
ON THE ZEROS OF A CLASS OF DIRICHLET SERIES

BY

Bc C. BEltNDT

1. Introduction

The purpose of this paper is to show that many theorems concerning the
distribution of zeros for the Riemann zeta-function (s) can be generalized to
a large class of Dirichlet series [1]. For the most part, our results are concerned
with the distribution of zeros in a certain vertical strip. The proofs are simi-
lar to those that have been given for i" (s). Most of the corresponding the-
orems for (s) can be found in [10].

DEFINITION 1. Let {M} and {} be two sequences of positive numbers
tending to , and a (n) and b (n)} two sequences of complex numbers not
identically zero. Let

() II,- r( + ),

where N is a positive integer, ak > 0, and fk is an arbitrary complex number.
Consider the functions e and b representable as Dirichlet series

(s) :..1 a(n)k-, b(s) :.. b(n):’, s + it,
* respectively. If r iswith finite abscissae of absolute convergence aa and aa,

real, we say that and satisfy the functional equation

A(s)q(s) A(r- s)b(r- s)(1.1)

if there exists in the s-plane a domain D which is the exterior of a compact set
S, such that in D,

e is holomorphic, ,
q(s) (r s)b(r s)/A(s), < r ,
there exists a constant K > 0 such that

(i)
(ii)
(iii)

(s) 0(exp slK),
as is[ tends to .
Throughout the sequel we set A ’- ak. If C denotes a simple closed

curve, let I (C) denote the interior of C and let I’ (C) I (C) u C. Finally,
B always designates an unspecified positive constant, not necessarily the same
with each occurrence.

THEOREM 1.

2. Summary of results
There exists a positive integer m such that

-(m + j + ,)/a, k 1,...,N,j 0, 1,2, ...,
Received March 21, 1968.
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are simple zeros of q. Moreover, the remaining zeros of q belong to a vertical
strip, < a < a.

This is, of course, a classical result for several Dirichlet series whose coeffi-
cients are of number theoretical interest. Lekkerkerker [7] has proven the re-
sult for h (s) 1 (s). In the sequel the zeros of outside the strip, al < a < a,
will be called the trivial zeros.

THEOREM 2. The number of zeros of q in the vertical strip, al < a < as, is
infinite, and the distance between ordinates of successive zeros is bounded.

THEOREM 3. Let N (T) denote the number of zeros of q in D n I (R ), where R
denotes the rectangle with vertices al, a., al iT and as - iT. If h is any
positive number, no matter how large,

N(T + h) N(T) 0(log T),
where 0 0 (h ).

COROLLARY 4. The multiplicity of a zero of does not exceed 0 (log T).

THEOREM 5. Let p - i. run through the zeros of q. Then,

(2.1) ’(s)/(s) 1,-1<_1 1/(s p) + 0(log t),

uniformly for a 1 <_ a <_ a. - 1.

THEORE 6. We have

log , (s) t--l< log (s p) - 0 (log t),

uniformly for al 1 <_ a <_ as - 1, where-r < arg (s- p) _< -.
THEOREM 7. There exists a positive constant K such that each interval

(T, T - 1 contains a value of ]or which

where al 1 < a <_ a -q- 1. Furthermore, ifH > I is arbitrary, then

I(s) > T-su,
where al 1 <_ a <_ as q- 1, T <_ <_ T q- 1, except possibly on a set of values
of measure 1/H.

The proofs of Theorems 6 and 7 will be omitted since they resemble the cor-
responding proofs for " (s) [10, pp. 185-186] with only obvious changes being

For T > 0 su$iciently large, has a zero + i such that

" T < B/ (log log log T).

THEOREM 9. For any fixed h > O, no matter how small,

N(T - h) N(T) > B log T,
where B B (h ).

necessary.

THEOREM 8.
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There is no difficulty in constructing a proof along the same lines as that
given for (s) in [10, pp. 194-196], and so the proof of Theorem 9 will be
omitted.

