, (f), f e C (X), defined
for given t e rca+ (X) by

q (f) sups,{ (f, ’) e rca+ (X) and }

(--q,(--f) inf,, {(f, ’) ’ e rca+(X) and

This functional has the properties

(i) q($ + g) q,(f) + q,(g),y, g C(X),
(ii) q(cf) c%(f), c > O,f e C(X),
(iii) q (f) -< II II II f ][, f C (X),
(iv) p.(f) < q.(f),, c(x),
(v) q(f) --q,(--f) for all e rca+(X) iff f e L.

Properties (i)- (iv) are straightforward or obvious. To see (v), note first
tha if f e L then q, -q, (-f), clearly. On the other hand, if f L then
(f, t #’) # 0 for some tz, ’ rca+ (X), t tz, whence q, (f) > -q, (-f).

TIOlm 1. Let L be a closed linear subspace of C (X) which contains the
constants and separates the points of X. Assume that L* is a lattice; that is, the
base K of (L*)+ is a Chequer simplex. Then C L; that is, for f C (X) the
condition p (f -p (-f for every x e X is necessary and su2gcient for f e L.

Proof. We will show that p(f) -p(-f) for all x X implies q, (f)
-q, (-f) for all tz e rca+ (X). Suppose to the contrary thatf C (X) is such

that p,(f) -p,(-f) for all x e X but that q,(f) > -q,(-f) for some
e rca+ (X). Since q is positive homogeneous in , we may assume that
e prob (X). Let ta e rca (X) be such that q, (-g) _< (g, t) _< q, (g) for

all g e C (X) and also (f, x) q, (f) (Hahn-Banach). Since q, (-g) > 0
for g _> 0, we have > 0. Since for g e L it is true that -q, (-g) (g, tx)
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q, (g) (g, ), we have # ; the case g 1 shows that e prob (X).
Using -f in the same arguments, we find/ e prob (X) such that/. and

The assumption that p(f) -p(-f) for all x e X entails
p (f) -p (-f),, whence (f, ’) (f, ) for every ’ rca+(X) such that

( /’. Let u e prob (X) be a maximal measure [2] such that # ( ;
then (f, ) q (f). Similar arguments give a maximal . e prob (X) such
that m < #2 and (f, ) -(-f).
We have assumed that K is a Choquet simplex. We invoke the Choquet-

Meyer uniqueness theorem in the form that is established in Lemma 1, follow-
ing" the set/’ e prob (X): ’ --/} contains one and only one maximal meas-
ure. That s, # ., whence q (f) (f, ) (f, 2) -(-]), con-
trary to supposition. It must be the case then that q, (f) -q, (-f) for all

rca+ (X). As we have seen, however, this is equivalent to f e L. [--]
Theorem 1 is a generalization of Satz 6 of [3]; there it is assumed that L it-

self is a lattice, equivalent to assuming that K is a Choquet simplex and that
B is closed. (Added in proof: Reference [9] has been brought to the author’s
attention by Professor Brauer. Theorem 1 above is implied by [9, Theorem
4.1], given the Choquet-Meyer uniqueness theorem in the form of Lemma
1, following.)

LEMMA 1. Let L be a closed subspace of C (X) which contains the constants
and separates the points of X. Assume that the base K of (L*)+ is a Choquet
simplex. Then for each prob (X), the set

{’ prob (X)" ’ }

contains a unique maximal measure.

Proof. Let L -- C (K) denote the injection of L into C (K); the members
of L are continuous affine on K and L separates the points of K and contains
the constants. Let (L)^ C (K) be the set of all functions of the form
eg/ / eg for all m and all g, g e L. The members of (L)^ are
concave on K and (L)^ (L)^ is a lattice which is norm dense in C (K).
The relation in rca (K) is defined by iff (f, O) (ef, ) for all f e L;
the relation - in rca (K) is defined by < q iff (h, 0) _> (h, ) for all h e (L) ^.

