THE NUMBER OF HALL π -SUBGROUPS OF A FINITE GROUP

BY

EUGENE SCHENKMAN¹

This note gives a theorem on the number of Hall π -subgroups of a finite group which includes a recent result of Marshall Hall on the number of Sylow subgroups as well as the classical theorem of Philip Hall on the number of Hall π -subgroups of a solvable group (cf. [1] and [2]).

We shall consider groups G which satisfy the following proposition for a given set of primes π .

 A_{π} . Given any π -subgroups P_i of G for i = 1, 2, there are Hall π -subgroups H_i of G so that $H_i \geq P_i$ and an automorphism α of G so that $H_1 \alpha = H_2$.

If a group satisfies proposition A_{π} we shall call it an A_{π} -group. It is clear that a group satisfying the well-known proposition D_{π} of Philip Hall (cf. [3]) is an A_{π} -group. But the class of A_{π} -groups is larger than the class of groups satisfying D_{π} since for instance the projective group PSL(2, 7) of order 168 has two classes of subgroups isomorphic to the symmetric group S_4 which are conjugate in the automorphism group of PSL(2, 7). It is also clear that an A_{π} -group satisfies proposition E_{π} of [3] and that there are E_{π} -groups not A_{π} -groups; for instance, PSL(2, 11) of order 660 which has two non-isomorphic groups of order 12.

Before stating the main theorem it will be convenient to have the following lemma whose easy proof is omitted.

LEMMA. Let the group D be the direct product of groups G_i for $i = 1, 2, \dots, n$, where each G_i is isomorphic to a given group G. Then a Hall π -subgroup of D is the product of Hall π -subgroups H_i of G_i and D is an A_{π} -group if and only if G is.

The main theorem is as follows.

THEOREM. Let G be a finite A_{π} -group for a certain set of primes π : then the number $n_{\pi}(G)$ of Hall π -subgroups of G is a product of integers such that each integer is either the number of Hall π -subgroups of a simple A_{π} -group or is a prime power congruent to 1 modulo a prime of π .

The proof is by induction on |G| the order of G. If G is a direct product of isomorphic simple groups the theorem follows from the above lemma. Accordingly we consider the case where G has a proper non-trivial characteristic subgroup K, which we shall assume to be minimal. We let \overline{G} denote G/K.

Case I. K is a π -group. It is easy to see then that there is a one-one cor-

Received March 20, 1968.

¹ The author thanks Professor Everett Dade for suggesting the reformulation of the theorem in terms of A_{π} groups, and the National Science Foundation for support.

respondence between the Hall π -subgroups of G and those of \overline{G} , and that \overline{G} is an A_{π} -group if and only if G is. Thus $n_{\pi}(G) = n_{\pi}(\overline{G})$ and the theorem follows from the induction assumption since $|\overline{G}| < |G|$.

Case II. K is neither a π -group nor a π' -group. Since |K| is not a prime power, it follows from the minimality of K that K is a direct product of simple groups X_i . For each Hall π -subgroup H of G, $H \cap K$ is a Hall π -subgroup of K (cf. p. 220 of [4]) and each of the Hall π -subgroups of G which contains $H \cap K$ is contained in $N = \Re(H \cap K)$ the normalizer of $H \cap K$. We shall show now that N is an A_{π} -group. Let S be a maximal π -subgroup of N. Then $S \geq H \cap K$ since $H \cap K$ is a normal π -subgroup of N. Since G is an A_{π} -group, there is a Hall π -subgroup H_1 of G so that $S \leq H_1$. Since $H_1 \geq S \geq H \cap K$ and since $H \cap K$ is a Hall π -subgroup of K, $H_1 \cap K = H \cap K$. Thus H_1 normalizes $H \cap K$ and $H_1 \leq N$. Since S is maximal, $S = H_1$. Since G is an A_{π} -group there is an automorphism α of G so that $H\alpha = H_1$. Thus $(H \cap K)\alpha = H_1 \cap K = H \cap K$. Hence α stabilizes $H \cap K$ and consequently its normalizer N. Thus α induces an automorphism of N and $H\alpha = S$. Hence N is an A_{π} -group as we wished to show.

It is clear that the Hall π -subgroups of K are conjugates under the automorphism group of G and that K is also an A_{π} -group. Hence $n_{\pi}(G) = n_{\pi}(K)n_{\pi}(N)$. If N = G then $H \cap K$ is a characteristic π -subgroup of G and the theorem follows from Case I above. If N < G, then by the induction assumption $n_{\pi}(N)$ is an integer of the prescribed form while

$$n_{\pi}(K) = \prod_{i} n_{\pi}(X_{i})$$

with the X_i simple A_{π} -groups by the lemma and hence $n_{\pi}(K)$ is also of the prescribed form.