THEOREM 10. Let c and d be the least positive integers such that a (v 0 and
b(d) O, respectively. Let N(T), i 1, 2, denote the number of zeros of
outside S which lie in the strips r < a < a, 0 < < T and
-T < < O, respectively. Then,

N,(T)

(2.2) (A/r)T log T (T/2r) (log 2- a log a + 2A

+ 0 (log T).
Von Mangoldt first gave the proof of the above formula for " (s). However,

Backlund later gave another proof, and it is essentially his method which we
employ in our proof. Landau [5, p. 534] has proven Theorem 10 for Dirichlet
L-functions. Potter and Titchmarsh [8] have proven the theorem for a class
of Epstein zeta-functions. Lekkerkerker [7] has proven the result when z (s)

F (s), where > 0.

THEORE 11. Let , a (n) be real and be real, k 1, ..., N. Sup-
pose also that (r 1/2r)A < 1/2. Then, the number of zeros of on the critical
line 1/2r is infinite.

The corresponding theorem for ’(s) was first proven by Hardy. The
method we use for Theorem 11 is that used by Landau in his proof of the
theorem for " (s) [6, p. 83]. The conclusion of Theorem 11 is valid, of course,
for other subclasses of Dirichlet series in Definition 1. Potter and Titchmarsh
[8] have proven the theorem for a class of Epstein zeta-functions and Kober
[4] for a somewhat larger class of the same. Hecke [3] and Lekkerkerker [7]
have proven the result for large classes of Dirichlet series when z (s) F (s).
Hecke [3, p. 95] and Lekkerkerker [7, p. 59] have pointed out that the theorem
can only hold for a restricted subset of the series given in Definition 1 and have

-r It is interestinggiven examples of Dirichlet series with no zeros on a

to note that entirely different methods must be used to prove the theorem for
different classes of Dirichlet series. The conditions of Theorem 11 are satis-
fied by " (s), but not, in general, by the other classes mentioned above.

THEOREM 12. Suppose that is real, k 1, ..., N. Let

x (s) A (r s)/z (s).

Then, for It large enough and > 1/2r,

(2.3) 1/x(s) > 1.

This theorem was first proven by Spira [9] and then by Dixon and Schoen-
feld [2] for t (s).
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COROLLmY 13. For It[ large enough and (r > 1/2r,

except at the zeros of (s ).
COROLLARY 14. Let f(s) be a Dirichlet series of signature (1, r, ) (cf. [3]

or[7]). If 6.8 and a > r, then

f(r s)[ > f(s) ,
except at the zeros off(s ).

3. Preliminary results
We first give three forms of Stirling’s formula.
For Re s > 0 [12, p. 251],

(3.1) logF(s) (s-- 1/2) logs-- sq-0(1),

as sl tends to . For the proof of Theorem 12 we shall need the more pre-
cise result [2],

log r(s)
(3.2) 1 1

2s-- logs-- sq-log2v-{- 12---- (sq-x)

where Pa (x) is a function with period 1 which is equal to

x(2x"- 3x q- 1)/12
on [0, 1]. On this interval
(3.3) 61P (x) -< .
By periodicity (3.3) is valid for all x

_
0. (3.2) is valid in the s-plane cut

along the negative real axis.
A direct consequence of Stirling’s formula is [10, p. 68]

(3.4) r(a + it) t+"-1/2e-t-it+1/2’(’-)(2r)1/2(1 + O(t-1)),
as tends to . A similar formula may be given for < 0 and tending to

by using the fact that P( it) P( q- it).

LEMMA 3.1. q is offinite order in any half-plane r >_ 7.

