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This note ives a theorem on the number of Hall -subgroups of a finite
roup which includes a recent result of Marshall Hall on the number of Sylow
subgroups as well as the classical theorem of Philip Hall on the number of Hall
osubgroups of a solvable group (cf. [1] and [2]).
We shall consider roups which satisfy the following proposition for a

iven set of primes .
A. Given any -subroupsP of for 1, 2, there are Hall -subroups
of so that

_
P and an automorphism of so that ..

If a roup satisfies proposition A we shall call it an A-roup. It is clear
that a group satisfying the well-known proposition D of Philip Hall (cf. [3])
is an A-roup. But the class of A-roups is ]arer than the class of roups
satisfying D since for instance the projective group PSL (2, ) of order 168
has two classes of subgroups isomorphic to the symmetric roup which are
conjugate in the automorphism roup of PSL (2, ). It is also clear that an
Aoroup satisfies proposition of [3] and that there are oroups not
A-roups; for instance, PSL (2, 11 of order 660 which has two non-isomorphic
groups of order 12.

Before stating the main theorem it will be convenient to have the followin
lemma whose easy proof is omitted.

LEMMA. Let the group D be the direct product o/groups Gfor i 1, 2, .., n,
where each G is isomorphic to a given group G. Then a Hall r-subgroup ofD is
the product of Hall r-subgroups H ofG and D is an A,-group if and only if G is.

The main theorem is as follows.

THEOREM. Let G be a finite A-group for a certain set of primes r: then the
number n (G) of Hall v-subgroups of G is a product of integers such that each
integer is either the number of Hall r-subgroups of a simple A,-group or is a prime
power congruent to 1 modulo a prime of r.

The proof is by induction on G! the order of G. If G is a direct product of
isomorphic simple groups the theorem follows from the above lemma. Ac-
cordingly we consider the case where G has a proper non-trivial characteristic
subgroup K, which we shall assume to be minimal. We let G denote G/K.

Case I. K is a v-group. It is easy to see then that there is a one-one cor-
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respondence between the Hall -subgroups of G and those of , and that ( is
an A-group if and only if G is. Thus n (G) n (G) and the theorem follows
from the induction assumption since I1 <

Case II. K is neither a -group nor a ’-group. Since KI is not a prime
power, it follows from the minimality of K that K is a direct product of simple
groups X. For each Hall -subgroup H of G, H n K is a Hall -subgroup of
K (cf. p. 220 of [4]) and each of the Hall r-subgroups of G which contains
H n K is contained in N (H n K) the normalizer of H K. We shall
show now that N is an A,-group. Let S be a maximal v-subgroup of N.
Then S _> H n K since H n K is a normal v-subgroup of N. Since G is an
A-group, there is a Hall v-subgroup H of G so that S

_
H. Since

H _> S >_ H n K and since H n K is a Hall -subgroup of K, H n K H n K.
ThusH normalizes H n K andH _< N. Since S is maximal, S H. Since
G is an A-group there is an automorphism a of G so that Ha H. Thus
(H n K)a H r K H r K. Hence a stabilizes H n K and consequently
its normalizer N. Thus a induces an automorphism of N and Ha S.
Hence N is an A-group as we wished to show.

It is clear that the Hall -subgroups of K are conjugates under the auto-
morphism group of G and that K is also an A-group. Hence n,(G)
n, (K)n (N). If N G then H n K is a characteristic v-subgroup of G and
the theorem follows from Case I above. If N G, then by the induction
assumption n (N) is an integer of the prescribed form while

n (K)

with the X simple A-groups by the lemma and hence n (K) is also of the
prescribed form.

Case III. K is a v-group. Then n (G) n(().n, (KH). It is easy
to check that is an A-group. Since (I K I, HI) 1, KH is an A-group
by Theorem VII.2.j of [4]. Hence the theorem follows from the induction
assumption unless KH G. Thus we assume that KH G and wish to
show that ]G: (H)] is a number of the form prescribed by the theorem.
Now K < G KH and therefore (H) H. (H) with (H) denoting
the centralizer of H in K and ]G’(H)I K:(H)I. Forj 1,..., t,
let P be Sylow p-subgroups of K for the different primes p. dividing
chosen so that e(H) is a Sylow p.-subgroup of (H) and so that P. is
normalized by H. This is possible for the following reason. We begin with
C. a Sylow p.-subgroup of (H) and consider a maximal p.-subgroup M con-
taining C and normalized by H. If M. is not a Sylow p-subgroup of K then
the Frattini argument applied to the normalizer of M gives a contradiction to
the maximality in the choice of M. Then
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and the theorem follows from the induction assumption unless K is a p-group
for some prime p, and in fact an abelian group since K is minimal characteristic.
Thus we finally consider the case G PH with P an abelian p-group normal

in PH and will show that P:p (H) -: 1 mod a prime of v. If H is even
then p is odd since p is a ’-number and P:P (H)I 1 mod 2. If H is odd,
then H is solvable by the Felt-Thompson theorem and hence has a minimal
normal q-subgroup Q. Now PQ < G PH and hence e (Q) < G since
e (Q) is the intersection of P and the center of PQ. Thus e (Q) 1;for
otherwise G has a non-trivial normal -subgroup and the theorem follows from
Case I. It follows that n (G) P I. But

PQ Q Qx Q u Qx Q u

with the number of right cosets of Q in Qx Q a positive power of q since it is
the index (Q:Q Q). Thus IPi 1 mod q and the theorem is proved.

It should be remarked that when the Hall -subgroup is solvable as in the
theorems of Marshall Hall and Philip Hall, then the reference to the Feit-
Thompson theorem is unnecessary.

It should also be pointed out (I am indebted to Professor M. Suzuki for this)
that the simple groups of the theorem are composition factors of G provided
the Hall -subgroups are nilpotent. A proof can be given by following the
proof of the theorem. Since H is nilpotent, H n K is nilpotent and hence intra-
variant in K. Then G KN so that N/N K --_ G/K, and in the induction
argument the relevant composition factors of N are now composition factors
of G. I have been unable to prove the above assertion if the Hall -subgroups
are not nilpotent.

REFERENCES

1. MARSHALL HALI, JR., On the number of ylow subgroups in a finite group, J. Algebra,
vol. 7 (1967), pp. 363-371.

2. PHILIP HLL, A note on solvable roups, J. London Math. Soc., vol. 3 (1928), pp. 98-105.
3. --, Theorems like Sylow’s, Proc. London Math. Soc. (3), vol. 6 (1956), pp. 286-304.
4. EU(ENE SCHENKMAN, Group theory, van Nostrand, New York, 1965.

PURDUE UNIVERSITY
LAFAYETTE INDIANA


