BORDISM OF INVOLUTIONS ON MANIFOLDS

BY
H. L. Rosenzweig ${ }^{1}$

I. Introduction and notation

In [7], Conner and Floyd computed the bordism groups of all involutions on closed manifolds. The purpose of this paper is to examine the bordism groups $\mathcal{O}_{n}\left(Z_{2}\right)$ of all orientation preserving involutions on closed oriented manifolds.

In section II we give a relation between certain bordism groups of an involution defined by Atiyah in [2] and the bordism groups of a space. In III we first examine the forgetful homomorphism $s: \Omega_{n}\left(Z_{2}\right) \rightarrow \mathcal{O}_{n}\left(Z_{2}\right)$, where $\Omega_{n}\left(Z_{2}\right)$ is the bordism group of fixed point free orientation preserving involutions. It is shown that the kernel of s is exactly all of the torsion of $\Omega_{n}\left(Z_{2}\right)$. This result and that of section II enables us to show that all torsion of $\mathcal{O}_{n}\left(Z_{2}\right)$ has order 2 and that a free part occurs only in dimension $n=4 k$. From the computation of the kernel of s, it also follows that if M^{n} bords orientably and T is a fixed point free orientation preserving involution on M^{n}, then M^{n} bounds some orientable B^{n+1} to which T can be extended, though (T, B^{n+1}) may not be fixed point free.

All manifolds will be smooth and compact. The bordism groups $\Omega_{n}, \mathscr{N}_{n}$, $\Omega_{n}(X)$ and $\tilde{\Omega}_{n}(X)$ are defined in [7]. An element in $\mathcal{O}_{n}\left(Z_{2}\right)$ is represented by a pair (T, M^{n}), where M^{n} is a closed oriented n-manifold and T is a smooth orientation preserving involution on M^{n}. Two such pairs (T_{1}, M^{n}) and (T_{2}, V^{n}) are bordant if there is an involution T on a compact oriented $(n+1)$ manifold B^{n+1} such that ∂B^{n+1} is diffeomorphic to the disjoint union $M^{n} \mathbf{u}-V^{n}$ and $T \mid \partial B^{n+1}=T_{1} \cup T_{2}$. The bordism equivalence class of $\left(T, M^{n}\right)$ in $\mathcal{O}_{n}\left(Z_{2}\right)$ is denoted by $\left\{T, M^{n}\right\}$. The bordism group $\Omega_{n}\left(Z_{\bullet}\right)$ differs from $\mathcal{O}_{n}\left(Z_{\circ}\right)$ only in that the involutions are required to be fixed point free. The bordism class of a fixed point free involution (T, M^{n}) in $\Omega_{n}\left(Z_{9}\right)$ is denoted by [T, M^{n}]. An element $\left[T, M^{n}\right]$ in $\Omega_{n}\left(Z_{2}\right)$ is in the reduced group $\tilde{\Omega}_{n}\left(Z_{2}\right)$ if $\left[M^{n} / T\right]=0$ in Ω_{n}. Now suppose that T is an involution on a space X. Consider triples (M^{n}, τ, f) where τ is a fixed point free orientation reversing involution on the closed oriented manifold M^{n} and $f:\left(\tau, M^{n}\right) \rightarrow(T, X)$ is an equivariant map. Two such triples (M^{n}, τ_{1}, f_{1}) and (V^{n}, τ_{2}, f_{2}) are bordant if there is a triple ($\left.B^{n+1}, \sigma, F\right)$ such that σ is a fixed point free orientation reversing involution on $B^{n+1}, \partial B^{n+1}$ is the disjoint union $M^{n} \mathrm{u}-V^{n}, F:\left(\sigma, B^{n+1}\right) \rightarrow(T, X)$ is equivariant, $\sigma \mid \partial B^{n+1}=\tau_{1} \cup \tau_{2}$, and $F \mid \partial B^{n+1}=f_{1} \cup f_{2}$. We denote the resulting bordism group by $\mathbb{Q}_{n}(T, X)$. These groups are essentially the groups $M S O_{n}(X, \alpha)$ defined in [2].

[^0]If $\lambda \rightarrow X$ is a real vector bundle with group $O(k)$, the total space of the associated sphere, disk and projective space bundles will be denoted by $S(\lambda)$, $D(\lambda)$ and $\mathrm{R} P(\lambda)$ respectively.

I wish to express my appreciation to Professor P. E. Conner for his advice and encouragement during the preparation of this paper.

II. An isomorphism on $\mathfrak{Q}_{k}(T, X)$

Let T be a fixed point free involution on a closed manifold X or a fixed point free cellular involution on a finite CW-complex X. Let $\gamma \rightarrow X / T$ be the line bundle associated to the Z_{2}-bundle $X \rightarrow X / T$ and let $M(\gamma)$ be the Thom space of γ.
(2.1) Theorem. $\mathfrak{Q}_{k}(T, X)$ is isomorphic to the reduced bordism group $\tilde{\Omega}_{k+1}(M(\gamma))$.

Before proving (2.1) we mention two easily verified lemmas.
(2.2) Lemma. Let M^{k+1} be an oriented $(k+1)$-manifold and let K^{k} be a k dimensional submanifold. Then we can identify the boundary of the normal tube to K^{k} in M^{k+1} with the orientation double covering of K^{k}.
(2.3) Lemma. Let M^{n} be a closed oriented manifold and let T be a fixed point free orientation reversing involution on M^{n}. Then the covering $\left(T, M^{n}\right) \rightarrow M^{n} / T$ is the orientation double covering of M^{n} / T.