Proof. Let be fixed. For O" > O’a, ((7" - it) 0 (1) as tl tends to .,
Thus, from the functional equation for r < r r.,

(3.5) A(S)
k(r-- s) O

k A(s)

by (3.4), as ]tl tends to m. As (s) 0(1) for > , it follows from
property (iii) and a Phragmen-LindelSf theorem [11, p. 180] that o is of finite
order in any half-plane r >_ 7.
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LEMMA 3.2 [10, p. 49]. Let f be holomorphic and

lf(s)/f(so) < eM, M > 1,

on I’(C),where C {s:]s- sol r}. Then,

]f’(s)/f(s) 1/(s P) < BM/r, is sol <_ r/4,

where p runs through the zeros off(s such that p So[ <_ 1/2r.
LEMMA 3.3 [10, p. 62]. Let F (x and G (x be real functions on [a, b] such that

(i) G (x)/F (x ) is monotonic,
(ii) F" (x >_ r > O or F" (x <_ -r <0,
(iii) IG(x) <_ M,M > O.

Then,

f G(x)e() dx

4. Proofs of the theorems

Proof of Theorem 1. Let c and d be the least positive integers such that
a (c) # 0, b (d) # 0, respectively. Since and k converge in some half-plane,
we can choose a > max (0, ,, ) so that

(4.1)

Thus, for a >_ a,

Similarly, for

(4.2)

Thus and are free of zeros and holomorphic in the half-plane a _> a. Also,
since a > 1/2r + 1/4A [1, p. 111], r a < a. Now, h (s) has simple poles at
s (n + fl)/a, k 1, ..., N, n O, 1, 2, .... It follows that if we let
m be the least positive integer such that

--(m + Re[)/a < r a, k 1, ..., N,
9(s) hassimplezerosats (m +j + )/a,k 1,... ,N,j O, 1,2,....
The remainder of the zeros must lie in the strip r

Proof of Theorem 2. Let c and a be as given in the proof of Theorem 1.
Without loss of generality we assume c 1, for the zeros of (s) are the same
as those for -(s).
Now, let M max {1 Re a (c) I, 11m a (c) I} > 0. Suppose M Re a (c).

Then choose a0 >_ a large enough so that
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Re (s) Re a(c) q- {Re a(c q- 1) cos (t log

q- Im a (c q- 1 sin (t log X,+l) X,-l q-

> Re a (c) Re a (c q- 1 cos (t log ,+)
q- Im a (c q- 1 ) sin (t log Xc+) X-

> 0,

for a >_ a0. Similarly, if M Im a (c), a0 > a can be chosen large enough so
thatIm(s) > 0fora_> a0. IfM -Rea(c) or-Ima(c),a0_> acan
be chosen large enough so that Re q (s) < 0 or Im q (s) < 0, accordingly, for
a _> a0. Thus, for all cases we may define a branch of log for

(4.3) log (s) log q (s) q- i arg q (s),

where arg (s) ranges over an interval of length no greater than r. Hence,
for a > a0,

log < B.

For a < a0 we define log (s) as the analytic continuation of (4.3) along the
line segment (a q- it, ao q- it), provided that is holomorphic and (s) 0 on
this segment.

Next, let be a positive real number chosen so that a0

Consider a system of four concentric circles C, C., Ca and C4 with center
ao q- 1 q- iT and radii 1, q- 1, q- 2, and q- 3, respectively. Here T is
chosen large enough so that I’ (C4) c D and none of the trivial zeros lies in
I’ (C ).
Suppose that (s) 0 on I’ (C) so that log (s) is holomorphic on I’ (C).

Let M, and Ma denote the maximum moduli of log (s) on C, and Ca, re-
spectively. By Lemma 3.1 Re (s) 0 (log T) for s on I’ (C). Hence, by
(4.4) and the Borel-Carathodory theorem [11, p. 175],

Ma O(log T).

