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OF THEOREMS DUE TO CHAMBERS AND ROSE

BY

C. J. GRADDON

I. Introduction

In this paper we examine further the properties of the class 1I introduced
in [4] and studied again in [9] and [10]. We refer the reader to these papers
for our notation and terminology. The class 1/l resembles in many ways the
class of finite soluble groups. Indeed a result for finite soluble groups which
makes sense in the wider context usually holds for lI-groups. This is cer-
tainly the case with Gaschutz’ theory of formations which was carried over
to arbitrary QS-closed subclasses of 12 by Gardiner, Hartley and Tomkin-
son [4]. We have also extended [7] our earlier work [5], [6] on -reducers
and -subnormalizers to such classes ft. In addition the results of Alperin
[1] on system normalizers, Carter subgroups and the relation between them
in finite soluble groups, were extended to lI-groups in [9]. It is our aim to
show here that many of the results of Chambers [3] and Rose [15] hold in
appropriate subclasses of 12. Generalizing Chambers [3] we show, for ex-
ample, that if is a QS-closed subclass of 1I nd sturated -formation
then the g-normlizers are pronorml in -groups (i.e. -groups with
belin Sylow p-subgroups for ech prime p). This yields prtisl exten-
sion of Alperin’s [1, Theorem 1] for g-normlizers nd g-projectors of -groups. We shll lso show that the g-normlizers of -groups re charac-
terized as those subgroups which cover the g-central nd void the g-eccentric
chief fctors. We shall extend Chambers’ work in Section 2 nd Rose’s
in Section 3. In the third nd final section we shll consider the class of
lI-groups with pronorml basis normlizers. For example, we prove that

is lI-formtion (in the sense of [4, 1]) nd derive many of its properties
from our work [7] on reducers in lI-groups.

2. l-groups with abelian Sylow subgroups
If is a subclass of 1I we denote by A the class of -groups with abelian

Sylow p-groups for each prime p. In this section we study the class
showing in particular that most of Chambers’ results on finite soluble A-
groups can be extended to the class IIA or appropriate subclasses of it.

It is clear that if is a QS-closed subclass of 11 then so is A (cf. [4, 2.1]).

LEMMA 2.1. Every lI-group is soluble.

Proof. If G e 1I then G has a finite normal series with locally nilpotent
factors. Since 1I is QS-closed and every locally nilpotent ll-group is
abelian, each of these factors is abelian. Hence G is soluble as claimed.
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IEMMA 2.2. Suppose the ll-group G has abelian Sylow p-subgroups for
some prime p. Then the p-length (G) of G is at most one. In particular
lI.-groups have p-length at most one for all primes p.

Proof. Let P be a Sylow p-subgroup and H/K a p-chief factor of G.
Then H/K <_ PK/K and since P is abelian by hypothesis, P centralizes
H/K. Therefore P <_ O,(G) by [4, 3.8]. Hence G/O,(G) is a p’-group
and G has p-length at most one, as required.

Suppose p is prime and H is a Sylow p-subgroup of a subgroup H of
a 1/l-group G. We say H is p-normally embedded in G if H is a Sylow p-
subgroup of some normal subgroup of G. It is easy to see that H is p-normally
embedded in G if and only if H is a Sylow p-subgroup of the normal closure
of H in G.
We now use [7, Theorem 3.22] to establish the following lemma which will

later yield the pronormality of -normalizers in A-groups.

Suppose V <_ G e 1I and V is p-normally embedded in G for
Then V is pronormal in G.

Proof. Suppose S is a Sylow basis of G and S, S reduce into V for some
xeG. Then Sn Vand Sxn Vare Sylow bases of Vso there is some ele-
ment y e V such that S n V S n V V say, for each prime p.

Let p be any prime. Since V is p-normally embedded in G there is a nor-
mal subgroup M of G such that V is a Sylow p-subgroup of M. Now V
is contained in both S and S so it follows that V S, 1 M S M
and hence that V V.

Since p was an arbitrary prime and V (V all p} we therefore have V
Vx and hence xy Na(V). Thus x e No(V) and from [7, 3.22] we deduce
that V is pronormal in G.