Both of these lemmas follow from Lemma 2.2 in [3]. To obtain (2.3), consider the Gysin sequence of the line bundle associated to the Z_{2}-bundle $M^{n} \rightarrow M^{n} / T$.

Proof of (2.1). First consider the case when X is a smooth compact n manifold, $X=V^{n}$. To define $\varphi: \mathfrak{Q}_{k}\left(T, V^{n}\right) \rightarrow \tilde{\Omega}_{k+1}(M(\gamma))$, consider an element $\left[M^{k}, \tau, f\right]$ in $\mathfrak{Q}_{k}\left(T, V^{n}\right)$. If $\eta \rightarrow M^{k} / \tau$ is the line bundle associated to $M^{k} \rightarrow M^{k} / \tau$, then f induces a map of Thom spaces, $F: M(\eta) \rightarrow M(\gamma)$. Define an involution T_{1} on $M^{k} \times S^{1}$ by $T_{1}(x, z)=(\tau(x), \bar{z})$, where \bar{z} denotes the complex conjugate of $z . \quad T_{1}$ preserves orientation and $\left(M^{k} \times S^{1}\right) / T_{1}$ receives an orientation from the orientations of M^{k} and S^{1}. Let

$$
r: M^{k} \times S^{1} \rightarrow\left(M^{k} \times S^{1}\right) / T_{1}
$$

be the decomposition map. If B is the subset of $M^{k} \times S^{1}$ consisting of all pairs ($x, a+b i$) with $a>0$, then collapsing $\left(M^{k} \times S^{1}\right) / T_{1}-r(B)$ to a point in $\left(M^{k} \times S^{1}\right) / T_{1}$ yields the Thom space $M(\eta)$. This now defines a mapping

$$
g:\left(M^{k} \times S^{1}\right) / T_{1} \rightarrow M(\eta)
$$

Letting $m:\left(M^{k} \times S^{1}\right) / T_{1} \rightarrow M(\gamma)$ be the composition $m=F \cdot g$, we define

$$
\varphi\left(\left[M^{k}, \tau, f\right]\right)=\left[\left(M^{k} \times S^{1}\right) / T_{1}, m\right] \quad \text { in } \Omega_{k+1}(M(\gamma))
$$

φ is a well defined homomorphism and since T_{1} can be extended to a fixed point free involution on $M^{k} \times D^{2}$, the image of φ lies in the reduced group $\tilde{\Omega}_{k+1}(M(\gamma))$.

To show φ is an epimorphism, consider an element $\left[M^{k+1}, m\right]$ in $\tilde{\Omega}_{k+1}(M(\gamma))$. We may take the restricted map $m \mid\left(M^{k+1}-m^{-1}(\infty)\right)$ to be smooth. Since V^{n} / T is regularly embedded in $M(\gamma)$ as the zero section of γ, we may assume m is transverse regular on $V^{n} / T[9, \mathrm{p} .22]$ and that $K^{k}=m^{-1}\left(V^{n} / T\right)$ is a nonempty regularly embedded k-dimensional submanifold of M^{k+1}. Let $\left(\tau, L^{k}\right) \rightarrow$ K^{k} be the orientation double covering of K^{k}. Since m is transverse regular, the differential, $d m$, takes the normal bundle to K^{k} in M^{k+1} onto the normal bundle to V^{n} / T in $M(\gamma)$, and we may assume m is a bundle map of the normal tube to K^{k} onto the normal tube to V^{n} / T. Thus we obtain an equivariant map $m_{1}:\left(\tau, L^{k}\right) \rightarrow\left(T, V^{n}\right)$. Examine $\varphi\left(\left[L^{k}, \tau, m_{1}\right]\right)$. By (2.2) the line bundle associated to $\left(\tau, L^{k}\right) \rightarrow K^{k}$ is the normal tubular neighborhood of K^{k} in M^{k+1}. The manifolds L^{k} and M^{k+1} are orientable, so we can identify the normal tube to L^{k} in M^{k+1} with $L^{k} \times[-1,1]$. We choose this tube so that it does not intersect K^{k} and so that $L^{k} \times\{-1\}$ always lies inside the normal tube to K^{k}. Define an involution T_{2} on $L^{k} \times[-1,1]$ by $T_{2}(x, t)=(\tau(x), t)$. Since $\left[M^{k+1}, m\right.$] is in $\tilde{\Omega}_{k+1}(M(\gamma))$, there is an oriented manifold B^{k+2} with $\partial B^{k+2}=M^{k+1}$. In B^{k+2} identify q and $T_{2}(q)$ for all q in $L^{k} \times[-1,1]$ and let U^{k+2} be the resulting manifold. T_{2} reverses orientation, so U^{k+2} is orientable. The boundary of U^{k+2} is diffeomorphic to the disjoint union of M^{k+1} and $\left(L^{k} \times S^{1}\right) / T_{1}$, where $T_{1}(x, z)=(\tau(x), \bar{z})$ as in the definition of φ. By taking the composition of m followed by an appropriate deformation of $M(\gamma), m$ is homotopic to a map, still denoted by m, which at each point x of K^{k} takes the fibre at x of the normal tube N of K^{k} in M^{k+1} "linearly" onto the fibre of γ at $m(x)$ and which takes $M^{k+1}-N$ into the point at infinity. Similarly, if