Next, we apply Hadamard’s 3 circles theorem [11, p. 172] to C1, C, and Ca to
obtain

M, _< B (log T)p,
where p log ( q- 1)/log ( -[- 2) < 1. In particular,

(4.5) (ao- q- iT) 0(exp {logp T}) O(T’),

where e 0, since p 1.
On the other hand, by our choice of and (4.2),

I(r ,o + iT)[ > 1/21b(d)l- K,

say. Hence, by (1.1) and (3.4),
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(4.6)
B T (+-0).

As r + 2a0 ) 0 and > 0, r + 2 2a0 ) 0. Thus, (4.6) is a contra-
diction to (4.5), and (s) must have at least one zero on I’ (C). The last
statement of the theorem easily follows from the proof.

Proof of Theem 3. Let r ( a W 1 ) T h}/ and define r silarly
for k > h. Consider a circle C of radius r and center a T 1 W iT, where T is
chosen large enough so that I’ (C) D. Then, clearly,

(4.7) N(T + h) N(T) n(ra),

where n (x) denotes the number of zeros of in the circle of radius x and center
T 1 W iT. By Jensen’s theorem [11, p. 126] and Lemma 3.1,

x
log (a + 1 + iT + re*)

(4.8) log](z + 1 + iT)]

B log T.
On the other hand,

() d > () d (r) d_ B(r).

Combining (.7), (4.8) and (4.9), we obgain he conclusion of he heorem.

Proof of Theem . In Lemma a.2 pug

f= e, , e+ 1+iT and r 4(e- e+2).

Here T is ehosen large enough so ha I’ () D. By Lemma a.1 we may
ake M B log T. hus,

2(s) o-ot, s p

where s- s0[ a- a, + 2. In particular, (4.10)is valid for

For these values of , clearly, we may replace by in (4.10). Also, any
term that appears (4.10) but not (9.1) is bounded, and by Theorem 3 the
number of such terms is no reater than

Proo or 8. e ive only the beinng of the proof, for after a

certain point the details are precisely the same as the correspondin theorem
for () [10 p. 191-198].
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We choose T large enough so that i’ (C,), where C, is defined below, con-
tains none of the trivial zeros and I’ (C) c D. Also choose a0 as in the proof
of Theorem 2.
Suppose(s) hasnozerosin T- 8 _< t_< T-b 8, where8 < 1/2. Then

f(s) log (s) is holomorphic for T 8 _< _< T -b 8, where f(s) is given its
principal value for _> a0. Let Civ, C2v, C3 and C4 be four concentric circles
with center a0 -[- 1 8/4 -[- iT and radii 8/4, 8/2, 38/4 and 8, respectively.
Here 0, 1, 2,...,n, wheren [4(n0- al -b 2)/8] -t- 1. Thus, the
centers of the circles with center n0 -t- 1 n8/4 lie on or to the left of
a 1 1. Proceed now exactly as in [10].

Proof of Theorem 10. Let a be given as in the proof of Theorem 1. Choose
To and T > To so that the lines To and T contain no zeros of and so
that S lies within the rectangle with vertices r a iTo and a 4. iTo. Let
R denote the rectangle with vertices r a -b iTo, a - iTo, a - iT and
r a - iT. R is free of eros of q. Lastly, let No denote the number of
,eros of outside S but within the rectangle given by 0 < < To, a < < a..

Thus,

NI(T) No-- - "s log q(s) ds

Im {I -}- I.-k la-k 14}.

We examine each integral in turn.
Next,

(4.ii)

As 11 is independent of T, I, 0 (1).

I. log (s) "+r
a+iTO

log a (c)-’ "+r

a+iTo

where we tke the vrition in ny brnch of the loghm long %he strigh%
line segment (a + iTo, a + iT). Let

a (c)a(n)
By (4.1), it follows that for a a, If(s)] }. Hence, the arment of
1 f(s) ranges over an interval of length less than v, and so the imaginary
p of the second term of (4.11) is t mos . An esy cIcultion shows
the first termin (4.11) isi(T0 T) log X. Hence,

ImL -TlogX + 0(I).
By a silar argument,

d(4.12) Im log () d T log e + 0(1).
--iT
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For the estimation of I8 define

, () "+ ,o, o, (),

where / is chosen so that a(c)e > 0. Let q be the number of zeros of
Re {, (s)} on (r a + iT, iT). These zeros sub.vide this line seg-
ment into at most q 1 sub.regals, in each of which Re {, (s)} is of con-
stant si. On each subinteal the variation of Im {log
Since arg (s) and arg , (s) der only by a constant,

Im + (+1).