LEMMA 2.4. Suppose the lI-group G has abelian Sylow p-subgroups for
some prime p, and H is a subgroup of G containing a p-compleent of G. Then
H is p-normally embedded in G.

Proof. Suppose H contains the p-complement S of G.
length at most one by 2.2 so G O,,(G).

Now G has p-

Suppose first that O,(G) 1. Then G has a unique Sylow p-subgroup
P which is abelian by hypothesis. Since G PS it follows that G HP
and hence that H P is a normal subgroup of G. But P contains the unique
Sylow p-subgroup of H so H P e Syl(H).
Now suppose that the general case prevails and let H be a Sylow p-sub-

group of H. Then HO,(G)/O,(G) is a Sylow p-subgroup of HO,(G)/
O,(G) so by the case just considered HO,(G)/O,(G) is a normal sub-
group of G/O,(G). Clearly H is a Sylow p-subgroup of the normal sub-
group H O,(G) of G, so H is p-normally embedded in G, as claimed.
We shall show later that in A-groups the -normalizers complement the
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-residual. To do this we require the following generalization of a result
of Taunt [17] (cf. also [14, VI 14.3]).

LEMM 2.5. Let p be a prime and suppose the Sylow p-subgroup P of the
e’11-group G is abelian. Then P n Z(G) 1

Here, as usual, G denotes the derived group and Z(G) the centre of G.

G’Proof of 2.5. Suppose that there exists a non-trivial element x in P
Z(G). Then x [yl, zl]... [y,, zn] for some y, zieG (1_ i_ n).
Let G (y, z 1

_
i

_
n}. Then G is a finite group and if P is a Sylow

p-subgroup of G containing P n G1 then PI G’ Z(G) 1, by the finite
case of the lemma [14, VI 14.3]. But this gives a contradiction since x
clearly belongs to P n GI n Z(G). The result now follows.

COROLLARY 2.6 If G is a lI.-group then G Z(G) 1.

For the remainder of this paper will denote a QS-closed subclass of 11,
[ an integrated -preformation function on a set of primes v, and the satu-
rated -formation defined by (cf. [4, 1]). If is a set of primes then, will denote the class of -groups with abelian Sylow p-subgroups for
each prime p in . In particular if p is a prime then . denotes the class
of -groups with abelian Sylow p-subgroups.

LEMMX 2.7. Suppose p r and G .. If S is a Sylow p-subgroup of
G and C(G) is the [(p)-centralizer of G then N(S C(G)) is p-normally
embedded in G.

Proof. Since S certainly normalizes S C(G) this result is an immediate
consequence of Lemma 2.4.

CoRo.RY 2.8. Suppose p and G ... If D is an -normalizer
of G then D is p-normally embedded in G.

Proof. Suppose D is the -normalizer of G associated with the Sylow
basis S of G. Then

S a D S a N(S, n C(G)

is a Sylow p-subgroup of both D and Na(S, C(G)) by [4, 2.13(i)]. The
result is now immediate from 2.7.
We now establish the following generalization of [3, 3.5].

TEORE 2.9. Suppose D is an -normalizer of the ,-group G. Then
D is p-normally embedded in G for all primes p and hence is pronormal in G.

Proof. If p e then D is p-normally embedded in G by 2.8. If p then
D 1 since D is a -group, so D is trivially p-normally embedded in G in
this case. Therefore D is p-normally embedded in G for all p, and so, by
2.3, is pronormal in G.
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COROLLARY 2.10. The -normalizers of .-groups are pronormal.

COROLLARY 2.11. If D1 and D are -normalizers of the ,,-group G
contained in the same -projector E of G then DI and D are conjugate in E.

Proof. There is an element y e G such that D D. Now D. is pro-
normal in G by 2.9, so D and D are conjugate in (D, D). The result
now follows since (D2, D) _< E.

Remark. Corollary 2.11 is a partial extension of a well-known result of
Alperin [1, Theorem 1], but the conclusion of 2.11 does not hold for all -groups. For in [12] Hawkes gives an example of a saturated *-formation

and an (R)*-(that is finite soluble) group G with -normalizers contained
but not conjugate in the same -projector of G.

