
ON THE RATIONAL COHOMOLOGY OF CLASSIFYING
SPACES OF RING-VALUED FUNCTORS

BY

ROBERT W. WEST

1. Introduction

Consider a contravariant functor -+ (R from the category of finite
connected pointed CW complexes to the category (R of (not necessarily as-
sociative) rings. Suppose that has a CW classifying space B. Our objective
is to study the effect of the ring structure on upon the rational cohomology
Hopf algebra A H* (B; Q). As a consequence we find from (7.2) that if
(X) is ring isomorphic to the integers Z for some X then B must be infinite
dimensional;in fact, U (B; Q is non-zero for arbitrarily large r.
Now -- t induces on B the structure of a topological ring up to weak

homotopy, the multiplication being a map m B/ B-, B from the smashed
product; see (5.1). Sections 2-5 are devoted to definitions, elementary prop-
erties and examples of such H-ring structures. In turn m induces a cohomology
algebra homomorphism 0 A --+ A (R) A satisfying certain properties which we
axiomatize in 6 to arrive at the notion of a secondary coproduct 0 on a Hopf
algebra A. In particular, we show in (6.6) that 0 is trivial if A is an exterior
algebra. Next, we state our main result, Theorem (7.1), which under mild
conditions on guarantees the non-triviality of the associated 0. The proof of
(7.1) given in 8 makes use of several general algebraic topology results which
we establish in an Appendix, 9.

2. H-rings
Let B be an H-commutative group with addition map a B X B - B, i.e. a

satisfies the axioms of a commutative group up to homotopy. An H-ring
structure on B is a map m B/ B -+ B such that diagram

(BXB) /B v (B/B) X (B/B) m X m )BXB

(2.1) la/l la
B/kB m B

and its 1/ a counterpart are homotopy commutative, where

"y (a,b / c) (a / c,b / c ).

Thus distributivity holds up to homotopy. Since any null homotopic m is an
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H-ring structure we shall be interested only in those m which are nontrivial, i.e.
not null homotopic.
An H-ring B can be homotopy associative or homotopy commutative, the defini-

tions of which should be evident. A point s e B is u multiplicative homotopy
identity if the compositions

B -s mB/B .B

forj 1, 2 are homotopie to the identity map I B B, where (b) b/ e,
(b) e A b. In the present paper, which is restricted mainly to connected

spaces, this notion will play no role because of the following result.

(2.2) PROPOSITION. A pathwise connected H-ring with multiplicative homot-
opy identity is contractible.

Proof. Suppose thut und m existed for the puthwise connected space B.
Letting I -+ B be path from e to the base point of B, observe that
ht (b) b / (t) defines a homotopy between and the constant map 0.
Hence 1 m 0 and B is contractible.

One may also consider weak H-ring structures on B by requiring diagram
(2.1) to be weakly homotopy commutative instead of homotopy commutative.

3. Examples
S SLet B 2S. Regarding u loop in S as based map a --(3.1)

define
m" B X B---B by (c,) ao3" S1---S1.

Since is continuous and (B /B) there is induced a mapm B/ B--Bwith m (a/ ) a o f which is easily seen to be an H-ring structure.
It should be noted that S has the homotopy type of Z as H-rings. Indeed,

one readily verifies that v0 (m) 0 (B) X v0 (B) -- v0 (B) is multiplication
of integers upon identifying 0 (B) with Z.

(3.2) Next, let G be an abelian group and let B be an Eilenberg-MaeLane
space of type (G, n), n >= 1, with the usual H-commututive group structure.
There is no non-trivial H-ring structure on B. Indeed,

H (B A B; G)[m] e [B A B, B] _.

which is a ero group since B being (n 1 )-connected implies that B/ B is
(2n 1)-connected.
In purticular, this result upplies to infinite real, complex and quaternionic

projective spaces. Moreover, (3.1) shows n ->_ 1 is necessary.
Our final example will be used in conjunction with our main result, Theorem

(7.1). First, consider the natural transformation

H"(X) (R) H’(Y) H’*(X/k Y)
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occurring in the reduced Ktinneth Theorem (9.2), n >_- 1. Since
Hn( ) K,] where K denotes an Eilenberg-MacLane space of type
(Z, n), we may apply Theorems (2.1) and (2.2) of [7] to obtain a representing
homotopy-bilinear map Kn/k K - K:n. Precisely, a corresponds to

a’ [X, Kn] (R) [Y, K,]-- [X f Y, K,],
(3.3)

a’ (If] (R) [g]) [ o (f f g)],
and the diagram

(K. K.) A K,, "r (K,,A K,,) X (KA K,,) X K.,,X K

(3.4) lz/l
K,,AK,,

and its 1 i analogue are homotopy commutative, where and denote the
H-structures.