To estimt w define

snd note hs if

Withou loss of generality ssume

= T-0>(-{r).
If is such that J < p, then Im ( + i) > T p %. Since 9(*)
is holomorphic for >
follows h* ( ’ iT), nd henc f(), is holomorphic within I J < p
s well. By (.18), th definition of , snd (4.1)

3

W r thus in position to spply ffnsen’s theorem. Let

r0 ( r), r r0,
snd n(z) the number of zeros of f within I ! " Then,

(r) ()-
(.1)

By Lemma 3.1,

Hence,
,o(s) O(t’), r > a- ro, > To.

f(roe + a) 0 T ).

Thus, by (4.14),
n (rl) 0 (log T).

Now, the zeros of Re {,x (s)} on (r a + iT, a + iT) are those of f(z) on
(r a, a). Since (r a, a) is contained with the circle z a r,

q_<n(rx) and ImI, O(logT).
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Lastly, by the functional equation (1.1),

I log (s) log h (r s) log k (r s) ]1 -"+r--a+iO

By (3.1),

log A (s)l -"+rr--a+iT

=x {log F (a r a a + ia T + ) log F (a r a a + ia To + )}

= (ar aa + iaT + )log(ar aa + iaT +

Similarly,

log (r s)’-"+r
I,--+,o x (a, a ia T + t) log

-, (a a ia, T + ) + 0 (1).

Using (4.12), we have

I =x (a,r aa + ia, T + , {)log(a,r- aa + ia, T + ,)

= (a,r-ia, T+,- {)log(aa-ia, T+)

2iTA iT log m.

Now,
og (,, r a, + ia, T + ,) log (ia, T) + 0 (T-*)

loga, + log T + {i + O(T-),
since a, > 0. A similar result holds for log (a a ia T + ), and so,

I 2iTA log T + 2iT= a, log a, 2iTA iT log m + 0 (log T).

Combining the values for the four integrals, we have (2.2), i 1. As the
fight-hand side of (2.2) is continuous in T and as any line T containg
zeros of can be approximated arbitrarily closely by a line T’ cohtaining
no zeros of , the aforementioned restriction on T is unnecessary.

If + i% < 0, is not a zero of A- (s), then # + i is a zero of (s) if and
only if r B i is a zero of (s). Since (2.2), i 1, holds for as well and
is symmetric in c and d, (2.1) is valid for i 2 also.

Proof of Theorem 11. Define x(s) as in the statement of Theorem 12.
Clearly,

(4.15)

Also, define

x({r + it)l 1

2(.)

From the functional equation it follows that R (1/2r + it) R (1/2r it). Since
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a (n) and B,/c 1, N, are real, R (1/2r W it) is a real-valued function of t.
Next, let

1/2 arg x (1/2r -b it),
so that

x(1/2r + it) e-.
Lastly, let

Z (t) e(r + it)

x (r + it)}-(r + it)

{a(r + it)/a(r it)}(]r + it)

R (]r + it)/J h (r + it).
Hence, Z (t) is a real function of t, and

(4.16) Z(t)J (r + it.).