LEMMA 2.12. Suppose the -group G has pronormal -normalizers and D
is an -normalizer of G contained in the subgroup H of G. Then D is contained
in some -normalizer of H.

Proof. Suppose D is the -normalizer of G associated with the Sylow
basis S of G and let S be a Sylow basis of G which reduces into both H and D.
Now S reduces into D by [4, 2.13(ii)] so x Ra(D), the reducer of D in G
(cf. [7, 3]). Since D is by hypothesis pronormal in G we have x eNo(D)
by [7, 3.22]. Thus D D is the -normalizer of G associated with the Sylow
basis S and S reduces into H. The result now follows from [4, 4.10].

COROLLARY 2.13. If D is an -normalizer of a .-group G contained in a
subgroup H of G then D is contained in some -normalizer of H.
Remark. Shamash [16, 4.3(2)] gives an example of a finite soluble group

G with a subgroup H containing a basis normalizer D of G such that D nor-
malizes no Sylow basis of H. In general therefore we cannot hope to improve
much upon 2.12.
We now discuss Chambers’ characterization of -normalizers (of finite

soluble A-groups) by the covering/avoiding property. We shall prove that a
similar characterization holds for the -normalizers of ,-groups.
LEMMA 2.14. Suppose p e and G e,. Let H be a p-subgroup of G

which avoids every -eccentric p-chief factor of G. Then

H <_ Na(S r C(G)

for every p-complement S of G.

Proof. Let S be a p-complement of G and N N(SnC(G)); S is
clearly contained in N. Let P 0,(G). Then G/P is a p’ group by 2.2
soG PS and hence G PN. Now0,(G) <_ P n N <_ P and P/O,(G)
is abelian by hypothesis, so P a N is a normal subgroup of PN G. Let
C=PN.
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By [4, 3.1] and the definition of C(G), N covers the -eentral and avoids
the -eccentric p-chief factors of G. Now N avoids every chief factor of G
between C and P so such factors are -eccentric. By hypothesis therefore
H avoids every chief factor of G between C and P. It follows that H

_
C.

]?or let x -. be the natural epimorphism of G onto G G/O,(G). Then
/

_
/5 since H is a p-subgroup of G. Suppose / is not contained in

and let be an element of/ . Then e/-( so there is a chief factor
7/I7ofOsuchthatO_< < 7_< /and e-IT. NowHavoids U/V
so / avoids /I7. Thus / n 7 / n I7 and we have a contradiction
since 2 e/ n [-/ n . In view of this contradiction we have
and hence H

_
C. Since C <: N the proof is complete.

LEMMA 2.15. Suppose H is a subgroup of a .,-group G and H avoids
every -eccentric chief factor of G. Then H is contained in some -normalizer
ofa.

Proof. We show first that H is a r-group. If this is not the case then we
find an element x of order q in H for some prime q e r. Let (A, V
be a chief series of G. Then x lies in some layer A/V (( e ). Since

xe(HnA) (Hn V),

H does not avoid A/V which by our hypothesis must then be -central.
Thus if A/V is a p-factor then p e r. But now xV is a non-trivial element
of order q in A/V so q p e , a contradiction. Therefore H is a -group
as claimed above.
Let S be a Sylow basis of G which reduces into H. If p e then H

H n S is a p-subgroup of G which avoids every -eccentric p-chief factor of
G, so, by 2.14,

H

_
No(S, n C(G) ).

Since H, H n S,

_
S,

_
No( S, n C(G) it follows that H HH,

normalizes S, n C(G). But H is a r-group so H H n S and hence

H

_
D S n nNo(S, n C(G)),

the -normalizer of G associated with the Sylow basis S of G. This estab-
lishes the lemma.

LEMMA 2.16. Suppose D is an -normalizer of a ..-group G.
(1) Every chief factor of G below the -residual G of G is -eccentric.
(2) D complements G in G.

