BORDISM OF INVOLUTIONS ON MANIFOLDS

BY

H. L. ROSENZWEIG¹

I. Introduction and notation

In [7], Conner and Floyd computed the bordism groups of all involutions on closed manifolds. The purpose of this paper is to examine the bordism groups $\mathcal{O}_n(\mathbb{Z}_2)$ of all orientation preserving involutions on closed oriented manifolds.

In section II we give a relation between certain bordism groups of an involution defined by Atiyah in [2] and the bordism groups of a space. In III we first examine the forgetful homomorphism $s: \Omega_n(Z_2) \to \mathcal{O}_n(Z_2)$, where $\Omega_n(Z_2)$ is the bordism group of fixed point free orientation preserving involutions. It is shown that the kernel of s is exactly all of the torsion of $\Omega_n(Z_2)$. This result and that of section II enables us to show that all torsion of $\mathcal{O}_n(Z_2)$ has order 2 and that a free part occurs only in dimension n = 4k. From the computation of the kernel of s, it also follows that if M^n bords orientably and T is a fixed point free orientation preserving involution on M^n , then M^n bounds some orientable B^{n+1} to which T can be extended, though (T, B^{n+1}) may not be fixed point free.

All manifolds will be smooth and compact. The bordism groups Ω_n , \mathfrak{N}_n , $\Omega_n(X)$ and $\tilde{\Omega}_n(X)$ are defined in [7]. An element in $\mathcal{O}_n(Z_2)$ is represented by a pair (T, M^n) , where M^n is a closed oriented *n*-manifold and T is a smooth orientation preserving involution on M^n . Two such pairs (T_1, M^n) and (T_2, V^n) are bordant if there is an involution T on a compact oriented (n + 1)manifold B^{n+1} such that ∂B^{n+1} is diffeomorphic to the disjoint union $M^n \cup -V^n$ and $T \mid \partial B^{n+1} = T_1 \cup T_2$. The bordism equivalence class of (T, M^n) in $\mathfrak{O}_n(Z_2)$ is denoted by $\{T, M^n\}$. The bordism group $\Omega_n(Z_2)$ differs from $\mathfrak{O}_n(Z_2)$ only in that the involutions are required to be fixed point free. The bordism class of a fixed point free involution (T, M^n) in $\Omega_n(Z_2)$ is denoted by $[T, M^n]$. An element $[T, M^n]$ in $\Omega_a(Z_2)$ is in the reduced group $\tilde{\Omega}_n(Z_2)$ if $[M^n/T] = 0$ in Ω_n . Now suppose that T is an involution on a space X. Consider triples (M^n, τ, f) where τ is a fixed point free orientation reversing involution on the closed oriented manifold M^n and $f: (\tau, M^n) \to (T, X)$ is an equivariant map. Two such triples (M^n, τ_1, f_1) and (V^n, τ_2, f_2) are bordant if there is a triple (B^{n+1}, σ, F) such that σ is a fixed point free orientation reversing involution on B^{n+1} , ∂B^{n+1} is the disjoint union $M^n \cup -V^n$, $F : (\sigma, B^{n+1}) \to (T, X)$ is equivariant, $\sigma \mid \partial B^{n+1} = \tau_1 \cup \tau_2$, and $F \mid \partial B^{n+1} = f_1 \cup f_2$. We denote the resulting bordism group by $\alpha_n(T, X)$. These groups are essentially the groups $MSO_n(X, \alpha)$ defined in [2].

Received November 4, 1968.

¹ The results in this paper were contained in the author's doctoral dissertation at the University of Virginia.

If $\lambda \to X$ is a real vector bundle with group O(k), the total space of the associated sphere, disk and projective space bundles will be denoted by $S(\lambda)$, $D(\lambda)$ and $\mathbb{R}P(\lambda)$ respectively.

I wish to express my appreciation to Professor P. E. Conner for his advice and encouragement during the preparation of this paper.

II. An isomorphism on $\alpha_k(T, X)$

Let T be a fixed point free involution on a closed manifold X or a fixed point free cellular involution on a finite CW-complex X. Let $\gamma \to X/T$ be the line bundle associated to the Z_2 -bundle $X \to X/T$ and let $M(\gamma)$ be the Thom space of γ .

(2.1) THEOREM. $\mathfrak{A}_k(T, X)$ is isomorphic to the reduced bordism group $\tilde{\Omega}_{k+1}(M(\gamma))$.

Before proving (2.1) we mention two easily verified lemmas.

