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I. Introduction and notation

In [7], Conner and Floyd computed the bordism groups of all involutions on
closed manifolds. The purpose of this paper is to examine the bordism groups
0" (Z) of all orientation preserving involutions on closed oriented manifolds.

In section II we give a relation between certain bordism groups of an involu-
tion defined by Atiyah in [2] and the bordism groups of a space. In III we
first examine the forgetful homomorphism s ft (Z) -- 0 (Z), where ft (Z.)
is the bordism group of fixed point free orientation preserving involutions. It
is shown that the kernel of s is exactly all of the torsion of n (Z). This result
and that o1 section II enables us to show that all torsion of 0n (Z) has order 2
and that a free part occurs only in dimension n 4k. From the computation
of the kernel of s, it also follows that if M bords orientably and T is a fixed
point free orientation preserving involution onMs, thenM" bounds some orien-
table Bn+l to which T can be extended, though (T, B+1) may not be fixed point
free.

All manifolds will be smooth and compact. The bordism groups ft, ,
f (X) and (X) are defined in [7]. An element in 0 (Z) is represented by a
pair (T, Mn), where M" is a closed oriented n-manifold and T is a smooth
orientation preserving involution on M". Two such pairs (T1, M) and
(T., V") are bordant if there is an involution T on a compact oriented (n -k 1 )-
manifold Bn+l such that OB’+ is diffeomorphic to the disjoint union M u V
and T OB’+ T u T. The bordism equivalence class of (T, M") in
0 (Z) is denoted by T, M}. The bordism group f, (Zo) differs from 0 (Zo)
only in that the involutions are required to be fixed point free. The bordism
class of a fixed point free involution (T, M") in ft (Z.) is denoted by [T, M].
An element IT, M"] in ft (Z) is in the reduced group (Z) if [M"/T] 0 in
ft. Now suppose that T is an involution on a space X. Consider triples
(M", r, f) where r is a fixed point free orientation reversing involution on the
closed oriented manifold M and f (r, M -+ (T, X) is an equivariant map.
Two such triples (M", r, f) and (V, r, f) are bordant if there is a triple
(B+1, z, F) such that z. is a fixed point free orientation reversing involution on
B"+, OB"+ is the disjoint union M" u -V", F (. B"+) --* (T, X) is equi-
variant, z OB"+ r u r, and F OB"+ fl f. We denote the resulting
bordism group by a,,(T, X). These groups are essentially the groups
MSO,, (X, a) defined in [2].
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If ), -- X is a real vector bundle with group 0 (]), the total space of the as-
sociated sphere, disk and projective space bundles will be denoted by S (),
D (k) and RP () respectively.

I wish to express my appreciation to Professor P. E. Conner for his advice
and encouragement during the preparation of this paper.

II. An isomorphism on a(T, X)
Let T be a fixed point free involution on a closed manifold X or a fixed point

free cellular involution on a finite CW-complex X. Let , -- X/T be the line
bundle associated to the Z2-bundle X -- X/T and let M (,) be the Thorn space
of .

(2.1) THEOREM. a(T, X) is isomorphic to the reduced bordism group
(k+l (M (’ ).

Before proving (2.1) we mention two easily verified lemmas.

(2.2) LEMMA. Let M+1 be an oriented (t + 1)-manifold and let K be a k-
dimensional submanifold. Then we can identify the boundary of the normal tube
to K in M+ with the orientation double covering of K.

(2.3) LEMMA. Let M be a closed oriented manifold and let T be a fixed point
free orientation reversing involution on Mn. Then the covering T, M) M"/T
is the orientation double covering of M"/T.
Both of these lemmas follow from Lemma 2.2 in [3]. To obtain (2.3), con-

sider the Gysin sequence of the line bundle associated to the Z2-bundle
M ---+M"/T.

Proof of (2.1). First consider the case when X is a smooth compact n-
manifold, X Vn. To define ( (T, V") --+ k+l (M (,) ), consider an ele-
ment [M, r, f] in ( (T, V"). If 7 -- M/r is the line bundle associated to
M ---. M/r, then f induces a map of Thorn spaces, F M (7) - M (,). De-
fine an involution T1 on M X S by T (x, z) (r (x), ), where denotes the
complex coniugate of z. T preserves orientation and (M X S’)/T receives
an orientation from the orientations of M and S’. Let

r" M X S’-- (M X S )/TI

be the decomposition map. If B is the subset of M X S consisting of all
pairs (x, a + bi) with a > 0, then collapsing (M X S’)/TI r (B) to a point
in (M X S)/T’ yields the Thorn space M (7). This now defines a mapping

g (M X S)/T --+ M (7).