$$
\varphi\left(\left[L^{k}, \tau, m_{1}\right]\right)=\left[\left(L^{k} \times S^{1}\right) / T_{1}, m_{2}\right]
$$

then $\left(L^{k} \times S^{1}\right) / T_{1} \rightarrow K^{k}$ is the Z_{2}-bundle with fibre S^{1} associated to the Z_{2} bundle (τ, L^{k}) $\rightarrow K^{k}$ and above any point x in K^{k}, m_{2} takes half of the fibre S^{1} "linearly" onto the fibre of γ at $m(x)$ and takes the other half of the fibre into the point at infinity. Using the fact that a neighborhood of M^{k+1} in B^{k+2} has the form $M^{k+1} \times[0,1)$, an examination of the formation of U^{k+2} shows that the disjoint union map $m \mathbf{u} m_{2}$ on

$$
M^{k+1} \mathbf{u}\left(\left(L^{k} \times S^{1}\right) / T_{1}\right)=\partial U^{k+2}
$$

can be extended to all of U^{k+2}. Thus $\varphi\left(\left[L^{k}, \tau, m_{1}\right]\right)=\left[M^{k+1}, m\right]$ and φ is an epimorphism.

Now suppose $\varphi\left(\left[M^{k}, \tau, f\right]\right)=0$ in $\tilde{\Omega}_{k+1} M(\gamma)$, i.e., $\left(\left(M^{k} \times S^{1}\right) / T_{1}, m\right)$ bounds some oriented pair $\left(B^{k+2}, \widetilde{m}\right)$. By the construction of m, it is transverse regular on V^{n} / T and $m^{-1}\left(V^{n} / T\right)=M^{k} / \tau$, considering M^{k} / τ as the image of $M^{k} \times\{1\}$ under the decomposition

$$
M^{k} \times S^{1} \rightarrow\left(M^{k} \times S^{1}\right) / T_{1}
$$

Again, we may assume the restriction $\widetilde{m} \mid\left(B^{k+2}-\widetilde{m}^{-1}(\infty)\right)$ is smooth and \widetilde{m} is transverse regular on V^{n} / T without changing the values of $\widetilde{m}=m$ on M^{k} / τ.

Now let $K^{k+1}=\widetilde{m}^{-1}\left(V^{n} / T\right)$ and let $\left(\sigma, L^{k+1}\right) \rightarrow K^{k+1}$ be the orientation double covering. Then $M^{k} / \tau=\partial K^{k+1}$, so by Lemma (2.3), $M^{k}=\partial L^{k+1}$ and $\sigma \mid M^{k}=\tau$. As before, there is an equivariant map $g:\left(\sigma, L^{k+1}\right) \rightarrow\left(T, V^{n}\right)$ with $g \mid M^{k}=f$. Thus $\left[M^{k}, \tau, f\right]=0$ in $Q_{k}\left(T, V^{n}\right)$ and φ is a monomorphism.

I'd like to thank Robert Stong for showing me the following method of reducing the case when X is a finite complex to the case where $X=V^{n}$ is a smooth manifold. Let T be a fixed point free cellular involution on a finite complex X. Embed X / T in some R^{n} and let $p: N \rightarrow X / T$ be a regular neighborhood of X / T. Then N is a smooth manifold having the homotopy type of $X / T . \quad p$ induces a principal Z_{2}-bundle $\left(T^{\prime}, X^{\prime}\right) \rightarrow N$ and X^{\prime} has the homotopy type of X [8, Cor. 7.10]. Then we have a sequence of isomorphisms

$$
\mathfrak{Q}_{k}(T, X) \approx \mathfrak{Q}_{k}\left(T^{\prime}, X^{\prime}\right) \approx \tilde{\Omega}_{k+1}\left(M\left(\gamma^{\prime}\right)\right) \approx \tilde{\Omega}_{k+1}(M(\gamma))
$$

This completes the proof of (2.1).
Now suppose that T is any involution on a finite complex X. Set

$$
\tau=A \times T: S^{n} \times X \rightarrow S^{n} \times X
$$

where $\left(A, S^{n}\right)$ denotes the antipodal map on the unit sphere in R^{n+1}.
(2.4) Theorem. $\mathfrak{Q}_{k}\left(\tau, S^{N} \times X\right)$ is isomorphic to $\mathfrak{Q}_{k}(T, X)$ for $k<N$.

Proof. Given $\left[M^{k}, \sigma, f\right]$ in $\mathfrak{Q}_{k}(T, X)$, for $k<N$ there is an equivariant map $e:\left(\sigma, M^{k}\right) \rightarrow\left(A, S^{N}\right)$ and e is unique up to equivariant homotopy. Define

$$
\varphi\left(\left[M^{k}, \sigma, f\right]\right)=\left[M^{k}, \sigma, e \times f\right] .
$$

If $\left[M^{k}, \sigma, g\right]$ is in $\mathfrak{Q}_{k}\left(\tau, S^{N} \times X\right)$, express g as $e \times f$ and define

$$
\psi\left(\left[M^{k}, \sigma, g\right]\right)=\left[M^{k}, \sigma, f\right] .
$$

It is clear that

$$
\varphi: \mathfrak{Q}_{k}(T, X) \rightarrow \mathfrak{Q}_{k}\left(\tau, S^{N} \times X\right) \quad \text { and } \quad \psi: \mathfrak{Q}_{k}\left(\tau, S^{N} \times X\right) \rightarrow \mathfrak{Q}_{k}(T, X)
$$

are well-defined inverse homomorphisms.