Let B K X K., have the product H-structure a B X B -+ B, and define
m B A B -- B as the composition

(KXK.n) A (KXK2) pAp K,,AK,, ’ K.,, i. K,, X K,,.

(3.5) The map m is an H-ring structure on B. Moreover, the group [B A B, B]
is infinite cyclic on generator [m].

Proof.
a(m X m) a(i. X i.) (q X q){ (pl f pl) X (pl A pl)}

i. (q X ){ (p X p) A P}

i.(f 1){(p Xp)Apl}

i,q(p f p)(a A 1)

=m(af 1)

using diagram (3.4).

Next, consider the following commutative diagram"

H"(B) (R) H(B) a i,H"(B A B) _. [B A B, K,,] [B A B, B].

tp(R)p’ J(p A p)* ](p A p,)*

H"(K,,) (R) H"(K,,)

The Ktinneth Theorem implies that/" (B) 0 for r < n while p is an iso-
morphism in dimension n. Applying the reduced Kiinneth Theorem (9.2)
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we find that both functions a are isomorphisms. And so is i. because

[B /k B, B] " [B /k B, K,] (9 [B /k B, K,]
and

’’H’(B/k B) =0.[B A B, K,]
__

Since the lower left hnd corner is isomorphic to Z we conclude that

[B/ B, B] Z.

Moreover, the lower route tkes generator 1 (R) 1 to [m] i, (p/ p)*[]
because (3.3) implies that a’ ([1] (R) [1] [], so the proof of (3.5) is complete.
We shll return to this example in Sections 5, 6 nd 7.

4. Quasi H-rings
We have chosen to define an H-ring structure on B as a map on the smashed

product. If instead we choose cartesian product we have the notion of a
quasi H-ring structure B )< B --> B for which we require the homotopy
commutativity of the following diagram and its 1 ) a analogue"

BXBXBXB 1XTX1 ;BXBXBXB mXz ;BXB

(4.1) 1XiXAl
aXlBXBXB ;BXB B

The two notions of H-rings are nearly identical in view of the next result.
First, recall that a space B is well pointed if the pair (B, .) has the homotopy
extension property.

(4.2) TaOREM. (1) If m B / B - B is an H-ring structure on B, then

m o q B X B--> B /X B-- B

is a quasi H-ring structure.
(2) Ifz B X B --. B is a quasi H-ring structure on a well pointed space B,

then there exists an H-ring structure m B/ B --> B such that ra o q .
Proof of (1). Let qr. (B X B) X B-- (B X B)/ B. Then (4.1) implies

that

a(r X r)(1 X T X 1)(1 X 1 X A) a(m X

--_m(a/ 1)q’ m(a X 1).

In order to establish (2) we need a preliminary result.

(4.3) LEMMA. If B is a quasi H-ring, then o ij is null homotopic, j 1, 2.

Proof. Let B B be the homotopy inversion map and let
fl B -- B X B X B be injection onto the third factor. Then
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i. ail i2 (a is an H-structure)

a(1 X 0)Ar/--- a (1 X a) (1 X 1 X ) (1 X A)Agi2 ( is homotopy inversion

a(a X 1)(1 X 1 X )(1 X A)Ai (aish.a.)

a(a X 1)(g X X 1)(1 X T X 1 X 1)(1 X 1 XA X 1)
(j x ) ( x

---a(g X 1)(a X 1 X 1)(ia X )(1 X i.)A (by 4.1)

a(1 X )4gi--- 0 ( is homotopy inversion).