The - relation refines the relation, and it is known that for e K
and e prob (K), if 0 then < 0 [1, p. 25].

Since K contains a compact set Xo homeomorphic to X, every measure in
rca (X) transfers in the natural way to a measure on X0 K; we denote by
0 rca (X) rca (K) this injection into rca (K). For given g, g e L
and , e rca (X) we have

(rg A A g, x) (,g A A g, ex).

If we consider m 1 only we obtain k k in rca(X) iff Ok_ Ok in rca(K);
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if we consider ll wlues of m we obtain Xx < X in rca(X) iff OX, < OX in
rca(K).

Let prob (X) be given. This mesure represents point } * in K.
Let " be a maximal measure in the set {v’ e prob (X) ’ }. Then " also
represents , nd it is straightforward that 6} Ou" nd hence } < O" in
prob (K). Let e prob (K) be mximl mesure such that Ov" < . The
closed support of is contained in the closure of *B (=the set of extreme
points of K), afortiori in X0. Thus Ov for some v prob (X). From
O" < O we have " < and hence ", " being maximal. Thus

0", so that Or" is maximal in rca(K). We use now our assumption that
K is a Choquet simplex. By the Chequer-Meyer uniqueness theorem [1,
p. 66], the set {0 e prob (K) < 0} contains a unique maximal measure.
Thus O" is unique, as is then ". [

3. Multiplier,
Let x e X be given, and let , e prob (X) be a representing measure for x,

that is, , < v,. Let $ (v,) denote the closed support of the measure #,, and
define

e closure of (J, {$() :#, prob (X)and < #}

THEOR 2. Let L be a closed subspace of C (X) which contains the constants
and separates the points of X. Assume that the base K of (L*)+ is a Cheque
simplex. Then the multipliers 9 of L are characterized by the following prop-
erty: if f C (X) then f e 9 iff for each x X, f is constant =f(x) on the set. Every subalgebra of C (X) contained in L is contained in

Proof. Suppose f e C (X) is contained in a subalgebra of C (X) which is
contained in L. For each x X and each prob (X) such that < we
must have

f(x) f f(x’)(d’), f(x) f f x’ ),(d’
J

whence

f(x’)]#(dx 0

and thus f(x’) f(x) for x’ e $ (). In other words, for each fixed x the
closed set {x’ e X f(x’) f(x)} contains $ () for every such , and hence
contains a.
On the other hand, let f e C (X) be such that for each x e X, f is constant on. The constant value is necessarily f(x), since x e . For every g L

and every e prob (X) such that < we have

f (fg)(x’)(dx’) f(x) f g(x’)#(dx’) (])(),

and there follows p(fg) -p(-fg) for every x e X. By Theorem 1,
fg e L, so that f is a multiplier for L.
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The following example is somewhat trivial, but it illustrates the considera-
tions involved. Let X be the closed unit disk X {complex x Ix[ _< 1},
and let L be the functions in C (X) which are harmonic in the interior of X.
The maximal representing measures are the Poisson kernels on the boundary
(Choquet, topological) and are unique, so K is a Choquet simplex. The usual
Lebesque measure on X is a representing measure for x 0 when normalized,
and its closed support is all of X. By Theorem 2, the only subalgebra of
C (X) contained in L is the constants.
Theorems 1 and 2 still hold if the assumption that L separates the points of

X is dropped. To prove the generalized versions, we apply Theorems 1 and
2 to the quotient space of X determined by the equivalence , and then lift
to X. The argument is without complications, and we omit it.

4. An example
As we remarked previously, the core of Theorems 1 and 2 is that the meas-

ures
{ , x X, prob (X)}

w -span the annihilator of L. The following example shows that the assump-
tion that K is a Choquet simplex is not superfluous.