III. The structure of $\mathcal{O}_{*}\left(Z_{2}\right)$

Let $s: \Omega_{n}\left(Z_{2}\right) \rightarrow \mathcal{O}_{n}\left(Z_{2}\right)$ be the homomorphism given by $s\left(\left[T, M^{n}\right]\right)=$ $\left\{T, M^{n}\right\}$.
(3.1) Theorem. The kernel of s consists of all the torsion of $\Omega_{n}\left(Z_{2}\right)$.

Proof. The sequence

$$
0 \rightarrow \tilde{\Omega}_{n}\left(Z_{2}\right) \xrightarrow{\subset} \Omega_{n}\left(Z_{2}\right) \stackrel{\varepsilon}{\leftarrow} \Omega_{n} \rightarrow 0
$$

is a split short exact sequence, where

$$
\varepsilon\left(\left[T, M^{n}\right]\right)=\left[M^{n} / T\right] \quad \text { and } \quad \alpha\left(\left[V^{n}\right]\right)=\left[A^{\prime}, V^{n} \times Z_{2}\right]
$$

A^{\prime} being the map switching copies of $V^{n}, A^{\prime}(x, i)=(x, 1-i)$. Thus $\Omega_{n}\left(Z_{2}\right)$
is isomorphic to $\Omega_{n} \oplus \tilde{\Omega}_{n}\left(Z_{2}\right)$. Burdick [6, p. 51] showed that $\tilde{\Omega}_{n}\left(Z_{2}\right)$ is isomorphic to \mathscr{N}_{n-1} and thus consists entirely of 2 -torsion. Now the torsion subgroup of $\Omega_{n}\left(Z_{2}\right)$ consists entirely of 2 -torsion and can be written as

$$
\text { Tor }\left(Z_{2}, \Omega_{n}\right) \oplus \tilde{\Omega}_{n}\left(Z_{2}\right)
$$

where Tor $\left(Z_{2}, \Omega_{n}\right)$ is the 2 -torsion of the group Ω_{n}. To show that s takes $\tilde{\Omega}_{n}\left(Z_{2}\right)$ into 0 , we examine Burdick's isomorphism

$$
\varphi: \mathfrak{N}_{n-1} \rightarrow \tilde{\Omega}_{n}\left(Z_{2}\right)
$$

He defines $\varphi\left(\left[V^{n-1}\right]_{2}\right)=\left[T,\left(E^{n-1} \times S^{1}\right) / T_{1}\right]$, where $\left(\tau, E^{n-1}\right) \rightarrow V^{n-1}$ is the orientation double covering, $T_{1}(x, z)=(\tau(x), \bar{z})$ and T is induced on $\left(E^{n-1} \times S^{1}\right) / T_{1}$ by the involution $T(x, z)=(x,-z)$ on $E^{n-1} \times S^{1}$. By extending T and T_{1} to $E^{n-1} \times D^{2}$, we see that ($T,\left(E^{n-1} \times S^{1}\right) / T_{1}$) bounds $\left(T,\left(E^{n-1} \times D^{2}\right) / T_{1}\right)$ so $s\left(\tilde{\Omega}_{n}\left(Z_{2}\right)\right)=0$.
In [1], Anderson showed that every element of Tor (Z_{2}, Ω_{n}) may be represented as a sum of classes of manifolds of the form

$$
V^{n}=\mathbf{R} P\left(\lambda \oplus \theta^{2 k+1}(M)\right)
$$

where $\lambda \rightarrow M$ is the line bundle with $w_{1}(\lambda)=w_{1}(M)$ and $\theta^{2 k+1}(M) \rightarrow M$ is the trivial $(2 k+1)$-bundle. On $S\left(\lambda \oplus \theta^{2 k+1}(M)\right)$ there is an orientation reversing involution $T=(-1) \oplus$ (identity). $\quad T$ commutes with the bundle involution [7, p. 60] A on $S\left(\lambda \oplus \theta^{2 k+1}(M)\right)$, so it induces an orientation reversing map, T^{\prime}, on V^{n}, though T^{\prime} is not fixed point free. Now there is the fixed point free orientation reversing involution \tilde{T} on $V^{n} \times Z_{2}$ given by $\tilde{T}(x, i)=\left(T^{\prime}(x)\right.$, $1-i)$. \tilde{T} commutes with A^{\prime}, so $\left\{A^{\prime}, V^{n} \times Z_{2}\right\}=0$ in $\mathcal{O}_{n}\left(Z_{2}\right)$.