Proof of (2). Since we can assume that the homotopies in (4.3) are based
(cf. Satz 4.11 in [1]), we have that

BVBCBXB >Bis

null homotopic. But B is well pointed, so (B X B, B V B) has the homotopy
extension property by [1, Sat 3.14’]. Hence there exists a map - r with
g (B V B) ,. Factoring through B/ B we get a map m B/ B -- Bwith mq --. .
To show that m is n H-ring structure observe that

a(m X m)’rq’ a(m X m)(q X q)(1 X T X 1)(1 X 1 X 4)

--_a(m X)(1 X T X 1)(1 X 1 X4)

(aX 1) by (4.1)

---mq(a X 1)

Hence

under

m(a/ 1)q’.

q’*[a (m X m),] q’*[m (a/ 1 )]

[(B X B) A B, B]---+ [(B X B) X B, B].

Since B is well pointed, so is B X B and hence ((B X B) X B, (B X B) V B)
has the homotopy extension property. It follows [3, Satz 16] that the map-
ping cone C ofj (B X B) V B c (B X B) X B has the homotopy type of
(B X B) /k B. Applying B] to the Puppe sequence of j and using the
fact that Qj is null homotopic [3, p. 329] we conclude that q’* is a mono-
morphism. Therefore [a (m X m)v] [m (a A 1)], i.e. diagram (2.1) is
homotopy commutative, so the proof of (4.2) is complete.

Quasi H-rings are of some interest because of

(4.4) PROIOSITION. The loop space of a quasi H-ring is a quasi H-ring.
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To see this merely observe that2 B >< 2B --+ 2B us a quasi H-ring struc-
ture since the loop space functor preserves homotopies.
The weak analogue of (4.4) is also true.

5. Ring-valued functors
Consider the set-valued functor B] --+ where B is pathwise

connected.

(5.1) THEOREM. A weak H-ring structure on B induces a ring-valued functor
6. Conversely, if B is a countable CW complex, then any functor

---+ 6 arises in this way. Moreover, in this case we have the following:
(1) does not map to the category of rings-with-identity if is non-zero;
(2) the ring (Sr) has trivial multiplication for each r > O.

A similar result holds if the domain of is the category of all CW complexes
in which case the word "weak" can be deleted.
The first part of (5.1) is essentially (3.1) of [7] while statement (1) may be

derived from either (2.2) or the following argument" The constant map
0 X --+ Y induces a morphism of rings with identity. Hence [0] e [X, B]
must be the identity element and therefore [f] If][0] [0].
To prove (2) recall that the product [f][g] e [X, B] is the homotopy class of

the composition
A’X. X / X f / g B / B m

where A (x) x/k x. Since Sr/ S S’ we see that A’ 0 for r > 0 and
the proof is complete.

Let’s specialize (5.1) to example (3.5) of an H-ring structure on
B=KXK.

(5.2) IX, B] -- H (X @ Hn (X as groups with multiplication m, given by

m, (, (R) (,’ ’) o (, u ,’).

Proof. The first part is clear. As for the multiplicative structure consider
the following commutative diagram"

A*
H,(X) (R) H(X) a Hn(x A X) H"(X)

!1 I1 i1
IX, K,,] (R) IX, K,] A> IX/ X, K,, A K,,] *,> IX A X, K,.,] IX,

IX, Bl (R) IX, B] A ’*; [X/X,B/kB]
m, IX A X, B] IX, B]

Since p,, is projection of H @ H onto H and A’*a is cup product, we find
that the restriction of m, to H (R) H is cup product. On H (R) H, m, is
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zero because the map

K/ K i/ i m)B/B

is constant. Similarly for H (R) H and H (R) H2.

6. Secondary coproducts
Let A be a Hopf algebra over the rational numbers Q (for convenience) with

product q A (R) A -- A and coproduct k" A - A (R) A, tensor products being
over Q. A secondary coproduct on A is a morphism of augmented algebras
with unit 0 A -- A (R) A such that the diagram

A 0 b(R)l;A(R)A .)A(R)A(R)A

(6.1) [ 11(R)1(R)
A(R)A

0(R)0
A(R)A(R)A(R)A

1(R)T(R)1
A(R)A(R)A(R)A

and igs 1 (R) eounterparg are eommugagive.

This definigion is mogivated by

(6.2) PROPOSITION. If B is a weak quasi H-ring, then the Hopf,algebra
A H* (B; Q has * as secondary coproduct.