(2.2) LEMMA. Let M^{k+1} be an oriented (k + 1)-manifold and let K^k be a kdimensional submanifold. Then we can identify the boundary of the normal tube to K^k in M^{k+1} with the orientation double covering of K^k .

(2.3) LEMMA. Let M^n be a closed oriented manifold and let T be a fixed point free orientation reversing involution on M^n . Then the covering $(T, M^n) \to M^n/T$ is the orientation double covering of M^n/T .

Both of these lemmas follow from Lemma 2.2 in [3]. To obtain (2.3), consider the Gysin sequence of the line bundle associated to the Z_2 -bundle $M^n \to M^n/T$.

Proof of (2.1). First consider the case when X is a smooth compact nmanifold, $X = V^n$. To define $\varphi : \mathfrak{a}_k(T, V^n) \to \tilde{\mathfrak{Q}}_{k+1}(M(\gamma))$, consider an element $[M^k, \tau, f]$ in $\mathfrak{a}_k(T, V^n)$. If $\eta \to M^k/\tau$ is the line bundle associated to $M^k \to M^k/\tau$, then f induces a map of Thom spaces, $F : M(\eta) \to M(\gamma)$. Define an involution T_1 on $M^k \times S^1$ by $T_1(x, z) = (\tau(x), \bar{z})$, where \bar{z} denotes the complex conjugate of z. T_1 preserves orientation and $(M^k \times S^1)/T_1$ receives an orientation from the orientations of M^k and S^1 . Let

 $r: M^k \times S^1 \to (M^k \times S^1)/T_1$

be the decomposition map. If B is the subset of $M^k \times S^1$ consisting of all pairs (x, a + bi) with a > 0, then collapsing $(M^k \times S^1)/T_1 - r(B)$ to a point in $(M^k \times S^1)/T_1$ yields the Thom space $M(\eta)$. This now defines a mapping

$$g: (M^k \times S^1)/T_1 \to M(\eta).$$

Letting $m: (M^k \times S^1)/T_1 \to M(\gamma)$ be the composition $m = F \cdot g$, we define

$$\varphi([M^k, \tau, f]) = [(M^k \times S^1)/T_1, m] \text{ in } \Omega_{k+1}(M(\gamma)).$$

 φ is a well defined homomorphism and since T_1 can be extended to a fixed point free involution on $M^k \times D^2$, the image of φ lies in the reduced group $\tilde{\Omega}_{k+1}(M(\gamma))$.

To show φ is an epimorphism, consider an element $[M^{k+1}, m]$ in $\tilde{\Omega}_{k+1}(M(\gamma))$. We may take the restricted map $m \mid (M^{k+1} - m^{-1}(\infty))$ to be smooth. Since V^n/T is regularly embedded in $M(\gamma)$ as the zero section of γ , we may assume *m* is transverse regular on V^n/T [9, p. 22] and that $K^k = m^{-1}(V^n/T)$ is a non-empty regularly embedded *k*-dimensional submanifold of M^{k+1} . Let $(\tau, L^k) \to$ K^{k} be the orientation double covering of K^{k} . Since m is transverse regular, the differential, dm, takes the normal bundle to K^k in M^{k+1} onto the normal bundle to V^n/T in $M(\gamma)$, and we may assume m is a bundle map of the normal tube to K^k onto the normal tube to V^n/T . Thus we obtain an equivariant map m_1 : $(\tau, L^k) \to (T, V^n)$. Examine $\varphi([L^k, \tau, m_1])$. By (2.2) the line bundle associated to $(\tau, L^k) \to K^k$ is the normal tubular neighborhood of K^k in M^{k+1} . The manifolds L^k and M^{k+1} are orientable, so we can identify the normal tube to L^k in M^{k+1} with $L^k \times [-1, 1]$. We choose this tube so that it does not intersect K^k and so that $L^k \times \{-1\}$ always lies inside the normal tube to K^k . Define an involution T_2 on $L^k \times [-1, 1]$ by $T_2(x, t) = (\tau(x), t)$. Since $[M^{k+1}, m]$ is in $\tilde{\Omega}_{k+1}(M(\gamma))$, there is an oriented manifold B^{k+2} with $\partial B^{k+2} = M^{k+1}$. In B^{k+2} identify q and $T_2(q)$ for all q in $L^k \times [-1, 1]$ and let U^{k+2} be the resulting manifold. T_2 reverses orientation, so U^{k+2} is orientable. The boundary of U^{k+2} is diffeomorphic to the disjoint union of M^{k+1} and $(L^k \times S^1)/T_1$, where $T_1(x, z) = (\tau(x), \bar{z})$ as in the definition of φ . By taking the composition of m followed by an appropriate deformation of $M(\gamma)$, m is homotopic to a map, still denoted by m, which at each point x of K^k takes the fibre at x of the normal tube N of K^k in M^{k+1} "linearly" onto the fibre of γ at m(x) and which takes $M^{k+1} - N$ into the point at infinity. Similarly, if