Let 2 be a left amenable discrete semigroup [5]. We assume given an ac-
tion 2: X X -- X of 2 on the compact Hausdorff space X. The transform of
x e X by e 2 will be denoted by ax e X; we have (. x) ( a)x, and we
require that ax be continuous in x for each fixed 2:. We will consider only
the case where the action is without common fixed points; that is, there is no
x X such that vx x for every a e 2:.
For each 2 let V() C (X) --. C (X) be defined by [V ()f] (x) f(ax)

x e X. Then V() is a nonnegative operator of unit norm on C (X), and the
V’s are an antirepresentation of 2 V(a a.) V (a.)V (a), , . e 2:. The
adjoints V* () rca (X) rca (X) are a representation: V*( )

V* (a)V* (a);moreover, the restriction of V* (a) to X (y. w* rca (X) is
just a copy of the given action. The set a of left invariant measures for the
action is

{erca(X) V*(a) forallve2}.

The set LM (X) of left invariant means is defined as LM (X) prob (X).
The set LM (X) is convex, w*-compact, and since we have assumed 2 is left
amenable, nonempty [5], [6].
2 being left amenable, there exists at least one generalized sequence {.} of

finite means on 2 which converges in norm to left invariance [5]. That is, for
each a in the directed indexing set we have . c . with c. _> 0,
c. 1, c. 0 for at most finitely many a depending on a, and
lim II -c( .) il 0 for each r e . A functionf C (X) is left almost
convergent (to value k) iff

lim c, f(ax) ]c uniformly in x e X
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for each such generalized sequence }. It is known that for f e C (X) to be left
almost convergent it is necessary and sufficient that (f, 1) (f, ) for all
hi, LM(X) [6]. The set of left almost convergent functions is a closed
linear subspace of C (X) containing the constants; we will show presently that
it separates the points of X under our assumption of no fixed points for the
action.
The archetypical example is the following. Let 2 be the semigroup N of

additive positive integers, let X be the Stone-ech compactification N of N,
and let the action be deterned by ax a + x, a e N, x e N #N. With
{} ( + W )/n} converging in norm to invariance, the (left)
almost convergent functions in C(N) are just the almost convergent se-
quences of G. G. Lorentz extended to C (N). The invariant means are the
Banach lits, and the characterization of almost convergence in terms of the
invaant means is just the Lorentz theorem [7].
We will need the following result of Choquet [8].

L 2. is a lattice.

ProoJ. Let Q rca (X rca (X be a nonnegative projection of unit norm
onto subspace [5], [6]. Let v + v- be the Jordan decomposition of. Then + and + 0, whence Q+ Q and Q+ 0, so that
Q+ +. There follows

[[ Qv+ v+
Thus Qv+ v+, and

Let L be the cloud subspace of C (X) consisting of the left almost convergent
fctions. It is clear that L contains the constants. The annihilator L is
w*-sped by

One sees that if L" then e and (1, ) 0, the sets berg w*-closed. On
the other hand, suppose
-,by Lemma 2, and (1, ) 0 requires + -][, whence c( )
for some c 0 and some X, X,, LM (X). That is, L’, so

L’=,{" (1,)=0}{c(x,-x)’c0

and , X, LM(X) mutually singular}.

We mention in passing that an extension of the arment shows that
L M {constants} with M the norm closed span of

{y v()y y c(x), }.

Taoa 3. L separates the points of X. The Choquet boundary relative
L is all of X, and C (X); if LM (X) has more than one element then
L#.
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Proof. Let x e X, and suppose e prob (X) is a representing measure for
L’x, that is, i . From we obtain c (), .) for

some c _> 0 and some mutually singular h, e LM (X), using the above char-
acterization of L". Thus we have , ( - c) c. Now, our as-
sumption that the action of 2: on X is without common fixed points means that
no measure , is in LM (X); every member of LM (X) is either atomless or
assigns positive measure to more than one point of X. Thus some part of

is (, + c),)-singular; we cannot have , >_ 0 unless c 0 and hence

It follows first that L separates the points of X; if L did not separate the
points of X then there would exist x x such that . We can now
assert that the Choquet boundary relative to L is all of X, since for each
x e X, the only representing probability for x is . For each f e C (X) we have
then p(f) --px(-f) f(x) for all x X, whence CL C (X). If LM (X)
has only one element then L C (X), and our result is vacuous. If LM (X)
has more than one element, however, then the inclusion L c CL C(X) is
proper. We note also that L is norm dense in C (X); el., Satz 4 of [3]. []