Letting m (M S)/T M (’) be the composition m F g, we define

e ([M, r, f] (M S )/T, m] in t+l (M ()).

e is a well defined homomorphism and since T can be extended to a fixed point
free involution onM D, the image of lies in the reduced group+(M() ).
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To show is an epimorphism, consider an element [M+1, m] in +1(M (,) ).
We may take the restricted map m M+I m- )) to be smooth. Since
Vn/T is regularly embedded in M () as the zero section of % we may assume
m is transverse regular on V’/T [9, p. 22] and that Kk m-1 (V’/T) is a non-
empty regularly embedded/c-dimensional submanifold ofMk+l. Let (r, L) --K be the orientation double covering of K. Since m is transverse regular,
the differential, din, takes the normal bundle to K in M+ onto the normal
bundle to Vn/T in M (,), and we may assume m is a bundle map of the normal
tube to K onto the normal tube to V’/T. Thus we obtain an equivariant
map ml (r, L) -+ (T, V). Examine ([L, r, m]). By (2.2) the line
bundle associated to (r, Lk) K is the normal tubular neighborhood of K in
M+. The manifolds L and M+ are orientable, so we can identify the
normal tube to L in M+ with L X [- 1, 1]. We choose this tube so that it
does not intersect Kk and so that L 1} always lies inside the normal tube
to K. Define an involution T on L [-1, 1] by T2(x, t) (r(x), t).
Since [M+, m] is in k+ (M (/)), there is an oriented manifold B+2 with
OB+ M+. In Bk+ identify q and T (q) for all q in L [- 1, 1] and let
U/ be the resulting manifold. T reverses orientation, so U+ is orientable.
The boundary of U+ is diffeomorphic to the disioint union of M+ and
(L S)/T, where T (x, z) (r (x), ) as in the definition of . By taking
the composition of m followed by an appropriate deformation of M (,), m is
homotopic to map, still denoted by m, which at each point x of K tkes the
fibre at x of the normal tube N of Kk in M+ "linearly" onto the fibre of at
m (x) and which takes M+ N into the point at infinity. Similarly, if

([L, r, ml]) (L X S)/T, m],

then (L X SI)/T K is the Z-bundle with fibre S associated to the Z-
bundle (r, L) -- K and above any point x in K, m takes half of the fibre S
"linearly" onto the fibre of "r at m (x) and takes the other half of the fibre into
the point at infinity. Using the fact that a neighborhood of Mk+ in B+ has
the form M+ X [0, 1), an examination of the formation of U+ shows that
the disjoint union map m u m on

M+1
t (L X S)/T) 0Uk+

can be extended to all of U+. Thus ([L, r, m] [M+, m] and is an
epimorphism.
Now suppose ([M, r, f]) 0 in k+ M (’), i.e., ((M S1)/T, m)

bounds some oriented pair (B+, ). By the construction of m, it is trans-
verse regular on V’/T and m- (V/T) Mk/r, considering M/r as the image
of M X {1} under the decomposition

M X S--- (M S)/T.
Again, we may assume the restriction N B+ N-1 ( is smooth and N is
transverse regular on V’/T without changing the values of N m on M/r.
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Now let K+1 h-1 (Vn/T) and let (, L+) --K+ be the orientation double
covering. ThenM/T 0K+,sobyLemma (2.3),M 0L+anda M T.

As before, there is an equivariant map g (a. L+1) -- (T, Vn) with g M f.
Thus [M, , f] 0 in ak (T, Vn) and q is a monomorphism.

I’d like to thank Robert Stong for showing me the following method of re-
ducing the case when X is a finite complex to the case where X V is a
smooth manifold. Let T be a fixed point free cellular involution on a finite
complex X. Embed X/T in some R and let p N -- X/T be a regular
neighborhood of X/T. Then N is a smooth manifold having the homotopy
type of X/T. p induces a principal Z-bundle (T’, X’) -- N and X has the
homotopy type of X [8, Cor. 7.10]. Then we have a sequence of isomorphisms

a(T, X) a(T’, X’) 5+(M(’)) +(M()).
This completes the proof of (2.1).
Now suppose that T is any involution on a finite complex X. Set- A T S X--S X X,

where (A, S) denotes the antipodal map on the unit sphere in 1n+.
(2.4) TOaE. ak (r, S X X) is isomorphic to a (T, X) for k < N.