$$\varphi([L^{\kappa}, \tau, m_{1}]) = [(L^{\kappa} \times S^{1})/T_{1}, m_{2}],$$

then $(L^k \times S^1)/T_1 \to K^k$ is the Z_2 -bundle with fibre S^1 associated to the Z_2 bundle $(\tau, L^k) \to K^k$ and above any point x in K^k , m_2 takes half of the fibre S^1 "linearly" onto the fibre of γ at m(x) and takes the other half of the fibre into the point at infinity. Using the fact that a neighborhood of M^{k+1} in B^{k+2} has the form $M^{k+1} \times [0, 1)$, an examination of the formation of U^{k+2} shows that the disjoint union map $m \cup m_2$ on

$$M^{k+1}$$
 U $((L^k \times S^1)/T_1) = \partial U^{k+2}$

can be extended to all of U^{k+2} . Thus $\varphi([L^k, \tau, m_1]) = [M^{k+1}, m]$ and φ is an epimorphism.

Now suppose $\varphi([M^k, \tau, f]) = 0$ in $\tilde{\Omega}_{k+1} M(\gamma)$, i.e., $((M^k \times S^1)/T_1, m)$ bounds some oriented pair (B^{k+2}, \tilde{m}) . By the construction of m, it is transverse regular on V^n/T and $m^{-1}(V^n/T) = M^k/\tau$, considering M^k/τ as the image of $M^k \times \{1\}$ under the decomposition

$$M^k \times S^1 \to (M^k \times S^1)/T_1.$$

Again, we may assume the restriction $\widetilde{m} \mid (B^{k+2} - \widetilde{m}^{-1}(\infty))$ is smooth and \widetilde{m} is transverse regular on V^n/T without changing the values of $\widetilde{m} = m$ on M^k/τ .

Now let $K^{k+1} = \widetilde{m}^{-1}(V^n/T)$ and let $(\sigma, L^{k+1}) \to K^{k+1}$ be the orientation double covering. Then $M^k/\tau = \partial K^{k+1}$, so by Lemma (2.3), $M^k = \partial L^{k+1}$ and $\sigma \mid M^k = \tau$. As before, there is an equivariant map $g : (\sigma, L^{k+1}) \to (T, V^n)$ with $g \mid M^k = f$. Thus $[M^k, \tau, f] = 0$ in $\mathfrak{a}_k(T, V^n)$ and φ is a monomorphism.

I'd like to thank Robert Stong for showing me the following method of reducing the case when X is a finite complex to the case where $X = V^n$ is a smooth manifold. Let T be a fixed point free cellular involution on a finite complex X. Embed X/T in some \mathbb{R}^n and let $p : N \to X/T$ be a regular neighborhood of X/T. Then N is a smooth manifold having the homotopy type of X/T. p induces a principal Z_2 -bundle $(T', X') \to N$ and X' has the homotopy type of X [8, Cor. 7.10]. Then we have a sequence of isomorphisms

$$\mathfrak{a}_k(T,X)pprox \mathfrak{a}_k(T',X')pprox ilde{\Omega}_{k+1}(M(\gamma'))pprox ilde{\Omega}_{k+1}(M(\gamma)).$$

This completes the proof of (2.1).

Now suppose that T is any involution on a finite complex X. Set

 $\tau = A \times T : S^n \times X \to S^n \times X,$

where (A, S^n) denotes the antipodal map on the unit sphere in \mathbb{R}^{n+1} .

(2.4) THEOREM. $\alpha_k(\tau, S^N \times X)$ is isomorphic to $\alpha_k(T, X)$ for k < N.

Proof. Given $[M^k, \sigma, f]$ in $\mathfrak{A}_k(T, X)$, for k < N there is an equivariant map $e : (\sigma, M^k) \to (A, S^N)$ and e is unique up to equivariant homotopy. Define

$$\varphi([M^k, \sigma, f]) = [M^k, \sigma, e \times f]$$

If $[M^k, \sigma, g]$ is in $\mathfrak{A}_k(\tau, S^N \times X)$, express g as $e \times f$ and define

$$\psi([M^k, \sigma, g]) = [M^k, \sigma, f].$$

It is clear that

 $\varphi : \mathfrak{a}_k(T, X) \to \mathfrak{a}_k(\tau, S^N \times X) \text{ and } \psi : \mathfrak{a}_k(\tau, S^N \times X) \to \mathfrak{a}_k(T, X)$ are well-defined inverse homomorphisms.