Proof. (1) Suppose that the result is false and let H/K be an -central
chief factor of G below Gv. Then H/K is an -central minimal normal sub-
group of the ,-group G/K contained in (G/K) GVK/K, so in obtain-
ing our contradiction we may assume without loss of generality that H is an
-central minimal normal subgroup of G contained in Gv. Now G

_
Co(H)
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since is integrated and H is -central, so H

_
Z(GV). If H is a p-group

then p e r since H is -central, and Gv has abelian Sylow p-subgroups by
hypothesis. Therefore H n (GV) 1 by 2.5.

Let L Gv. Then the -residual L/L’ of G/L’ is abelian so, by [4, 4.12],
the -normalizers of G/L’ complement L/L’ in G/L’. Thus, by [4, 4.6],
every chief factor of G/L’ below L/L’ is -eccentric. But H L’ 1 so
H is G-isomorphic to HLt/LI. Thus HLI/L is an -central chief factor of
G/L’ below L/L’, which gives the desired contradiction and establishes (1)

(2) Suppose there is a non-trivial element x e D Gv. Then taking a
chief series of G passing through G we obtain a chief factor X/Y of G below
Gv such that x X-Y. Since

xe(DnX) (Dn Y)

the chief factor X/Y is -central [4, 4.6] which contradicts (1). Therefore
GVnD 1. Since G/GVe we also have G DG by [4, 4.6] and this
establishes (2).
We can now prove our generalization of [3, 3.6].

THEOREM 2.17. Suppose H

_
G e .4.. Then H is an -normalizer of

G if and only if H covers every -central chief factor of G and avoids every -eccentric chief factor of G.
Proof. -normalizers certainly have the required property by [4, 4.6] so

we need only show that a subgroup H with the given "covering/avoiding"
property is an -normalizer of G.

Suppose then that H covers every -central chief factor of G and avoids
every -eccentric chief factor of G. Now GIG belongs to so in particular
GIG is a r-group. Thus, by hypothesis, GIG has abelian Sylow p-subgroups
for each prime p, and it follows, as in the proof of 2.1, that G/G is soluble.
Now HG/G covers every chief factor of GIG since all such factors are -central. Therefore G HG by [11, Lemma 1]. Now H is contained in
some -normalizer D of G by 2.15, and D complements Gv in G by 2.16(2).
Therefore

D DnHG H(DG) H,

and the proof is complete.

Remar]c. Basis normalizers, and hence -normalizers, are not usually char-
acterized by their covering/avoiding property as an example of Hawkes [13]
demonstrates.
As a corollary to 2.16 we have:

COROLLARY 2.18. Suppose G A, and D is an -normalizer of G. Then

No(D) D (G c(n) ).

Proof. Let N N(D). Now D complements Gv in G by 2.16 (2), so
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N D(NnGV). Since [D, NnGv]_< DnGV= 1, it is clear that

N n G Gv n Ca(D).

But D n Gv 1 so we finally have N D )< (Gv n Ca(D)), as claimed.
If D is an -normalizer of a -group then Ra(D) Na(D) by 2.10 and

[7, 3.22]. It might be. hoped that D satisfies the stronger condition

Ro(D; ) Nz(D)

when stisfies (1.1), (1.2) nd (1.3) ot [8]. However this is not the cse
s the following example shows.

Example 2.19. We tke to be the class* of finite soluble groups nd
the sturted *-formtion of finite supersoluble groups. By [2, 6.1]

is defined by the integrated (R)*-formation function which ssigns to each
prime p the class [(p) of finite belin groups of exponent dividing p-1.
Clearly stisfies (1.1), (1.2) nd (1.3) of [8].
Let A be n lternating group of degree 4, nd let G be the wreath product

of a cyclic group Cv of order 7 by A, the wreath product being tken with
respect o the nturl permutation representation of A on 4 symbols. G
7- 3-2. G is certainly n (R)*- (i.e. finite soluble A-) group nd is the semi-
direct product of n elementary belin group N of order 7 with A. The
centre Z of G is the "diagonal" of the bse group N of G nd has order 7.
Let V denote the Sylow 2- nd U Sylow 3-subgroup of A. Then 1 < Z <
N NV NVU G is chief series of G. The supersoluble central chief
fctors re just the cyclic chief fctors [2, 6.3] so it follows, for example from
2.17, that D Z X U is supersoluble normlizer of G. U is super-
soluble projector of A so UN/N is supersoluble projector of GIN. Now
UN is supersoluble so by Gschutz’ Lemm [4, 5.3] UN is supersoluble pro-
jector of G. Since U is characteristic subgroup of D it follows that D is
not normal in UN. However UN <_ R(D; ) by [7, 3.11], so D is not nor-
ml in R(D; ), giving the desired example.
We conclude this section with brief discussion of the basis normlizers

of lI-groups. We hve the following special cses of our previous results,
the first of which generalizes result of Rose [15, 2.4].