Suppose [T, M^{n}] is in the kernel of s. We have

$$
\left[T, M^{n}\right]=\left[A^{\prime}, V^{n} \times Z_{2}\right]+\left[\tilde{T}, \tilde{M}^{n}\right]
$$

where [\tilde{T}, \tilde{M}^{n}] is in $\tilde{\Omega}_{n}\left(Z_{2}\right)$ and $\left[V^{n}\right]$ is in Ω_{n}. Since

$$
s\left(\left[\tilde{T}, \tilde{M}^{n}\right]\right)=0, \quad s\left(\left[A^{\prime}, V^{n} \times Z_{2}\right]\right)=0
$$

and $V^{n} \times Z_{2}$ bounds some oriented B^{n+1}, so $2\left[V^{n}\right\rceil=0$. Thus

$$
2\left[A^{\prime}, V^{n} \times Z_{2}\right]=\alpha\left(2\left[V^{n}\right]\right)=0 \quad \text { and } \quad 2\left[T, M^{n}\right]=0
$$

completing the proof of (3.1).
(3.2) Corollary. If $\left[M^{n}\right]=0$ in Ω_{n} and T is a fixed point free orientation preserving involution on M^{n}, then $\left\{T, M^{n}\right\}=0$ in $\mathcal{O}_{n}\left(Z_{2}\right)$.

Proof. Under the isomorphism between $\Omega_{n}\left(Z_{2}\right)$ and $\Omega_{n} \oplus \tilde{\Omega}_{n}\left(Z_{2}\right),\left[T, M^{n}\right]$ corresponds to ($\left[M^{n} / T\right],\left[\tilde{T}, \tilde{M}^{n}\right]$) for some $\left[\tilde{T}, \tilde{M}^{n}\right]$ in $\tilde{\Omega}_{n}\left(Z_{2}\right)$. Since $2\left(\left[M^{n} / T\right]\right)=\left[M^{n}\right]=0$ in Ω_{n}, then $s\left(\left[A^{\prime}, Z_{2} \times\left(M^{n} / T\right)\right]\right)=0$ and thus $s\left(\left[T, M^{n}\right]\right)=0$, i.e., $\left\{T, M^{n}\right\}=0$ in $\mathcal{O}_{n}\left(Z_{2}\right)$.

Now consider the orientation double covering

$$
(\tau, B S O(n)) \rightarrow B O(n)
$$

and let

$$
\mathbb{Q}_{n}=\sum_{k=0}^{[n / 2]} \mathbb{Q}_{n-2 k}(\tau, B S O(2 k))
$$

We define a homomorphism $\alpha: \mathcal{O}_{n}\left(Z_{2}\right) \rightarrow \mathscr{Q}_{n}$ as follows. First define

$$
\alpha\left(\left\{\text { identity }, M^{n}\right\}\right)=\left[\tilde{M}^{n}, \sigma, f\right]
$$

where $\left(\sigma, \widetilde{M}^{n}\right) \rightarrow M^{n}$ is the orientation double covering of M^{n} and

$$
f:\left(\sigma, \widetilde{M}^{n}\right) \rightarrow(\tau, B S O(0))
$$

is the obvious equivariant map, with $B S O(0)=\{$ point $\} \times S^{0}$. Now look at an arbitrary $\left\{T, M^{n}\right\}$ in $\mathcal{O}_{n}\left(Z_{2}\right)$. If F^{m} is the m-dimensional part of the fixed point set of T, then $n-m$ is even [5, p. 79] and F^{m} is a regularly embedded submanifold of M^{n}. For $k>0$, let $\eta_{2 k} \rightarrow F^{n-2 k}$ denote the normal bundle to $F^{n-2 k}$ in M^{n}. The bundle $\eta_{2 k}$ has a classifying map

$$
\bar{f}_{2 k}: F^{n-2 k} \rightarrow B O(2 k)
$$

which induces a principal Z_{2}-bundle $\left(\tau_{2 k}, V^{n-2 k}\right) \rightarrow F^{n-2 k}$ from the covering $(\tau, B S O(2 k)) \rightarrow B O(2 k)$ and hence an equivariant map

$$
f_{2 k}:\left(\tau_{2 k}, V^{n-2 k}\right) \rightarrow(\tau, B S O(2 k))
$$

Since $\bar{f}_{2 k}^{*}\left(w_{1}(B O(2 k))\right)=w_{1}\left(\eta_{2 k}\right)=w_{1}\left(F^{n-2 k}\right)$,

$$
\left(\tau_{2 k}, V^{n-2 k}\right) \rightarrow F^{n-2 k}
$$

is the orientation double covering of $F^{n-2 k}$ and $V^{n-2 k}$ is canonically oriented. Define

$$
\alpha\left(\left\{T, M^{n}\right\}\right)=\sum_{k=0}^{[n / 2]}\left[V^{n-2 k}, \tau_{2 k}, f_{2 k}\right]
$$

where the case $k=0$ is handled as in α (\{identity, $M\}$).
Henceforth, $\xi \rightarrow B O(k)$ will denote the universal k-plane bundle and A will denote the bundle involution on the indicated sphere or disk bundle. For $n \geq 1$, we define a homomorphism

$$
\partial: \mathbb{Q}_{n} \rightarrow \Omega_{n-1}\left(Z_{2}\right)
$$

to be the sum of the homomorphisms

$$
\partial: \mathscr{Q}_{n-2 k}(\tau, B S O(2 k)) \rightarrow \Omega_{n-1}\left(Z_{2}\right)
$$

given, for $k>0$, by

$$
\partial\left(\left[V^{n-2 k}, \tau_{2 k}, f_{2 k}\right]\right)=\left[A, S\left(\bar{f}_{2 k}^{*} \xi\right)\right] .
$$