Indeed, diagram (6.1) is a consequence of applying H*( Q) to diagram
(4.1) and using the weak homotopy axiom [6, Theorem 11.1].
As usual let A ker { A -- Q} and decompose A into the direct sum

(6.3) PROPOSITION. If 0 A -- A (R) A is a secondary coproduct and A is
connected, then 0 Q Q " Q (R) Q while

Notice that in the case of (6.2) this result follows from (4.2) and the reduced
Ktinneth Theorem (9.2).

Proof. Now0(x) a(1 (R) 1)-t-b(1 (R)u) +c(v(R) 1)+dw, anelement
of Q (R) Q + Q (R) + fi_ (R) Q W 2: (R) 2:. If x e Q a chase of the commutative
diagram

A- )A(R)A

Q n, ,AQ(R)= A

shows thatx(1 (R) 1) a(1 (R) 1) + b(1 (R) u). Henceb 0. Similarly,
c 0 while d 0 since A is connected. If x e fi_ then the diagram implies
that a b 0, and c 0 similarly.
A finite set {xl of elements of A is independent in A (R) A if a (R) x 0
x, (R) b, implies that all ai and bj are 0.
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Proof. Since k(x) x (R) 1 + 1 (R) x and (1) 1 (R) 1, a chase of diagram
(6.1) yields

The primitiveness of x then follows from independence.

Next, we investigate the possible secondary coproducts in specific Hopf
algebras.

(6.5) PROPOSITION. U A is a polynomial algebra on a single generator of
positive degree, then 0 @ is zero.

Indeed, @ is zero in the dimension in which the generator appears and
0 is an algebra morphism.
On the other hand, if A is a polynomial algebra on more than one generator

0 need not be trivial [8, Prop. (4.6)].

(6.6) THEOREM. U A is an exterior algebra on generators x x of odd
degree, there is no non-trivial secondary coproduct on A.

Proof. Assuming that deg x deg x deg x, we show by induc-
tionthatO(x) 0, 1 i n. Now0(x) 0because 0forj < degx.
So assume that 0 (x 0 (x_ 0 and suppose that

O(x) y y e (A A)q, q degx,

where the y and y, are nonzero.

isSince the generators of A are of odd degree, at least one of y, y, say y,
degenerate in the generators x and no squares appear because A is an exterior
algebra. Writing (w) w @ 1 + 1 @ w + (w) one easily checks that
(y) 0 because of degeneracy. Hence we obtain the following.

(6.7) At least one of (y), (yT) is nonzero for each i.

Next, chase x around diagram (6.1) and its analogue. If

the z, z are expressible solely in terms of generators x, ..-, x_. The in-
duction hypothesis implies that (0 @ 0) (x) 0 and we obtain formula

o y @ y.

The above two facts will be used to derive a contradiction. Without loss of
generality we can assume that all y appearing in (6.7) and (6.8) have the
same degree s. We then have two cases.

Case 1. Some y 0. Without loss of generality we may assume that
the y are linearly independent in A,. It follows from an elementary argu-
ment that the non-ero y’ @ y are linearly independent too. But this con-
tradicts (6.8).
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Case 2. All- "y 0 Then (6.7) implies that all by = 0, and an argu-
ment parallel to the above yields another contradiction.
We therefore have 0 (x,) 0, so the proof of (6.6) is complete.
Although 0 may be trivial on two algebras it need not be trivial on their

tensor product. For example, it is easy to prove the following result (in which
x need not be primitive).

(6.9) PROPOSITION. Let A Q[x] (R) A[y] where deg y r is odd, deg x 2r.
Then any secondary coproduct 0 on A is given by

O(x) a(y (R) y), aeQ

O(y) O(x) O(x (R) y) O, tc >-_ 2.

If we replace the exterior algebra A[y] by Q[y] and make r exren, then 0 (x)
and 0 (y) are unchanged.
For reference in the next section we show how (6.9) arises geometrically

from example (3.5) in which B K K. Using Prop. 4, p. 501, of [4]
and the Kiinneth Theorem we have that

A H*(B;Q)Q[x] (R)A[y], nodd

Q[x] (R) Q[y], n even
where deg y n, deg x 2n.