As in Landau’s proof, we shall compare the behaviors of the two integrals

Z(t) dt, Z(t) dt,

where T is chosen large enough so that sup,,s {t} < T.
Let c be given as in the proof of Theorem 1. Define

(s) x().
Thus, by (4.16),

(4.17)

Also,

by Cauchy’s theorem.
As usual, define

(a) inf [" q,(s)

From (3.5) and the general theory of (a) [11, p. 299], we find that for

(4.18) (a) _< (a,- a)A.
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Thus,

i (1/2r+it) dt s--

iT + O(T<*-)+’).
Since (a+ {r)A < ], we have shown by (4.17) that

(4.19) Z(t) dt > BT.

Now, let C denote the rectangle with sides a {r,
2T, where > 0 is chosen so small that

(a. + +r)A < {.
By Cauchy’s theorem,

(4.20) f{x() }-’/(s) d 0.

0 (t(’+-’)).

We proceed to estimate the integrals along the two horizontal sides and the
right side. By (3.4),

where C is a constant. Hence,
(4.21) {X(S)}- f-xC(a t)("/)(*-’+")e-’’t(1 + O(t-)).
From (4.21)and (4.18)we have

x (*)}-’ () 0 (t("=-’/)+)

for {r a v, and

x ()}-’ (*) 0 (t(’’+’-)+)
for a, a a, + . The integrals along the sides T and 2T are
therefore

0 (T(*’+-)+).
The integral along the fight-hand side is

The contribution of the O-term is
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The other part of the integral is a constant multiple of

a(n)k7":- 1(’:+-’/)’ exp il a log al- A log X,, dr.
nl kl

F(t) t(-alogat A logh,) and G(t) (’=+-’/).

Since
F’(t) Z-I ok 1OgO/kt log

and F" (t) A/t, the hypotheses of Lemma 3.3 are clearly satisfied for T
large enough. Hence, the above sum is

Hence, by (4.20) we have shown

fr/2+2iT f
T

l.(8)}--1/2(8) ds i Z(t) dt
,r/2+i’

O( T(’.+-r/)A+l/2) o( T),

since (aa A- 1/2r)A < 1/2. Comparing this result with (4.19), we conclude
that in every interval (T, 2T) for T large enough, Z (t) changes sign at least
once. As the zeros of Z (t) are those of q (1/2r it), q (s) has an infinite number
of zeros on a 1/2r.

Proof of Theorem 12. For 0, x (s) is holomorphic and x (s) 0. De-
fine for 0,

h (s) log

In order to prove (2.3) it is sufficient to show that h (s) > 0 for > 1/2r.
Using the fact that A (s) is real on the real axis and thus takes conjugate

values at conjugate points, we have by the mean value theorem,

h(s) log A(a + it) log a(r + it)

( 1)[o ](4.22)
2 a--r Nlglh(a+ it)

wherer-r < o-1 < . Now
0

log la(a+it) ReNloga(s)0a

d

Since , k 1, N, is real and 0, we have from (3.2)

log r(as + ) (as +- 1/2) log (as + ) (as + ) -4- 1/2 log 2r

1 f(R) Ps(x) dx
-4- 12(aks "4- )

2 Jo (as "4- "4- x)a"
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Thus, by (3.3),

(4.23)

where

(4.24) dy--< [y-4- (a t)}

dy2
{. + (. 0’-} 2.11 ’"

Thus, by (4.22)-(4.24) we have shown that for a > 1/2r and Sl trl it,

h(s) f 1
2( r) > "g ]. s, +

It is easily seen that if tJ is large enough, the right-hand side is positive, and
this completes the proof.

Proofs of Corollaries 13 and 14. Corollary 13 is immediate from the func-
tional equation (1.1).

If f has signature (1, r, ), then o(x) (2r)-’f(s). From the proof of
Theorem 12, it is sufficient to choose large enough so that

logltl -}Jtl ltl + lti" log2- > O.

If tt > 6.8, the above is greater than

1.918 0.074 0.002 0.001 1.838 0.003 > 0.

The author expresses his thanks to Professor Lowell Schoenfeld for suggest-
ing a simplification on the author’s initial proof of Theorem 12.
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