Here A is the bundle involution on the sphere bundle associated to the induced bundle $f_{2 k}^{*} \xi$, where

$$
\bar{f}_{2 k}: V^{n-2 k} / \tau_{2 k} \rightarrow B O(2 k)
$$

is induced from the equivariant map

$$
f_{2 k}:\left(\tau_{2 k}, V^{n-2 k}\right) \rightarrow(\tau, B S O(2 k))
$$

Because $w_{1}\left(f_{2 k}^{*} \xi\right)=w_{1}\left(F^{n-2 k}\right), S\left(\bar{f}_{2 k}^{*} \xi\right)$ and $D\left(\bar{f}_{2 k}^{*} \xi\right)$ are orientable. Since
$\left(A, S\left(\bar{f}_{2 k}^{*} \xi\right)\right)$ bounds $\left(A, D\left(\bar{f}_{2 k}^{*} \xi\right)\right), s\left(\left[A, S\left(\bar{f}_{2 k}^{*} \xi\right)\right]\right)=0 \operatorname{in} \Theta_{n-1}\left(Z_{2}\right) . \quad$ By (3.1), $2\left[A, S\left(\bar{f}_{2 k}^{*} \xi\right)\right]=0$ in $\Omega_{n-1}\left(Z_{2}\right)$, so it is not necessary to choose an orientation for $S\left(\bar{f}_{2 k}^{*} \xi\right)$.
(3.3) Theorem. For $n \geq 0$, there is an exact sequence

$$
\cdots \rightarrow \mathbb{Q}_{n+1} \xrightarrow{\partial} \Omega_{n}\left(Z_{2}\right) \xrightarrow{s} \Theta_{n}\left(Z_{2}\right) \xrightarrow{\alpha} \mathbb{Q}_{n} \xrightarrow{\partial} \cdots
$$

Proof. It is clear that $\cdot \partial=\partial \cdot \alpha=\alpha \cdot s=0$. Suppose that $s\left(\left[T, M^{n}\right]\right)=0$, i.e., $\left(T, M^{n}\right)$ bounds some $\left(T^{\prime}, B^{n+1}\right)$. As usual, let $F^{n+1-2 k}$ be the $(n+1-2 k)$-dimensional part of the fixed point set of $T^{\prime}, \eta_{2 k} \rightarrow F^{n+1-2 k}$ its normal bundle, and

$$
\bar{f}_{2 k}: \mathrm{F}^{n+1-2 k} \rightarrow B O(2 k)
$$

the classifying map. By removing the interiors of the normal tubular neighborhoods of the $F^{n+1-2 k}$, we see that

$$
\left[T, M^{n}\right]=\sum_{k=0}^{[(n+1) / 2]}\left[A, S\left(\eta_{2 k}\right)\right] .
$$

Each map $\bar{f}_{2 k}$ induces an equivariant map

$$
f_{2 k}:\left(\tau_{9 k}, V^{n+1-2 k}\right) \rightarrow(\tau, B S O(2 k))
$$

Then

$$
\partial\left(\sum_{k=0}^{[(n+1) / 2]}\left[V^{n+1-2 k}, \tau_{2 k}, f_{2 k}\right]\right)=\sum_{k=0}^{[(n+1) / 2]}\left[A, S\left(\eta_{2 k}\right)\right]
$$

and hence kernel $(s)=$ image (∂).
If $\sum_{k=0}^{[n / 2]}\left[V^{n-2 k}, \tau_{2 k}, f_{2 k}\right]$ is in kernel (∂), then

$$
\bigcup_{k=0}^{[n / 2)}\left(A, S\left(\bar{f}_{2 k}^{*} \xi\right)\right)
$$

bounds some (T, M^{n}) with T fixed point free orientation preserving. Also, each $\left(A, S\left(f_{2 k}^{*} \xi\right)\right)$ bounds $\left(A, D\left(\bar{f}_{2 k}^{*} \xi\right)\right)$, where the fixed point set of A on the disk bundle is $V^{n-2 k} / \tau_{2 k}$. Let B^{n} be the union of M^{n} with the union $\bigcup_{k=0}^{[n / 2]} D\left(\bar{f}_{2 k}^{*} \xi\right)$ with their boundaries identified. There is an orientation preserving involution T^{\prime} on the closed manifold B^{n} given by $T^{\prime}=T$ on M^{n} and $T^{\prime}=A$ on the union of the $D\left(\tilde{f}_{2 k}^{*} \xi\right)$. The fixed point set of T^{\prime} is the union of the $V^{n-2 k} / \tau_{2 k}$ and the normal bundle to $V^{n-2 k} / \tau_{2 k}$ in B^{n} is

$$
\bar{f}_{2 k}^{*} \xi \rightarrow V^{n-2 k} / \tau_{2 k}
$$

Thus

$$
\alpha\left(\left\{T^{\prime}, B^{n}\right\}\right)=\sum_{k=0}^{[n / 2]}\left(V^{n-2 k}, \tau_{2 k}, f_{2 k}\right]
$$