III. The structure of $\mathfrak{O}_*(Z_2)$

Let $s : \Omega_n(Z_2) \to \mathfrak{O}_n(Z_2)$ be the homomorphism given by $s([T, M^n]) = \{T, M^n\}$.

(3.1) THEOREM. The kernel of s consists of all the torsion of $\Omega_n(\mathbb{Z}_2)$.

Proof. The sequence

$$0 \to \tilde{\Omega}_n(Z_2) \xrightarrow{\subset} \Omega_n(Z_2) \xrightarrow{\varepsilon}_{\xleftarrow{} \to \to} \Omega_n \to 0$$

is a split short exact sequence, where

 $\varepsilon([T, M^n]) = [M^n/T]$ and $\alpha([V^n]) = [A', V^n \times Z_2],$

A' being the map switching copies of V^n , A'(x, i) = (x, 1 - i). Thus $\Omega_n(\mathbb{Z}_2)$

is isomorphic to $\Omega_n \oplus \tilde{\Omega}_n(Z_2)$. Burdick [6, p. 51] showed that $\tilde{\Omega}_n(Z_2)$ is isomorphic to \mathfrak{N}_{n-1} and thus consists entirely of 2-torsion. Now the torsion subgroup of $\Omega_n(Z_2)$ consists entirely of 2-torsion and can be written as

Tor
$$(Z_2, \Omega_n) \oplus \tilde{\Omega}_n(Z_2)$$

where Tor (Z_2, Ω_n) is the 2-torsion of the group Ω_n . To show that s takes $\tilde{\Omega}_n(Z_2)$ into 0, we examine Burdick's isomorphism

$$\varphi:\mathfrak{N}_{n-1}\to\tilde{\Omega}_n(Z_2).$$

He defines $\varphi([V^{n-1}]_2) = [T, (E^{n-1} \times S^1)/T_1]$, where $(\tau, E^{n-1}) \to V^{n-1}$ is the orientation double covering, $T_1(x, z) = (\tau(x), \bar{z})$ and T is induced on $(E^{n-1} \times S^1)/T_1$ by the involution T(x, z) = (x, -z) on $E^{n-1} \times S^1$. By extending T and T_1 to $E^{n-1} \times D^2$, we see that $(T, (E^{n-1} \times S^1)/T_1)$ bounds $(T, (E^{n-1} \times D^2)/T_1)$ so $s(\tilde{\Omega}_n(Z_2)) = 0$.

In [1], Anderson showed that every element of Tor (\mathbb{Z}_2, Ω_n) may be represented as a sum of classes of manifolds of the form

$$V^{n} = \mathbf{R}P(\lambda \oplus \theta^{2k+1}(M)),$$

where $\lambda \to M$ is the line bundle with $w_1(\lambda) = w_1(M)$ and $\theta^{2k+1}(M) \to M$ is the trivial (2k + 1)-bundle. On $S(\lambda \oplus \theta^{2k+1}(M))$ there is an orientation reversing involution $T = (-1) \oplus$ (identity). T commutes with the bundle involution [7, p. 60] A on $S(\lambda \oplus \theta^{2k+1}(M))$, so it induces an orientation reversing map, T', on V^n , though T' is not fixed point free. Now there is the fixed point free orientation reversing involution \tilde{T} on $V^n \times Z_2$ given by $\tilde{T}(x, i) = (T'(x), 1-i)$. \tilde{T} commutes with A', so $\{A', V^n \times Z_2\} = 0$ in $\mathfrak{O}_n(Z_2)$.

Suppose $[T, M^n]$ is in the kernel of s. We have

$$[T, M^n] = [A', V^n \times Z_2] + [\tilde{T}, \tilde{M}^n]$$

where $[\tilde{T}, \tilde{M}^n]$ is in $\tilde{\Omega}_n(Z_2)$ and $[V^n]$ is in Ω_n . Since

$$s([\tilde{T}, \tilde{M}^n]) = 0, \quad s([A', V^n \times Z_2]) = 0$$

and $V^n \times Z_2$ bounds some oriented B^{n+1} , so $2[V^n] = 0$. Thus

$$2[A', V^n \times Z_2] = \alpha(2[V^n]) = 0$$
 and $2[T, M^n] = 0$,

completing the proof of (3.1).