Proof. Given [M, , f] in a (T, X), for k < N there is an equivariant map
e (, M) -- (A, S) and e is unique up to equivariant homotopy. Define

([M, a, f] [M, a, e X f].

If [M, a, g] is in a (r, S X X), express g as e X f and define

k ([M, a, g]) [M, a, f].
It is clear that

q a,(T, X) a,(r, SXX) and : a,(r, S X X) a(T, X)

are well-defined inverse homomorphisms.

III. The structure of , (Z.)
Let s 2 (Z) - 0n (Z.) be the homomorphism given by s ([T, Ms])

{T,M’}.

(3.1) THEOREM. The kernel of s consists of all the torsion of f, (Z).

Proof. The sequence

o - (z) (z) e - o

is a split short exact sequence, where

e([T, M’]) [M’/T] and a([V’]) [A’, V X Z.],

A’ being the map switching copies of V, A’ (x, i) (x, 1 i). Thus 2. (Z:)
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is isomorphic to 2 @ fi, (Z2). Burdick [6, p. 51] showed that (. (Z) is iso-
morphic to ,.-1 and thus consists entirely of 2-torsion. Now the torsion sub-
group of 12n (Z) consists entirely of 2-torsion and can be written as

Tor (Z2, 2n) @ (Z),

where Tor (Z, 2,) is the 2-torsion of the group. (Z) into 0, we examine Burdick’s isomorphism
To show that s takes

0 )n--1 "-’-> n (Z2).

He defines o ([Vn-1]) [T, (E-1 X SI)/T], where (r, E-1) -". V- is the
orientation double covering, T1 (x, z) (r (X), ) and T is induced on
(E"-1 X S1)/T1 by the involution T (x, z) (x, -z) on E- X S. By ex-
tending T and T1 to E-1 X D, we see that (T, (E"- X S1)/T1) bounds
(T, (E-1 X D)/T1) so s( (Z2)) 0.
In [1], Anderson showed that every element of Tor (Z, ) msy be repre-

sented as a sum of classes of manifolds of the form

V RP (, @ 0=*+ (M)),

where X M is the line bundle with wl (X) wl (M) and 02+1 (M) --. M is the
trivial (21c W 1 )-bundle. On S (X @ O2+1 (M)) there is an orientation revers-
ing involution T (- 1 @ (identity). T commutes with the bundle involu-
tion [7, p. 60] A on S (X @ **+ (M)), so it induces an orientation reversing
map, T’, on V, though T’ is not fixed point free. Now there is the fixed point
free orientation reversing involution/P on V" Z given by (x, i) (T’ (x),
1 i). commutes with A’, so {A’, V X Z2} 0 in O,.(Z).
Suppose [T, M] is in the kernel of s. We have

[T, M"] [A’, V X Z] + [, ’]
where [, 2r"] is in ft, (Z) and [V"] is in 2,. Since

s ([7,/r"]) 0, s ([At, V" X Z]) 0

and V" Z bounds some oriented B"+, so 2[V"] 0. Thus

2[A’,V" X Z.] a(2[V"]) 0 and 2[T,M"] 0,

completing the proof of (3.1).

(3.2) COaOLV. If [M"] 0 in ,, and T is a fixed point free orientation
preserving involution on M’*, then T, M"} 0 in 0,, (Z).

Proof. Under the isomorphism between ft. (Z) and 2 @ . (Z), IT, M"]
corresponds to ([M’*/T], [, 21"]) for some [P, 21’] in .(Z.). Since
2(IMP [M] 0 in t., then s ([A’, Z X (M’/T)]) 0 and thus
s (IT, M"]) 0, i.e., {T, M} 0 in O. (Z).
Now consider the orientation double covering

(r, BSO (n -- BO (n
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nd let
an z__,k=O an--2k (T, BSO (2k)).