Remark. Suppose e prob (X) is given, and let ’ e prob (X) be such that

’ . Then ’ c( ) for some c _> 0 and some mutually singular, ) LM(X). Thus ’ ( - c) c, and ’ >_ 0 requires >_ c.
If f L is given in C (X), then q, (f) > -q, (-f) cannot hold unless domi-
nates a positive multiple of a member of LM (X). The functionals p,(f)
are of no use in determining L; the functionals q, (f) do determine L, but are
effective only for certain .
Under the injection 0: rca (X) --> rca (K), each member of prob (X) be-

comes a maximal measure in prob (K). In particular, distinct members of
LM (X) become distinct maximal members of prob (K). Each member of
O{LM (X)} is a representing measure for the single point K*ILM (X)} of
K; the uniqueness of maximal measures fails when LM (X) has more than one
element. (E.g., for the case 2 N, X N described above, the number
of Banach limits is 2.)
The example N also serves to illustrate the failure of Theorem 2 when K is

not a simplex. Consider the elements f’, f’ of C (/N) determined by the
values f’ (n) 1, n e N, andf (n) (- 1 ), n e N. These generate the sub-
algebra If’, f] of C (fN) consisting of all functions of the form af + bf, a, b
real, and each of these is almost convergent. Let f’’ be determined by bhe
valuesf" (0, 1, 1, 0, 0, 0, 0, 1, on N; the lengths of the successive blocks
are the successive powers of two. It is clear thatf" is not almost convergent,
but it is easy to verify that f"f" is almost convergent. From f (f"f’) f’’
it follows that f’ is not a multiplier for the almost convergent functions.
Thus the subalgebra If’, ff] is contained in the subspace of almost convergent
functions but is not contained in the multipliers for that subspace.



SUBALGEBRAS IN A SUBSPACE OF C(X) 267

REFERENCES

1. R. R. PHELPS, Levture8 on Choquet’8 theorem, D. Van Nostrand, Princeton, 1966.
2. D. A. EDWARDS, Introduction to functional analysis, Summer Institute lecture notes,

Lehigh University, 1964.
3. H. B.VER, ilovscher rand und Dirichletsches problem, Ann. Inst. Fourier (Grenoble),

vol. 11 (1961), pp. 89-136.
4. E. BISHOP AND K. D LEEUW, The representation of linear functionals by measures on

sets of extreme points, Ann. Inst. Fourier (Grenoble), vol. 9 (1959), pp. 305-
331.

5. M. M. D.v, Amenable semigroups, Illinois J. Math., vol. 1 (1957), pp. 509-544.
6. S. P. LLOYD, A mixing condition for extreme left invariant means, Trans. Amer. Math.

Soc., vol. 125 (1966), pp. 461-481.
7. G. G. LORENTZ, A contribution to the theory of divergent sequences, Acta Math., vol. 80

(1948), pp. 167-190.
8. G. CHOQUET, Existence et unicite des representations int$grales au moyen des points

extremaux dans les cnes convexes, Seminaire Bourbaki, December 1956.
9. N. BoBoc AND A. CORNE, Convex cones of lower semicontinuous functions on com-

pact spaces, Rev. Roum. Math. Pures. et Appl., vol. 12, pp. 471-525.

BELL TELEPHONE LABORATORIES INCORPORATED
MURRAY HILL, NEW JERSEY