TIEOnE 2.20. The basis normalizers of lI-groups are pronormal.

THEOREM 2.21. If H

_
G e 11 then H is a basis normalizer of G if and

only if H covers every central chief factor of G and avoids every eccentric chief
factor of G.

COOLLAn 2.22. Let D be a basis normalizer of a lI.4-group G.
(1) D complements the derived group of G in G,
(2) No(D) D X (G’ n C(D))
(3) N(D) C(D).
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Proof. Since every locally nilpotent lla-group is abelian it follows that
the LT-residual of G is in fact the derived group of G. Therefore (1) is
immediate from 2.16(2), and (2) follows from 2.18. The third statement
follows from the second since D, being a locally nilpotent lla-group, is abelian.

LEMMA 2.23. (1) Suppose D is a basis normalizer and N a normal sub-
group of the lI-group G. Then N (N n G’) (N n D).

(2) If N is an abelian normal subgroup of the lla-group G then

G!N (Nn X (NnZ(G))

GProof. (1) Since N is normal subgroup of G, IN G] <_ N n Thus
G’every chief factor of G lying between N n and N is central and so covered

by D, [4, 4.6]. Furthermore

N/N n <_ Z(GIN n G’
so that (D n N)(N n is a normal subgroup of G. Therefore

N (DnN)(NnG’);
for otherwise we can take a chief series of G passing through (D n N) (N n G’)
and N, and D will cover no chief factor in this series between (D n N) (N n G’)
and N. This establishes (1).

(2) If D is a basis normalizer of G then

N (NnG’)(NnD)
by (1) and D n 1 by 2.22. Thus to prove (2) it suffices to show that
N D N Z(G). Now Z(G) normalizes every Sylow basis of G so we
certainly have N Z(G) <_ N D. It therefore remains to show that
N n D <_ Z(G).

Let DT, NT denote the unique Sylow p-subgroup of D, N respectively.
Then NT is a characteristic subgroup of N and hence a normal subgroup of G.
If D is the normalizer of the Sylow basis S of G then

[NT n DT, ST,] <: NT n Sp, 1,

so Np n DT centralizes ST,. But NT n Dv _< ST and G is a lla-group, so
S is abelian and NT n D centralizes ST. Since G S, S it follows: that
N n D is contained in the centre of G. But N n DT is the unique Sylow
p-subgroup of N n D, so we finally have N n D <_ Z(G) which, as above,
completes the proof.
As we have already seen (2.1) every lla-group is soluble. This fact gives

us the following description of the Hirsch-Plotkin radical of a lla-group.

THEOREM 2.24. Suppose G is a lla-group of derived length n. Then the
Hirsch-Plotkin radical

p(G) Z(G) X Z(Gt) X X Z(G(n-i))
where G() denotes the i ’ term in the derived series of G.
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Proof. We argue by induction on the derived length n of G, the result
being clear when G is abelin. We my therefore suppose that n 1 and
p(G’) Z(G’) X X Z(G(-1)) by induction. Now p(G) is a locally
nilpotent subgroup of the lI-group G so is in fact abelian. Therefore

G’t)(G) (p(G) n X (p(G) n Z(e))

eby 2.23(2) But Z(G) is certainly contained in #(G) nd #(G)n
#(G’). Thus

p(G) Z(G) X p(G’) Z(G) X Z(G’) X X Z(G(-))
and the proof is complete.
Lemm 2.23 and Theorem 2.24 are generalizations of well-known results

of Taunt [17].
We close this section with a characterization of the normalizers of basis

normalizers of -groups.
THEOnE 2.25. Let D be a basis normalizer of a -group G, a let N

Ne(D). Suppose H is a subgroup of G containing D. Then H N if and
only if H covers every D-central and avoids every D-eccentric D-composition
factor of G.