We define homomorphism a V (Z) a. as follows. First define

a ({ identity, M’}) [’, , f]

where (, ’) -, M" is the orientation double covering of M" and

f" (, " (r, BSO (0))

is the obvious equivariant map, with BSO (0) {point} X S. Now look at
an arbitrary {T, M} in 0 (Z). If F is the m-dimensional part of the fixed
point set of T, then n m is even [5, p. 79] and F is a regularly embedded
submanifold of M. For k > 0, let F-* denote the normal bundle to
F- in M. The bundle w has a classifying map

] F"- BO (2k),

which induces principal Z-bundle (r, V"-) F"- from the covering
(r, BSO (2)) BO (2k) and hence an equivariant map

f (r V"-) (r, BSO (2k)).

Since f (w (BO (2k)) w() w(F"-*),
(r, V"-*) F

is the orientation double covering of F"-* and V"-* is canonically oriented-
Define

=0 r, f],

where the ease k 0 is handled as in a ({identity, M} ).
Henceforth, BO (k) will denote the universal k-plane bundle and A will

denote the bundle involution on the indicated sphere or disk bundle. For
n 1, we define a homomohism

0 a, ._z (Z)
to be the sum of the homomohisms

0 a,_ (, BZO ()) ,_(Z)

given, for > 0, by
0 (iv [A,

Here A is the bundle involution on the sphere bundle associated to the induced
bundle ] , where

vrn--2k//rBO(2k)

is induced from the equivafiant map

( V-) (, BZO( ).

Because w (]5 ) w ), S (] ) and n ff ) are orientable. Since
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(A, S (], ) bounds (A, D (]h ) ), s ([A, S (f-* )]) 0 in (9_ (Z). By (3.1),
2[A, S (].* )] 0 in

_
(Z), so it is not necessary to choose n orientation for

S ff ).

(3.3) Tonn. For n O, there is an exact sequence

+ (z) (z) ...
Proof. It is clear that .a a. s 0. Suppose that s (IT, M]) 0,

i.e., (T, M) bounds some (T’, B+). As usual, let F+- be the
(n 1 2)-dimensional part of the fixed point set of T, W - F+I-
its normM bundle, and

f2k Fn+l-2k BO (2k

the classifying map. By removing the interiors of the normal tubular n,eigh-
borhoods of the F+1-*, we see that

[T, M"] <3+1)/2] [A, S (w)].

Each map ] induces an equiariant map. (, v+1-) (, UO ()).
Then

0 (i +l)/2][wnTl-2k i+1)/2]:, A]) [A, Z (,)]

and hence kernel (s) image (0).
If =0 r, fi] is in kernel (0), then

-=0
"/) (A, fff)

bounds some (T, M") with T fixed point free orientation preserving. Also,
each (A, S)) bounds (A, D (] ) ), where the fixed point set of A on the

vrn--2k Bdisk bundle is v /. Let be the union of M" with the uon
[n/2]
=0 D ) with their boundaries identified. There is an orientation pre-

serving involution T’ on the closed manifold B" given by T’ T on M" and
T’ A on the union of the D (] ). The fixed point set of T’ is the union of

vrn2k] vrn--2k/ Bthe v /r and the normal bundle to v /r in is

Thus
,({ T’, S"}) =0"’ (V"-, , fl.

Finally, suppose that a({T, M"} "/ V"-=0 r,f] 0in
Fix a Riemannian metric on M" for which T is an isometry. For each k for
which F"- is non-empty there is a triple

(B"-:+, a, g)

with boundary (V"-, , f), i.e., OB-+ V-, (a B-+) is an
orientation reversing involution,

( B"-+) (, BSO(
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is equivariant, and zk and g2k extend rk and fk respectively.
the map of quotient spaces

B-+/z BO (2k)
and the induced bundle

* r)n--2k+l

We then have

If -- F- is the normal bundle to F-2 in M", then
(g ) D (2) 0 (D -*(g.)) and S(g) n D(y) S(yk).

Let U+ be the union of M [0, 1] with the union (J-=0 D -*(g ) identify-
ing the two copies ofD (vk) that lie in M N 1 and in D -*(g. ). The boundary
of U+ is split into two parts" one consists of M X 0, the other of M X 1,
but with S -*(g ) replacing D (), the normal tubular neighborhood of the
(n 2k)-dimensional part of the fixed point set. Define an involution T’
on U+ by T’ (x, t) (T (x), t) on M X I and T’ is the bundle involution on
each D -*(g ). Since T was an isometry T’ is well defined on U+1 T’ T
on M M X 0 and is fixed point free on the rest of the boundary of U+.
Thus T, M} is in the image of s and the proof of (3.3) is completed.