(6.10) 0 m* A., (.;l (R) .;l ), takes x to -+-y (R) y.

Proof. The reduced Ktinneth Theorem implies that

H H H--a (K) (R) (g) -- (g A g)

is an isomorphism of Z (R) Z with Z (tensor products over Z here). Identify-
ing H" with K] and noting from (3.3) that K A K. -- K.. is a
representative of a([1] (R) [1]), we find that [] generates [K A K, K].
Hence

H H.(g.,) = (K, A K).

Passing to rational coefficients and using the definition of m, (6.10) follows.

7. The main result and applications

(7.1) THEOREM. Let 2 (R be a representable contravariant functor
whose classifying space B is a connected CW complex with H. (B offinite type.
Suppose that B has a representing weak H-ring structure, and let A H* (B; Q
be the associated Hopf algebra with secondary coproduct 0 .;l (R) .

If there exists a finite complex X such that (X) contains a multiplicatively de-
composable element of infinite additive order, then is non-trivial. In fact,

A, ---+ (A (R) A ) is non-zero for some r satisfying

2 (connectivity of X) - 2 <- r -< 2 dim X.

The proof will occupy the next section.
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It should be noted that the lower bound for r is best possible. Indeed, con-
sider example (3.5) in which B K K. (6.10) shows that 0 0 in
dimension 2n while (5.2)implies that (S X S) Z W Z - Z as groups, the
generator of the third copy of Z being the product of the generators of the first
two copies.
As an application of (7.1) and (6.6) we derive the following result which

roughly states that classifying spaces of many ring-valued functors must be
infinite dimensional.

(7.2) THEOREM. Let 2 --+ be a contravariant functor with a connected
countable CW complex B as classifying space where H. (B) is of finite type.
Suppose that Z is a ring direct summand for some (X ). Then B does not have
the homotopy type of a finite dimensional complex; in fact, H (B; Q ) is non-zero
for arbitrarily large r.

Proof. By (5.1) B has an induced weak H-ring structure. Applying (7.1)
we deduce that 0 is nonzero. By the Leray Structure Theorem [5, p. 268] the
Hopf algebra A is a tensor product of a polynomial algebra on even-dimensional
generators and an exterior algebra on odd-dimensional generators. Our re-
sult then follows from the observation that if the polynomial algebra were not
present we would have a contradiction to (6.6).

To illustrate the use of the bounds on r in (7.1) we prove

(7.3) PROPOSITION. Let m BU/ BU ---) BU represent the usual product
on , where BU denotes the classifying space of the infinite unitary group, and set
A H* (BU; Q). For every natural number n, there exists r, 4n <__ r <_ 8n,
such that 0 m* A -- ( (R) ) is nonzero. In particular, 0 is nonzero in
arbitrarily high dimensions.

An explicit calculation of 0 appears as (4.6) of [8].

Proof. Let f S-1 -- S be a map with Hopf invariant hi 2;see p. 200
of [2], for example. In the exact sequence [2, p. 196]

0 -/() /(c), () 0.

the ends are isomorphic to Z; let bl be the -image of a generator and let (a])
be a generator. Then a h b] implies that a has infinite order. Therefore
(7.3) follows from (7.1) applied to X CI.
Notice that the proof does not make use of the fact that A is the polynomial

algebra in the universal Chern classes.

8. Proof of (7.1)
We adopt the notation of (7.1) in which m B/ B -- B is the weak H-ring

structure on B. Without loss of generality we may assume that m is cellular.
If K c B is a subcomplex, write mK m K/ K. We then have

(8.1) PROPOSITION. There exists a space X e %2 such that the ring IX, B]
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contains a multiplicatively decomposable element of infinite additive order if and
only if there exists finite subcomplex K c B such that [mK] e [K / K, B] is of
infinite order. Moreover, we may assume that dim K __< dim X.

Proof. Observe that if
p’ K K--K B

denotes projection and
q K K--K / K

the identification map, then q* [K/ K, B] -- [K K, B] takes [mK] to
[p][p] sincd [m] represents the ring structure on B]. Moreover, q* is in-
iective as is seen by applying the functor B] to the Puppe sequence of
i K /K c K ) K and using the fact that Qi 0 [3, p. 329]. In particular,
if [m] has infinite order then so does [pl][p.] e [X, B] where X K X K.