Proof. N is the reducer of D in G by 2.20 and [7, 3.22], so certainly N covers
every D-central D-composition factor of G by [7, 3.21]. Suppose A/B is a
D-composition factor of G covered by N. Then A (N A)B and hence
[A, D] B since N centralizes D by 2.22. Therefore A/B, and hence every
D-composition fctor covered by N, is D-central. Since N certainly covers
or avoids every D-composition factor of G it follows that N covers every D-
central and avoids every D-eccentric D-composition factor of G.
Suppose conversely that H covers every D-central and avoids every D-

eccentric D-composition fuctor of G. Then N H by [7, 3.21]. By 2.13,
D normalizes some Sylow basis T of H. Since T reduces into N,(T) we
certainly have D T, for each prime p. But T is abelian since G is a -group, so D centralizes T, for each prime p.

Let (A, V e) be D-composition series of G. Then

(AoH, VH; )

is a D-series of H in which every non-trivial fctor is D-central. Intersect-
ing this series further with T we obtain a series of T in which every non-
trivial factor is centralized by D,, so, by [4, 4.11], D, centralizes T. Hence
D D D, centralizes T for ech prime p. Since H is generated by the
subgroups T it follows that H C(D). In particular therefore H N
and this, together with our previous inequality, completes the proof.

3. -Groops with pronormo] bosis normalizers

In this section we extend Rose’s results [15] on finite soluble groups with
pronorml system normlizers. In many cases our results can be proved
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using Rose’s techniques but we have tried where possible to give different
proofs using our work on reducers [7].

Using the language of [7, 4] we have the following restatement of [7, 3.22].

THEOREM 3.1. Suppose H

_
G 1I. Then the following three conditions

are equivalent:
(1) H is pronormal in G,
(2) Ro(H) No(H),
(3) N o(H) is the strong serializer of H in G.

We denote by (, ) the class of all -groups with pronormal -nor-
realizers. If >_ n L then, by [4, 5.1 and 5.7],

In any case we have a.,

_
(, ) by 2.9.

THEOREM 3.2. (, ) is a -formation.

Proof. It is clear that (, ) is Q-closed, so we need only show that
n R(, -) (, ).
Suppose G e n R($, ). Then there exist normal subgroups Nx of

G(k cA) such that G/Nx (, ) for each X e A and Nx Nx 1. Let
be an -normalizer of G and X e A. Then DNx/Nx is an -normalizer of

G/Nx so, by 3.1 and [7, 3.5],

R((D)Nx/Nx No/Nx(DN/Nx).

Therefore DN <3 RNx where R Ro(D), and hence [D, R]

_
DNx.

Since X was an arbitrary member of A we have, using [7, 5.1],

[D, R] _< nxx(DNx) D.

This shows that D is a normal subgroup of R and it follows that R No(D).
Therefore G e ($, ) by 3.1, and the proof is complete.

Remarlc. In generM the -formations (, ) are neither subgroup-
closed nor saturated. For Rose [15, 3.5 and 5.6] shows that the class (*,
*) has neither of these properties; (*, *) is of course the class of finite
soluble groups with pronormal system normalizers.
For the remainder of this section we shall consider the class (1I, L*)

which naturally extends (*;*) is the class of lI-groups with pronormal
basis normalizers. From 3.2 and 2.20 we have the following generalization
of [15, 2.4 and 3.4].

THEOREM 3.3. is a 12 formation containing the class 1Ia.

LEMMA 3.4. Suppose D is a basis normalizer of the lI-group G.
is pronormal in G if and only if No(D) is the serializer of D in G.

Then D

Proof. This result is an immediate consequence of 3.1 and [7, 5.11].
From this lemma we deduce the following generalization of [15, 6.1].
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THEOREM 3.5. If D is a basis norrnalizer of the ll-group G then G e ) if
and only if Na(D) is the serializer of D in G.