(3.4) THEOREM. All torsion of , (Z) has order 2.

Proof. Let -- BO (2k) be the line bundle associated with the double
covering (, BSO (2k)) --+ BO (2k). By (2.1),

is isomorphic to
(n.-2 (r, BSO (2k))

which is in turn isomorphis to

By Theorem (15.2) in [7] we know that if (X, A is a CW-pair such that each
H, (X, A;Z) is finitely generated and has no odd torsion, then 2 (X, A is
isomorphic to _,+q.H(X, A; 2q). All homology and cohomology will
now have coefficients in Z, the integers, unless indicated otherwise. The free
parts of H(D (,), S (-.)) and of H (D (,), S (,2)) are isomorphic, as
are the torsion subgroups of

H(D (k), S (,.)) and H+(D (,.), S (’)).

Since BO (2k) is a deformation retract of D (3’) and S() BSO (2k),
the exact eohomology triangle of the pair (D (3’), S (3’:)) becomes

H*(BO(2k),BSO(2k) H*(BO(2k))

BSO( 2k ).
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By computations of the cohomology rings of BO () and BSO () given in [4]
and [11], this exact triangle becomes

.$

H*(BO(2), BSO(2) =- Z[pl pk] + 2-torsion

Z[i01, 10-, X] + 2-torsion

where p in It (BO (2k)) is a universal Pontriagin class, 10 j* (p) for
1 _< m _< / 1, X in It (BSO (2k)) is ghe Euler class, j* (p) X,
andj* maps the 24orsion of H* (BO (2k) onto the 2-torsion of H* (BSO (2k)).
Thus H*(BO (2k), BSO (2k)) has no odd torsion or torsion of order 4: and hence
neither do the a,. The assertion hen follows from Theorems (a.1) and (.).
We now consider the free part of 0, (Z). Since the image of

(n --").--1

consists of torsion elements, for Q the rationals,

0(R) I’a,@Q,_I(Z)(R)Q

is the zero homomorphism. We then have a split short exact sequence

0--> 2. (Z) (R) Q o. (Z) (R) Q =a (R) 1_ a. (R) V-- 0

and a sequence of isomorphisms

O(Z2) @ Q (2.(Z) (R) Q) $ (a. (R) Q) (u. (R) Q) (R) (A (R) Q).

Since 2. (R) Q is known to be Q[CP (2), CP (4), ...] [10], to determine the
free part of (9, (X2), we need only consider that of a. We have the iso-
morphism

(.) an_ (T’, BSO (2k)) (R) Q +q=n-k+H(BO (2k), BSO (2k); u,) (R) Q.

The bordism group fq is isomorphic to a sum Z@ (R) Z @ Z @ (R) Z:,
so the free part of a, can be computed from the exact triangle

.$

H*(BO(2k), BSO(2k); Q) z, Q[p ..., pk]

Q[i, pk-1, x].

The free part of (9, (Z) is now easy to compute. In particular we have

(3.5) THEOREM. If n is not a multiple of 4, then (9, (Z2) (R) Q O.

Proof. We need only show the statement is true for a, (R) Q. First sup-
pose n is odd. A now-zero case can occur in () only if q 4m, in which case
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p is even. Then H-1 (BSO (2]c); Q) 0 and

"*" H (BO (2k) Q) ---. H’ (BSO (2k); Q)3

is a monomorphism, so H (BO (2]c), BSO (2]); Q) 0. It then follows that
0(Z) (R) Q 0.
Forneven, in () we must still have q 4m, so nowp is odd. Thus

H (BO (21c);Q) 0 and we have the exact sequence

H-1 (BO (2k); Q *-. H- (BSO (2k); Q H (BO (2k),

BSO (2k Q ---. O.

The homomorphismj* can fail to be onto only if p 1 is an odd multiple of 2k,
the dimension of the Euler class, plus 4i, so let

p- 1 4akW 2kW4i.

Thenn=pq2k- 1 =4(ak-l-m/cWi).
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