Conversely, suppose that [f][g] e [X, B] has infinite order. Since we may as-
sume that f and g are cellular, there is a finite connected subcomplex K B
containing the compact set f(X) t g (X) with dim K <= dim X. Writing
(f, g)x (fx, gx) e K X K, the ring homomorphism

[K/K,B] q ;[KK,B] (f’ g)* IX, B]

takes [m] to [f][g] because q*[m] [p][p]. Therefore a contradiction would
arise if [m] had finite order.

(8,2) PROPOSITION. [h] e [Y, B] is of infinite order if and only if [h] (R) 1
is nonzero in [Y, B] (R) Q.

Proof. By (9.1), the abelian group [Y, B] is finitely generated and is
therefore of the form F T where F is free abelian and T is a torsion group.
Write[h]=aFT. If[h](R)l =0thena(R)l=0, hence[h]=T.
On the other hand, if n[h] 0 then [h] (R) 1 n[h] (R) (l/n) 0 and the proof
is complete.

Recall that a contravariant functor -- ( to the category of abelian
groups is half exact if the sequence A X -- X/A in 2 induces an exact se-
quence tA (-- tX - (X/A in a.

(8.3) PROPOSITION (Dold). If --* a is half exact, there exists a natural
equivalence ("generalized Chern character")

t( (R) QII:=IH(;t(S’) (R) Q).

Proof. Let t and t. denote the left and right hand sides, respectively, and
let p (Sr) t (Sr) (R) t (Sr) be the obvious isomorphism, r

_
1. Since both t

and t. are half exact, (R) t (S) is an exact functor and G (R) t (Sr) 0 for each
finite abelian group G, it follows from Prop. 2.6 and footnote (.), page A.5,
and Prop. 2.1, page A.3, of Dold [1] that p (S) extends to a natural isomorphism
p’tl
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Specializing (8.3) yields

H" (B) (R) Q),[g i K, B] = Q = 1"1-_: (g i K;
and we let IXc, correspond to [mK] (R) 1.

(8.4) LEMMA. Let X and K be as in (8.1). Then c,, is nonzero for some n
satisfying

2(connectivity of X) A- 2 -< n =< 2 dim X.

diagram
Supposing [f][g] e [X, B] has infinite order, consider the commutative

[X, B] (R) Q

A’* (R) 1

IX i X, B] (R) Q-- 1-I H’(X A X; r,,(B) (R) Q)

[K A K, B] (R) Q 1I H’(K A K; .,,(B) (R) Q).

Since [m] (R) 1 maps vertically to [f][g] (R) 1, which is nonzero by (8.2), we find
that

H ff A o.
But H (X A X; r, (B) (R) Q) is 0 for n

_
2 (connectivity of X) + 1 by the

reduced Ktinneth Theorem (9.2), and H" (K A K, rn (B) (R) Q) is 0 for n > 2
dim X since dim X => dim K. Hence (8.4) follows.

(8.5) IEMMA. If c,, 0 H"(K f K; r(B) (R) Q), then the secondary
coproduct O" A, ( (R) ), is non-zero.

Proof. Choose a finite connected subcomplexB ofB containingm (KA K),
and let be the directed set of finite connected subcomplexes Be of B contain-
ing B,. Since r (B) (R) Q is a divisible group, Theorem (9.3) implies that

(8.6) H(B; r(B) (R) Q) inv lime {H(B r(B) (R) Q)}.

Letting is Be -+ B denote inclusion, [i] (R) 1 corresponds to an element
l’I b, under the isomorphism of (8.3)"

H"(Ba r,,(B) (R) Q).[Be, B] (R) Q =
By naturality {b,.} defines an element of

inv lim {H" (Ba r. (B) (R) Q )}.

Letting p e/- (B; r, (B) (R) Q ) be the corresponding element under isomor-
phism (8.6), we find that

"*" H (B) (R) Q) -- H"a (B; r. (Ba r.(B) (R) Q)

takes p. to b,,.
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Letm K/ K --B be the restriction of m. Then naturality and the ob-
servation that (m* (R) 1 ([is] (R) 1 [mK] (R) 1 implies that m* (b.n) c in
cohomology.