(3.2) COROLLARY. If $[M^n] = 0$ in Ω_n and T is a fixed point free orientation preserving involution on M^n , then $\{T, M^n\} = 0$ in $\mathcal{O}_n(\mathbb{Z}_2)$.

Proof. Under the isomorphism between $\Omega_n(Z_2)$ and $\Omega_n \oplus \tilde{\Omega}_n(Z_2)$, $[T, M^n]$ corresponds to $([M^n/T], [\tilde{T}, \tilde{M}^n])$ for some $[\tilde{T}, \tilde{M}^n]$ in $\tilde{\Omega}_n(Z_2)$. Since $2([M^n/T]) = [M^n] = 0$ in Ω_n , then $s([A', Z_2 \times (M^n/T)]) = 0$ and thus $s([T, M^n]) = 0$, i.e., $\{T, M^n\} = 0$ in $\mathcal{O}_n(Z_2)$.

Now consider the orientation double covering

$$(\tau, BSO(n)) \rightarrow BO(n)$$

and let

$$\alpha_n = \sum_{k=0}^{[n/2]} \alpha_{n-2k}(\tau, BSO(2k))$$

We define a homomorphism $\alpha : \mathfrak{O}_n(\mathbb{Z}_2) \to \mathfrak{A}_n$ as follows. First define

$$\alpha(\{\text{identity}, M^n\}) = [\tilde{M}^n, \sigma, f]$$

where $(\sigma, \tilde{M}^n) \to M^n$ is the orientation double covering of M^n and

 $f: (\sigma, \tilde{M}^n) \rightarrow (\tau, BSO(0))$

is the obvious equivariant map, with $BSO(0) = \{\text{point}\} \times S^0$. Now look at an arbitrary $\{T, M^n\}$ in $\mathcal{O}_n(\mathbb{Z}_2)$. If F^m is the *m*-dimensional part of the fixed point set of T, then n - m is even [5, p. 79] and F^m is a regularly embedded submanifold of M^n . For k > 0, let $\eta_{2k} \to F^{n-2k}$ denote the normal bundle to F^{n-2k} in M^n . The bundle η_{2k} has a classifying map

$$\overline{f}_{2k}: F^{n-2k} \to BO(2k),$$

which induces a principal Z_2 -bundle $(\tau_{2k}, V^{n-2k}) \to F^{n-2k}$ from the covering $(\tau, BSO(2k)) \to BO(2k)$ and hence an equivariant map

$$f_{2k} : (\tau_{2k}, V^{n-2k}) \to (\tau, BSO(2k)).$$

Since $\bar{f}_{2k}^{*}(w_{1}(BO(2k))) = w_{1}(\eta_{2k}) = w_{1}(F^{n-2k}),$
 $(\tau_{2k}, V^{n-2k}) \to F^{n-2k}$

is the orientation double covering of F^{n-2k} and V^{n-2k} is canonically oriented. Define

$$\alpha(\{T, M^n\}) = \sum_{k=0}^{\lfloor n/2 \rfloor} [V^{n-2k}, \tau_{2k}, f_{2k}],$$

where the case k = 0 is handled as in α ({identity, M}).

Henceforth, $\xi \to BO(k)$ will denote the universal k-plane bundle and A will denote the bundle involution on the indicated sphere or disk bundle. For $n \ge 1$, we define a homomorphism

 ∂ : $\alpha_n \to \Omega_{n-1}(Z_2)$

to be the sum of the homomorphisms

$$\partial$$
 : $\alpha_{n-2k}(\tau, BSO(2k)) \rightarrow \Omega_{n-1}(Z_2)$

given, for k > 0, by

$$\partial \left([V^{n-2k}, \, au_{2k} \, , \, f_{2k}]
ight) \, = \, [A \, , \, S \, (ar{f}^*_{2k} \, \, \xi)].$$

Here A is the bundle involution on the sphere bundle associated to the induced bundle $\tilde{f}_{2k}^* \xi$, where

$$\tilde{f}_{2k}$$
: $V^{n-2k}/\tau_{2k} \rightarrow BO(2k)$

is induced from the equivariant map

 f_{2k} : $(\tau_{2k}, V^{n-2k}) \to (\tau, BSO(2k)).$

Because $w_1(\bar{f}_{2k}^* \xi) = w_1(F^{n-2k})$, $S(\bar{f}_{2k}^* \xi)$ and $D(\bar{f}_{2k}^* \xi)$ are orientable. Since

 $(A, S(\overline{f}_{2k}^*\xi))$ bounds $(A, D(\overline{f}_{2k}^*\xi)), s([A, S(\overline{f}_{2k}^*\xi)]) = 0$ in $\mathcal{O}_{n-1}(Z_2)$. By (3.1), $2[A, S(\overline{f}_{2k}^*\xi)] = 0$ in $\Omega_{n-1}(Z_2)$, so it is not necessary to choose an orientation for $S(\overline{f}_{2k}^*\xi)$.