COROLLARY 3.6. Let D be a basis normalizer of the 1I n (L9t)a-group G and
C the unique Carter subgroup of G containing D. Then G e if and only if
D <C.

Proof. This result is immediate from 3.5 and [7, 5.5].

Remartc. Corollary 3.6 extends a similar result [5, 6.5] of Rose. He also
shows that the condition that G is a 11 n (91)-group is necessary in that
there exists finite soluble group G of nilpotent length 4 with basis normalizer
D and Crter subgroup C such that D <:1 C but G
From 2.12 we have the following extension of [15, 4.1].

LEMMA 3.7. Suppose D is a basis normalizer of the -group G contained in
a subgroup H of G. Then D is contained in some basis norrnalizer of H.

We also obtain an extension of [15, 4.2].

LEMMA 3.8. If G is a -group then each Carter subgroup of G contains a
unique basis normalizer of G.

Proof. Let C be Carter subgroup of G and suppose D, D are basis
normalizers of G contained in C (x e G). Since C is locally nilpotent we have
C <_ Ra(D) r Ro(D) by [7, 3.11]. Now C is abnormal in G by [4, 5.6] so
x e Ro(D). From 3.1 we now obtain D D, which completes the proof.

LEMMA 3.9. Let D be the normalizer of the Sylow basis of the ll-group G.
Then Ro(D) (Cs(D,) all primes p).

Proof. reduces into D by [4, 2.13] so

D, D n S <_ Cs(D,)
for each prime p. Thus D, X Cz(D,,) is a locally nilpotent subgroup of G
containing D and so, by [7, 5.10], lies in Ro(D). Hence (Cs(D,,); all p) _<
Ro(D). We complete the proof by showing that if A/B is a D-central D-
composition factor of G then D(A/B) N.,(S n DA) is contained in
(Cs(D,,); all p); the result then follows from [7, 5.10].
Let H D(A/B) Nz)( S n DA). S reduces into the locally nilpotent

subgroup H which contains D so H H n S centralizes H, and hence
D,. Thus H, <_ Cs,(D,) and hence

H _< (C(D,); all p),

as required.
We use Lemma 3.9 to establish the following extension of [15, 5.2].

THEOREM 3.10. Suppose the lI-group G has a normal Sylow p-subgroup P
such that G/P , for some prime p. Let D, D, denote the unique Sylow
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p- and Sylow p’-subgroup of the basis normalizer D of G respectively.
G if and only if D, <3 Cv(D,,).

Then

Proof. Suppose firstly that G e . Then Cv(D,)

_
No(D) by 3.1 and

3.9. Now D is a characteristic subgroup of D contained in Ce(D,) so it
follows that D <3 Cv(D,,).

Conversely suppose D <3 Ce(D,). Let D be the normalizer of the Sylow
basis S of G. Then S reduces into D by [4, 2.13], so D D n S D n P,
D, D n S,. If R Ro(D) then S also reduces into R by [7,,3.3]. Let
R, R n S,. Now DP/P is a basis normalizer of the -group G/P so, by
[7, 3.5] and 3.1, DP/P < RP/P. Therefore

[D,, R,,]

_
S., n DP S,, n D.,P D,,( S,, n P) D,,

Thus D, <3 R,,. If q p then Dq is a characteristic subgroup of D,, and
C&(Dq,)

_
R, by 3.9, so that C,(Dq,) normalizes Dq and hence D. Thus

Csq(Dq,)

_
No(D) for each prime q p. Now D <3 Ce(D,) and S P

so Cs,(D,)

_
No(D). Therefore Ra(D)

_
No(D)by 3.9. Hence

Ra(D) No(D) andGeby3.1.

COROAnY 3.11. Suppose the lI-group G has a normal abelian Sylow
p-subgroup P such that G/P , for some prime p. Then G .

If G e 1I and p, p, p, are distinct primes we say G has a Sylow tower
of complexion p, p, pr if G has a normal series 1 Go _< G _< _<
G, G such that

G/G_ Syl,(G/G_) for each i 1, r.