Consider the following commutative diagram in which the coefficient group
7r. (B) (R) Q is suppressed from the notation.

m
H’(B) H’(B / B)

., m: .,

.Hn(B) "-H’(K/ K)

It follows that m* (p) m* (b.) c. So if c is nonzero then m*p, O.
It remains to show that m* is nonzero if rational coefficients are used. The

reduced Kiinneth Theorem (9.2) implies that H,(B/ B; Q is of finite type,
hence the cohomology Universal Coefficient Theorem [5, p. 246] applies. We
conclude that

Hn(B) (R) r,(B) (R) Q
_

H’(B; Q) (R) r(B)H(B; r(B) (R) Q)
__

and similarly for B/ B. Since m* on the left side is non-zero and corresponds
to m* (R) 1 on the right, the proof of (8.5) is complete.
Theorem (7.1)follows immediately from (8.1), (8.4)and (8.5).

9. Appendix
We present here three basic algebraic topology results.

(9.1) THEOREM. Let B be a pathwise connected H-commutative group whose
singular homology H, (B) is of finite type. Then the abelian group [K, B] is
finitely generated for every finite CW complex K.

Proof. First observe that each rq (B) is finitely generated. This follows
in the same way that Cor. 16, p. 509, in [5] is derived from Theorem 15 except
that we use Theorem 20 and the fact that any H-space is strongly simple (ex-
,.mule 18, p. 510).
To prove that [K, B] is finitely generated we proceed by induction. Observe

that [K, B] is trivial if dim K 0. Suppose K L u e where e is an n-cell
attached to subcomplex L by a map f S"-1 -- L. By induction we may as-
sume that [L, B] is finitely generated, as is [S, B]. Applying B] to the
Puppe sequence offwe conclude from exactness that [K, B] is finitely generated.
Our next result is a reduced Kiinneth Theorem.

(9.2) THEOREM. Let X, Y be pointed CW complexes, and let G, G’ be abelian
groups with Tor (G, G’) O. There exists a natural split exact sequence

0 -, ZT,(X; G) (R)//,(Y; G’)- ".,

f/,(X/ Y; G (R) G’) ---; Wor (/,(X; G), ,(Y; G’)) -* 0
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where is of degree 0 and or degree 1. If either (a) , (X) and, (Y) are

offinite type, or (b)/, (Y) is offinite type and G is finitely generated, then there
exists a natural split exact sequence

0- (X;G) (R) (Y; )-

*(X / Y; G (R) G’) = Tor (/*(X; G),/*( Y; G’)) ---, 0

where a is of degree 0 and is o degree - 1.

The homology version follows from the relative Kiinneth Theorem [5, p. 235]
applied to the couple {X .}, .} X Y} in X Y. This couple is excisive;
indeed, the proof of Lemma 7, p. 190, in [5] generalizes if one uses local con-
tractibility of a CW complex [9, 5, Prop M]. Moreover,

H.(X X Y, XV Y)/.(X Y)/.(X/ Y)

using [3], where X/ Y (X Y) u C (X / Y) has the homotopy type of
X/ Y since the base points are non-degenerate.
For the cohomology results apply Theorem 1, p. 249, of [5].
In order to state our final result let (X, A be a CW pair and let be the

directed set of finite subcomplex pairs (Y, B). Inclusion (Y, B) -- (X, A
induces a homomorphism H* (X, A; G) -- H* (Y, B; G) and in turn a homo-
morphism

H* (X, A;G) inv limz H* (Y, B; G).

Although is not, in general, an isomorphism we do have

(9.3) THEOREM. If the group G is divisible then is an isomorphism.

Proof. For convenience we deal with single spaces instead of pairs. Divis-
ibility of G and the Universal Coefficient Theorem implies that H (X; G)
Hom (Hn X, G) since Ext G) 0. It follows that

inv lim H (Y; G) inv lim Horn (H Y, G)

Horn (dir lim H Y, G)

Hom (H X, G). H’(X; G)

where we have made use of naturality and the fact that homology behaves
nicely with respect to direct limits (cf. Theorem 6, p. 175, of [5]).
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