(3.3) THEOREM. For $n \ge 0$, there is an exact sequence

$$\cdots \rightarrow \mathfrak{A}_{n+1} \xrightarrow{\partial} \mathfrak{Q}_n(Z_2) \xrightarrow{s} \mathfrak{O}_n(Z_2) \xrightarrow{\alpha} \mathfrak{A}_n \xrightarrow{\partial} \cdots$$

Proof. It is clear that $\partial = \partial \cdot \alpha = \alpha \cdot s = 0$. Suppose that $s([T, M^n]) = 0$, i.e., (T, M^n) bounds some (T', B^{n+1}) . As usual, let F^{n+1-2k} be the (n + 1 - 2k)-dimensional part of the fixed point set of $T', \eta_{2k} \to F^{n+1-2k}$ its normal bundle, and

$$\overline{f}_{2k}: \mathbf{F}^{n+1-2k} \to BO(2k)$$

the classifying map. By removing the interiors of the normal tubular neighborhoods of the F^{n+1-2k} , we see that

$$[T, M^{n}] = \sum_{k=0}^{[(n+1)/2]} [A, S(\eta_{2k})].$$

Each map \bar{f}_{2k} induces an equivariant map

$$f_{2k}: (\tau_{2k}, V^{n+1-2k}) \to (\tau, BSO(2k)).$$

Then

$$\partial\left(\sum_{k=0}^{\left[(n+1)/2\right]} [V^{n+1-2k}, \tau_{2k}, f_{2k}]\right) = \sum_{k=0}^{\left[(n+1)/2\right]} [A, S(\eta_{2k})]$$

and hence kernel $(s) = \text{image } (\partial)$.

If $\sum_{k=0}^{[n/2]} [V^{n-2k}, \tau_{2k}, f_{2k}]$ is in kernel (∂), then

 $\bigcup_{k=0}^{[n/2)} (A, S(\bar{f}_{2k}^*\xi))$

bounds some (T, M^n) with T fixed point free orientation preserving. Also, each $(A, S(f_{2k}^{**}\xi))$ bounds $(A, D(f_{2k}^{**}\xi))$, where the fixed point set of A on the disk bundle is V^{n-2k}/τ_{2k} . Let B^n be the union of M^n with the union $\bigcup_{k=0}^{\lfloor n/2 \rfloor} D(f_{2k}^{**}\xi)$ with their boundaries identified. There is an orientation preserving involution T' on the closed manifold B^n given by T' = T on M^n and T' = A on the union of the $D(f_{2k}^{**}\xi)$. The fixed point set of T' is the union of the V^{n-2k}/τ_{2k} and the normal bundle to V^{n-2k}/τ_{2k} in B^n is

$$\bar{f}_{2k}^* \xi \longrightarrow V^{n-2k}/\tau_{2k}$$
.

Thus

$$\alpha(\{T', B^n\}) = \sum_{k=0}^{\lfloor n/2 \rfloor} (V^{n-2k}, \tau_{2k}, f_{2k}].$$

Finally, suppose that $\alpha(\{T, M^n\}) = \sum_{k=0}^{\lfloor n/2 \rfloor} (V^{n-2k}, \tau_{2k}, f_{2k}] = 0$ in \mathfrak{a}_n . Fix a Riemannian metric on M^n for which T is an isometry. For each k for which F^{n-2k} is non-empty there is a triple

$$(B^{n-2k+1}, \sigma_{2k}, g_{2k})$$

with boundary $(V^{n-2k}, \tau_{2k}, f_{2k})$, i.e., $\partial B^{n-2k+1} = V^{n-2k}$, $(\sigma_{2k}, B^{n-2k+1})$ is an orientation reversing involution,

$$g_{2k}: (\sigma_{2k}, B^{n-2k+1}) \rightarrow (\tau, BSO(2k))$$

is equivariant, and σ_{2k} and g_{2k} extend τ_{2k} and f_{2k} respectively. We then have the map of quotient spaces

$$ar{g}_{2k}:B^{n-2k+1}/\sigma_{2k} o BO\left(2k
ight)$$

and the induced bundle

$$ar{g}^{m{*}}_{2k} \, \xi \longrightarrow B^{n-2k+1}/\sigma_{2k}$$
 .