Now 11 n (L)

_
by [4, 5.1 and 5.6].

of 3.11 we obtain"
Thus by repeated application

COROLAaV 3.12. Suppose the lI-group G has a Sylow tower of complexion
p p p, where r >_ 3 and abelian Sylowp-subgroups for i <_ i <_ r 2.
Then G .
Remark. Corollaries 3.11 and 3.12 generalize similar results [15, 5.3 and

5.4] of Rose. He also shows [5, 5.6] that in general r 2 may not be replaced
by r 3 in 3.12.
Our final result is a generalization of [15, 5.5]. To prove it we require:

LEMMA 3.13. Suppose the lI-group G has a normal Sylow p-subgroup P
such that G/P e , for some prime p. Suppose further that for each locally
nilpotent ascendabnormal subgroup H of G there is a basis normalizer D of G
such that D <3 H. Then G e.

Proof. Let D be a basis normalizer of G. Then

D D n P

_
Cv(D,) Po.
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Now D* Dr, X P0 is a locally nilpotent subgroup of DP containing D so,
by [7 3.11], is contained in RDp(D). By [7, 4.23],/ is a Carter sub-
group of DP so/ is abnormal in DP by [4, 5.6]. Also DP/P is a basis nor-
realizer of G/P so, by [10, 4.6], is subabnormal in G/P. Therefore DP, and
hence/, is subabnormal in G. Since/ is locally nilpotent there is, by hy-
pothesis, a basis normalizer D of G such that D <:1/. Thus

p-, <_ -1 <_ No(D) <_ No(Dr,).

Now P <3 G so therefore

Po-1 <_ P n No(D,) Ce(Dr,) Po.

Hence P;-1 P0 since a subgroup of a locally finite group cannot be conju-
gate to a proper subgroup of itself (cf. the proof of [9, 3.1]). Thus P0 _<
No(D) <_ No(Dr). Since Dr _< P0 we therefore have D <:l P0, which by
3.10 is enough to prove the lemma.

THEOREM 3.14. Suppose the lI-group G has p-length at most one for each
prime p. Then G e if and only if for each locally nilpotent subgroup H which
is ascendabnormal in G there is a basis normalizer D of G such that D <3 H.

Proof. Suppose firstly that G e and let H be a locally nilpotent ascend-
abnormal subgroup of G. Then H contains some basis normalizer D of G
by [10, 4.6], and since G e ), Ro(D) No(D). But H <_ Ro(D) by [7, 3.11],
so D <:1 H giving the necessity of our condition.

Suppose conversely that for each locally nilpotent ascendabnormal sub-
group H of G there is a basis normalizer D of G such that D <:1 H. Let N
be a normal subgroup of G and H/N a locally nilpotent ascendabnormal sub-
group of GIN. Then H is ascendabnormal in G and if X is a Carter sub-
group of H then H/N XN/N and X is abnormal in H. Thus X is a locally
nilpotent ascendabnormal subgroup of G, so by hypothesis there is a basis
normalizer D of G such that D <3 X. Therefore DN/N is a basis normalizer
of GIN such that DN/N <3 XN/N H/N. Since GIN certainly has p-
length at most one for each prime p, the hypothesis on G carry over to GIN
and hence to every factor group of G. We are now in a position to prove the
result by induction on the L91-length of G.

If G has L-length at most two then there is nothing to prove since the
class lI n (L9l) _< . Suppose then that (G) > 2 and let R p(G). Then,
as shown above, G/R satisfies the same hypotheses as G so by induction
G/R e . Let p be any prime. Then R <_ Or,(G) so G/O,r(G) e since
this class is Q-closed by 3.3. Now G has p-length at most one so G/Or,(G)
has a normal Sylow p-subgroup, namely Or,(G)/O,,(G). Since G/Or,(G)
satisfies the same hypotheses as G and G/Or,T(G) we have G/O,(G)
by 3.13. But is a lI-formation (3.3) and fly Or,(G) 1, so we finally
have G e , which completes the proof.
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The material in this paper forms part, of a thesis submitted to the Uni-
versity of Warwick in 1971 for the degree of Doctor of Philosophy. I would
like to thank my supervisor Dr. B. ttartley for all his help and encouragement.
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