Finally, suppose that $\alpha\left(\left\{T, M^{n}\right\}\right)=\sum_{k=0}^{[n / 2]}\left(V^{n-2 k}, \tau_{2 k}, f_{2 k}\right]=0$ in \mathbb{Q}_{n}. Fix a Riemannian metric on M^{n} for which T is an isometry. For each k for which $F^{n-2 k}$ is non-empty there is a triple

$$
\left(B^{n-2 k+1}, \sigma_{2 k}, g_{2 k}\right)
$$

with boundary $\left(V^{n-2 k}, \tau_{2 k}, f_{2 k}\right)$, i.e., $\partial B^{n-2 k+1}=V^{n-2 k},\left(\sigma_{2 k}, B^{n-2 k+1}\right)$ is an orientation reversing involution,

$$
g_{2 k}:\left(\sigma_{2 k}, B^{n-2 k+1}\right) \rightarrow(\tau, B S O(2 k))
$$

is equivariant, and $\sigma_{2 k}$ and $g_{2 k}$ extend $\tau_{2 k}$ and $f_{2 k}$ respectively. We then have the map of quotient spaces

$$
\bar{g}_{2 k}: B^{n-2 k+1} / \sigma_{2 k} \rightarrow B O(2 k)
$$

and the induced bundle

$$
\bar{g}_{2 k}^{*} \xi \rightarrow B^{n-2 k+1} / \sigma_{2 k} .
$$

If $\eta_{2 k} \rightarrow F^{n-2 k}$ is the normal bundle to $F^{n-2 k}$ in M^{n}, then

$$
S\left(\bar{g}_{2 k}^{*} \xi\right) \cup D\left(\eta_{2 k}\right)=\partial\left(D\left(\bar{g}_{2 k}^{*} \xi\right)\right) \quad \text { and } \quad S\left(\bar{g}_{2 k}^{*} \xi\right) \cap D\left(\eta_{2 k}\right)=S\left(\eta_{2 k}\right)
$$

Let U^{n+1} be the union of $M^{n} \times[0,1]$ with the union $\bigcup_{k=0}^{[n / 2]} D\left(\bar{g}_{2 k}^{*} \xi\right)$, identifying the two copies of $D\left(\eta_{2 k}\right)$ that lie in $M^{n} \times 1$ and in $D\left(\bar{g}_{2 k}^{*} \xi\right)$. The boundary of U^{n+1} is split into two parts: one consists of $M^{n} \times 0$, the other of $M^{n} \times 1$, but with $S\left(\bar{g}_{2 k}^{*} \xi\right)$ replacing $D\left(\eta_{2 k}\right)$, the normal tubular neighborhood of the ($n-2 k$)-dimensional part of the fixed point set. Define an involution T^{\prime} on U^{n+1} by $T^{\prime}(x, t)=(T(x), t)$ on $M^{n} \times I$ and T^{\prime} is the bundle involution on each $D\left(\bar{g}_{2 k}^{*} \xi\right)$. Since T was an isometry T^{\prime} is well defined on U^{n+1}. $T^{\prime}=T$ on $M^{n}=M^{n} \times 0$ and is fixed point free on the rest of the boundary of U^{n+1}. Thus $\left\{T, M^{n}\right\}$ is in the image of s and the proof of (3.3) is completed.
(3.4) Theorem. All torsion of $\mathcal{O}_{*}\left(Z_{2}\right)$ has order 2.

Proof. Let $\gamma_{2 k} \rightarrow B O(2 k)$ be the line bundle associated with the double covering ($\tau, B S O(2 k)) \rightarrow B O(2 k)$. By (2.1),

$$
\mathbb{Q}_{n-2 k}(\tau, B S O(2 k))
$$

is isomorphic to

$$
\tilde{\Omega}_{n-2 k+1}\left(M\left(\gamma_{2 k}\right)\right)
$$

which is in turn isomorphis to

$$
\Omega_{n-2 k+1}\left(D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)\right)
$$

By Theorem (15.2) in [7] we know that if (X, A) is a CW-pair such that each $H_{m}(X, A ; Z)$ is finitely generated and has no odd torsion, then $\Omega_{m}(X, A)$ is isomorphic to $\sum_{p+q=m} H_{p}\left(X, A ; \Omega_{q}\right)$. All homology and cohomology will now have coefficients in Z, the integers, unless indicated otherwise. The free parts of $H_{m}\left(D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)\right)$ and of $H^{m}\left(D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)\right)$ are isomorphic, as are the torsion subgroups of

$$
H_{m}\left(D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)\right) \quad \text { and } \quad H^{m+1}\left(D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)\right)
$$

Since $B O(2 k)$ is a deformation retract of $D\left(\gamma_{2 k}\right)$ and $S\left(\gamma_{2 k}\right)=B S O(2 k)$, the exact cohomology triangle of the pair ($D\left(\gamma_{2 k}\right), S\left(\gamma_{2 k}\right)$) becomes

By computations of the cohomology rings of $B O(k)$ and $B S O(k)$ given in [4] and [11], this exact triangle becomes

where p_{m} in $H^{4 m}(B O(2 k))$ is a universal Pontrjagin class, $\tilde{p}_{m}=j^{*}\left(p_{m}\right)$ for $1 \leq m \leq k-1, X_{2 k}$ in $H^{2 k}(B S O(2 k))$ is the Euler class, $j^{*}\left(p_{k}\right)=X_{2 k}^{2}$, and j^{*} maps the 2 -torsion of $H^{*}(B O(2 k))$ onto the 2 -torsion of $H^{*}(B S O(2 k))$. Thus $H^{*}(B O(2 k), B S O(2 k))$ has no odd torsion or torsion of order 4 and hence neither do the \mathbb{Q}_{n}. The assertion then follows from Theorems (3.1) and (3.3).