If $\eta_{2k} \to F^{n-2k}$ is the normal bundle to F^{n-2k} in M^n , then

$$S(\overline{g}_{2k}^*\xi) \cup D(\eta_{2k}) = \partial(D(\overline{g}_{2k}^*\xi)) \text{ and } S(\overline{g}_{2k}^*\xi) \cap D(\eta_{2k}) = S(\eta_{2k}).$$

Let U^{n+1} be the union of $M^n \times [0, 1]$ with the union $\bigcup_{k=0}^{\lfloor n/2 \rfloor} D(\bar{g}_{2k}^* \xi)$, identifying the two copies of $D(\eta_{2k})$ that lie in $M^n \times 1$ and in $D(\bar{g}_{2k}^* \xi)$. The boundary of U^{n+1} is split into two parts: one consists of $M^n \times 0$, the other of $M^n \times 1$, but with $S(\bar{g}_{2k}^* \xi)$ replacing $D(\eta_{2k})$, the normal tubular neighborhood of the (n-2k)-dimensional part of the fixed point set. Define an involution T'on U^{n+1} by T'(x,t) = (T(x),t) on $M^n \times I$ and T' is the bundle involution on each $D(\bar{g}_{2k}^* \xi)$. Since T was an isometry T' is well defined on U^{n+1} . T' = Ton $M^n = M^n \times 0$ and is fixed point free on the rest of the boundary of U^{n+1} . Thus $\{T, M^n\}$ is in the image of s and the proof of (3.3) is completed.

(3.4) THEOREM. All torsion of $\mathcal{O}_*(\mathbb{Z}_2)$ has order 2.

Proof. Let $\gamma_{2k} \to BO(2k)$ be the line bundle associated with the double covering $(\tau, BSO(2k)) \to BO(2k)$. By (2.1),

$$\alpha_{n-2k}(\tau, BSO(2k))$$

is isomorphic to

 $\tilde{\Omega}_{n-2k+1}(M(\gamma_{2k})),$

which is in turn isomorphis to

$$\Omega_{n-2k+1}(D(\gamma_{2k}), S(\gamma_{2k})).$$

By Theorem (15.2) in [7] we know that if (X, A) is a CW-pair such that each $H_m(X, A; Z)$ is finitely generated and has no odd torsion, then $\Omega_m(X, A)$ is isomorphic to $\sum_{p+q=m} H_p(X, A; \Omega_q)$. All homology and cohomology will now have coefficients in Z, the integers, unless indicated otherwise. The free parts of $H_m(D(\gamma_{2k}), S(\gamma_{2k}))$ and of $H^m(D(\gamma_{2k}), S(\gamma_{2k}))$ are isomorphic, as are the torsion subgroups of

$$H_m(D(\gamma_{2k}), S(\gamma_{2k}))$$
 and $H^{m+1}(D(\gamma_{2k}), S(\gamma_{2k})).$

Since BO(2k) is a deformation retract of $D(\gamma_{2k})$ and $S(\gamma_{2k}) = BSO(2k)$, the exact cohomology triangle of the pair $(D(\gamma_{2k}), S(\gamma_{2k}))$ becomes

By computations of the cohomology rings of BO(k) and BSO(k) given in [4] and [11], this exact triangle becomes

$$H^{*}(BO(2k), BSO(2k)) \xrightarrow{i^{*}} Z[p_{1}, \cdots, p_{k}] + 2\text{-torsion}$$

$$\delta$$

$$Z[p_{1}, \cdots, p_{k-1}, X_{2k}] + 2\text{-torsion}$$

where p_m in $H^{4m}(BO(2k))$ is a universal Pontrjagin class, $\tilde{p}_m = j^*(p_m)$ for $1 \leq m \leq k - 1$, X_{2k} in $H^{2k}(BSO(2k))$ is the Euler class, $j^*(p_k) = X_{2k}^2$, and j^* maps the 2-torsion of $H^*(BO(2k))$ onto the 2-torsion of $H^*(BSO(2k))$. Thus $H^*(BO(2k), BSO(2k))$ has no odd torsion or torsion of order 4 and hence neither do the α_n . The assertion then follows from Theorems (3.1) and (3.3).