Case III. K is a π' -group. Then $n_{\pi}(G) = n_{\pi}(\bar{G}) \cdot n_{\pi}(KH)$. It is easy to check that \bar{G} is an A_{π} -group. Since (|K|, |H|) = 1, KH is an A_{π} -group by Theorem VII.2.j of [4]. Hence the theorem follows from the induction assumption unless KH = G. Thus we assume that KH = G and wish to show that $|G:\mathfrak{N}(H)|$ is a number of the form prescribed by the theorem. Now $K \triangleleft G = KH$ and therefore $\mathfrak{N}(H) = H \cdot \mathfrak{C}_{\kappa}(H)$ with $\mathfrak{C}_{\kappa}(H)$ denoting the centralizer of H in K and $|G:\mathfrak{N}(H)| = |K:\mathfrak{C}_{\kappa}(H)|$. For $j = 1, \dots, t$, let P_j be Sylow p_j -subgroups of K for the different primes p_j dividing |K|chosen so that $\mathfrak{C}_{P_j}(H)$ is a Sylow p_j -subgroup of $\mathfrak{C}_{\kappa}(H)$ and so that P_j is normalized by H. This is possible for the following reason. We begin with C_j a Sylow p_j -subgroup of $\mathfrak{C}_{\kappa}(H)$ and consider a maximal p_j -subgroup M_j containing C_j and normalized by H. If M_j is not a Sylow p_j -subgroup of K then the Frattini argument applied to the normalizer of M_j gives a contradiction to the maximality in the choice of M_j . Then

$$|K:\mathfrak{G}_{\kappa}(H)| = \prod_{j=1}^{t} |P_j:\mathfrak{G}_{P_j}(H)|$$

and the theorem follows from the induction assumption unless K is a p-group for some prime p, and in fact an abelian group since K is minimal characteristic.

Thus we finally consider the case G = PH with P an abelian p-group normal in PH and will show that $|P: \mathfrak{C}_P(H)| \equiv 1 \mod a$ prime of π . If |H| is even then p is odd since p is a π' -number and $|P: \mathfrak{C}_P(H)| = 1 \mod 2$. If |H| is odd, then H is solvable by the Feit-Thompson theorem and hence has a minimal normal q-subgroup Q. Now $PQ \triangleleft G = PH$ and hence $\mathfrak{C}_P(Q) \triangleleft G$ since $\mathfrak{C}_P(Q)$ is the intersection of P and the center of PQ. Thus $\mathfrak{C}_P(Q) = 1$; for otherwise G has a non-trivial normal π -subgroup and the theorem follows from Case I. It follows that $n_{\pi}(G) = |P|$. But

$$PQ = Q \cup Qx_1 Q \cup Qx_2 Q \cup \cdots$$

with the number of right cosets of Q in Qx_iQ a positive power of q since it is the index $(Q:Q \cap Q^{x_i})$. Thus $|P| = 1 \mod q$ and the theorem is proved.

It should be remarked that when the Hall π -subgroup is solvable as in the theorems of Marshall Hall and Philip Hall, then the reference to the Feit-Thompson theorem is unnecessary.

It should also be pointed out (I am indebted to Professor M. Suzuki for this) that the simple groups of the theorem are composition factors of G provided the Hall π -subgroups are nilpotent. A proof can be given by following the proof of the theorem. Since H is nilpotent, $H \cap K$ is nilpotent and hence intravariant in K. Then G = KN so that $N/N \cap K \cong G/K$, and in the induction argument the relevant composition factors of N are now composition factors of G. I have been unable to prove the above assertion if the Hall π -subgroups are not nilpotent.

References

- 1. MARSHALL HALL, JR., On the number of Sylow subgroups in a finite group, J. Algebra, vol. 7 (1967), pp. 363-371.
- 2. PHILIP HALL, A note on solvable groups, J. London Math. Soc., vol. 3 (1928), pp. 98-105.
- 3. ____, Theorems like Sylow's, Proc. London Math. Soc. (3), vol. 6 (1956), pp. 286-304.
- 4. EUGENE SCHENKMAN, Group theory, van Nostrand, New York, 1965.

PURDUE UNIVERSITY LAFAYETTE, INDIANA