We now consider the free part of $\mathcal{O}_{*}\left(Z_{2}\right)$. Since the image of

$$
\partial: \mathbb{Q}_{n} \rightarrow \Omega_{n-1}\left(Z_{2}\right)
$$

consists of torsion elements, for Q the rationals,

$$
\partial \otimes 1: Q_{n} \otimes Q \rightarrow \Omega_{n-1}\left(Z_{2}\right) \otimes Q
$$

is the zero homomorphism. We then have a split short exact sequence

$$
0 \rightarrow \Omega_{n}\left(Z_{2}\right) \otimes Q \xrightarrow{s \otimes 1} \mathcal{O}_{n}\left(Z_{2}\right) \otimes Q \xrightarrow{\alpha \otimes 1} Q_{n} \otimes Q \rightarrow 0
$$

and a sequence of isomorphisms

$$
\mathcal{O}_{n}\left(Z_{2}\right) \otimes Q \approx\left(\Omega_{n}\left(Z_{2}\right) \otimes Q\right) \oplus\left(Q_{n} \otimes Q\right) \approx\left(\Omega_{n} \otimes Q\right) \oplus\left(A_{n} \otimes Q\right)
$$

Since $\Omega_{*} \otimes Q$ is known to be $Q[C P(2), C P(4), \cdots][10]$, to determine the free part of $\mathcal{O}_{n}\left(X_{2}\right)$, we need only consider that of \mathbb{Q}_{n}. We have the isomorphism
(\#) $\mathbb{Q}_{n-2 k}(\tau, B S O(2 k)) \otimes Q \approx \sum_{p+q=n-2 k+1} H_{p}\left(B O(2 k), B S O(2 k) ; \Omega_{q}\right) \otimes Q$.
The bordism group Ω_{q} is isomorphic to a sum $Z \oplus \cdots \oplus Z \oplus Z_{2} \oplus \cdots \oplus Z_{2}$, so the free part of Q_{n} can be computed from the exact triangle

The free part of $\mathcal{O}_{*}\left(Z_{2}\right)$ is now easy to compute. In particular we have
(3.5) Theorem. If n is not a multiple of 4 , then $\mathcal{O}_{n}\left(Z_{2}\right) \otimes Q=0$.

Proof. We need only show the statement is true for $\mathbb{Q}_{n} \otimes Q$. First suppose n is odd. A now-zero case can occur in (\#) only if $q=4 m$, in which case
p is even. Then $H^{p-1}(B S O(2 k) ; Q)=0$ and

$$
j^{*}: H^{p}(B O(2 k) ; Q) \rightarrow H^{p}(B S O(2 k) ; Q)
$$

is a monomorphism, so $H^{p}(B O(2 k), B S O(2 k) ; Q)=0$. It then follows that $\mathcal{O}_{n}\left(Z_{2}\right) \otimes Q=0$.

For n even, in (\#) we must still have $q=4 m$, so now p is odd. Thus $H^{p}(B O(2 k) ; Q)=0$ and we have the exact sequence
$H^{p-1}(B O(2 k) ; Q) \xrightarrow{j^{*}} H^{p-1}(B S O(2 k) ; Q) \xrightarrow{\delta} H^{p}(B O(2 k)$, $B S O(2 k) ; Q)) \rightarrow \mathbf{0}$.

The homomorphism j^{*} can fail to be onto only if $p-1$ is an odd multiple of $2 k$, the dimension of the Euler class, plus $4 i$, so let

$$
p-1=4 a k+2 k+4 i
$$

Then $n=p+q+2 k-1=4(a k+m+k+i)$.

Bibliography

1. P. Anderson, Cobordism classes of squares of orientable manifolds, Ann. of Math., vol. 83 (1966), pp. 47-53.
2. M. F. Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc., vol. 57 (1961), pp. 200-208.
3. - Thom complexes, Proc. London Math. Soc., vol. 11 (1961), pp. 291-310.
4. A. Borel and F. Hirzebruch, On characteristic classes and homogeneous spaces; II, Amer. J. Math., vol. 81 (1959), pp. 317-382.
5. A. Borel, F. Hirzebruch, et al., Seminar on transformation groups, Ann. of Math. Studies, no. 46, Princeton, 1960.
6. R. O. Burdick, Manifolds fibered over the circle, dissertation, University of Virginia, 1966.
7. P. E. Conner and E. E. Floyd, Differentiable periodic maps, Erg. Mat., vol. 33, Springer, 1964.
8. A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math., vol. 78 (1963), pp. 223-255.
9. J. Milnor, Differential topology, mimeographed notes, Princeton Univ., 1958.
10. R. Thom, Quelques proprietés globales des variétés différentiables, Comm. Math. Helv., vol. 28 (1954), pp. 17-86.
11. E. Thomas, On the cohomology of the real Grassman complexes and the characteristic classes of n-plane bundles, Trans. Amer. Math. Soc., vol. 96 (1960), pp. 67-89.

Haverford College
Haverford, Pennsylvania
Western Maryland College
Westminister, Maryland

[^0]: Received November 4, 1968.
 ${ }^{1}$ The results in this paper were contained in the author's doctoral dissertation at the University of Virginia.