We now consider the free part of $\mathcal{O}_*(\mathbb{Z}_2)$. Since the image of

 $\partial: \mathfrak{A}_n \to \mathfrak{Q}_{n-1}(\mathbb{Z}_2)$

consists of torsion elements, for Q the rationals,

 $\partial \otimes 1 : \alpha_n \otimes Q \to \Omega_{n-1}(Z_2) \otimes Q$

is the zero homomorphism. We then have a split short exact sequence

$$0 \to \Omega_n(Z_2) \, \otimes \, Q \xrightarrow{s \otimes 1} \mathfrak{O}_n(Z_2) \, \otimes \, Q \xrightarrow{\alpha \otimes 1} \mathfrak{a}_n \, \otimes \, Q \to 0$$

and a sequence of isomorphisms

$$\mathfrak{O}_n(Z_2) \,\otimes\, Q \approx\, (\mathfrak{Q}_n(Z_2) \,\otimes\, Q) \,\oplus\, (\mathfrak{A}_n \,\otimes\, Q) \approx\, (\mathfrak{Q}_n \,\otimes\, Q) \,\oplus\, (A_n \,\otimes\, Q).$$

Since $\Omega_* \otimes Q$ is known to be $Q[CP(2), CP(4), \cdots]$ [10], to determine the free part of $\mathcal{O}_n(X_2)$, we need only consider that of \mathfrak{C}_n . We have the isomorphism

(#)
$$\mathfrak{a}_{n-2k}(\tau, BSO(2k)) \otimes Q \approx \sum_{p+q=n-2k+1} H_p(BO(2k), BSO(2k); \mathfrak{Q}_q) \otimes Q.$$

The bordism group Ω_q is isomorphic to a sum $Z \oplus \cdots \oplus Z \oplus Z_2 \oplus \cdots \oplus Z_2$, so the free part of α_n can be computed from the exact triangle

The free part of $\mathcal{O}_*(\mathbb{Z}_2)$ is now easy to compute. In particular we have

(3.5) THEOREM. If n is not a multiple of 4, then $\mathcal{O}_n(\mathbb{Z}_2) \otimes \mathbb{Q} = 0$.

Proof. We need only show the statement is true for $\alpha_n \otimes Q$. First suppose *n* is odd. A now-zero case can occur in (#) only if q = 4m, in which case

p is even. Then $H^{p-1}(BSO(2k); Q) = 0$ and

$$j^*: H^p(BO(2k); Q) \rightarrow H^p(BSO(2k); Q)$$

is a monomorphism, so $H^{p}(BO(2k), BSO(2k); Q) = 0$. It then follows that $\mathcal{O}_{n}(\mathbb{Z}_{2}) \otimes Q = 0$.

For *n* even, in (#) we must still have q = 4m, so now *p* is odd. Thus $H^{p}(BO(2k); Q) = 0$ and we have the exact sequence

$$H^{p-1}(BO(2k); Q) \xrightarrow{j^*} H^{p-1}(BSO(2k); Q) \xrightarrow{\delta} H^p(BO(2k),$$
$$BSO(2k); Q)) \to 0.$$

The homomorphism j^* can fail to be onto only if p-1 is an odd multiple of 2k, the dimension of the Euler class, plus 4i, so let

$$p - 1 = 4ak + 2k + 4i$$
.

Then n = p + q + 2k - 1 = 4(ak + m + k + i).

BIBLIOGRAPHY

- P. ANDERSON, Cobordism classes of squares of orientable manifolds, Ann. of Math., vol. 83 (1966), pp. 47-53.
- M. F. ATIYAH, Bordism and cobordism, Proc. Cambridge Philos. Soc., vol. 57 (1961), pp. 200-208.
- 3. , Thom complexes, Proc. London Math. Soc., vol. 11 (1961), pp. 291-310.
- A. BOREL AND F. HIRZEBRUCH, On characteristic classes and homogeneous spaces; II, Amer. J. Math., vol. 81 (1959), pp. 317-382.
- 5. A. BOREL, F. HIRZEBRUCH, et al., Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton, 1960.
- 6. R. O. BURDICK, Manifolds fibered over the circle, dissertation, University of Virginia, 1966.
- 7. P. E. CONNER AND E. E. FLOYD, Differentiable periodic maps, Erg. Mat., vol. 33, Springer, 1964.
- 8. A. DOLD, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
- 9. J. MILNOR, Differential topology, mimeographed notes, Princeton Univ., 1958.
- R. THOM, Quelques propriétés globales des variétés différentiables, Comm. Math. Helv., vol. 28 (1954), pp. 17-86.
- 11. E. THOMAS, On the cohomology of the real Grassman complexes and the characteristic classes of n-plane bundles, Trans. Amer. Math. Soc., vol. 96 (1960), pp. 67-89.

HAVERFORD COLLEGE

HAVERFORD, PENNSYLVANIA

WESTERN MARYLAND COLLEGE

WESTMINISTER, MARYLAND