\mathfrak{F} -SPEED, \mathfrak{F} -ABNORMAL DEPTH AND (R, \mathfrak{F}) -CHAINS IN CERTAIN LOCALLY FINITE GROUPS

BY

C. J. GRADDON

1. Introduction

This paper is essentially a continuation of [5] to which we refer for most of our notation and terminology. In [5] we extended the theory of \mathfrak{F} -reducers to any QS-closed subclass \mathfrak{R} of the class \mathfrak{U} introduced in [2] and studied further in [6] and [7]. In this paper we consider certain invariants of \mathfrak{R} groups and their subgroups which arise naturally from the study of \mathfrak{F} -reducers.

As in [5], \Re will denote an arbitrary QS-closed subclass of \mathfrak{U} and $\mathfrak{F} = \mathfrak{F}(\mathfrak{f})$ the saturated \Re -formation defined by the \Re -preformation function \mathfrak{f} on the set of primes π . Furthermore, \mathfrak{f} is assumed to be R_0 -closed, i.e.,

(1.1)
$$\Re \cap R_0 \mathfrak{f}(p) = \mathfrak{f}(p) \quad \text{for all } p \in \pi.$$

It will be convenient to make two further assumptions which were not made in [5], namely

(1.2)
$$\pi$$
 is the set of all primes,

and

(1.3)
$$f(p) = Sf(p)$$
 for all primes p .

The majority of our results seem to require the presence of both these conditions though a few do hold without either and some with the presence of only one.

We shall also assume that all groups belong to the class \mathfrak{U} , unless the contrary is explicitly stated.

In section two we define two "convergence processes", similar to those given in Sections 3, 4 of [3], from the second of which we obtain the first of our invariants—the \mathfrak{F} -speed of a \mathfrak{R} -group. The convergence processes give ways of constructing an \mathfrak{F} -projector of an arbitrary \mathfrak{R} -group G as the limiting term of a "converging" series of subgroups of G. The first method is somewhat unsatisfactory in that at each stage one has to "construct" an \mathfrak{F} -projector of some subgroup of G. The second approach, which consists of successively taking \mathfrak{F} -normalizers and \mathfrak{F} -reducers, overcomes the previous objection but is, more often than not, too cumbersome for the actual computation of \mathfrak{F} -projectors. The processes we shall describe generalize not only

Received January 26 1972.

those in [3] but also similar constructions for Carter subgroups of finite soluble groups due to Carter [1], Fischer (unpublished), Mann [10] and Rose [12]. The \mathfrak{F} -speed of a \mathfrak{R} -group G is, roughly speaking, the number of steps that have to be taken before the second convergence process becomes stationary, and is denoted by $i_{\mathfrak{F}}(G)$. The \mathfrak{F} -speed of G is easily seen to be an invariant of G, and is always finite even though the groups we consider may well be infinite. For each non-negative integer r the class $r(\mathfrak{R}, \mathfrak{F})$, of \mathfrak{R} -groups with \mathfrak{F} -speed at most r, is a \mathfrak{R} -formation (Theorem 2.9) containing the class $\mathfrak{R} \cap (\mathfrak{LR})^{2r}\mathfrak{F}$. We have been unable to decide whether $r(\mathfrak{R}, \mathfrak{F})$ is a saturated \mathfrak{R} -formation (except in trivial cases) though we do have an example (2.13) to show that it need not be subgroup-closed.

Suppose $H \leq G \epsilon \mathfrak{R}$. We say that a chain $(\Lambda_{\sigma}, V_{\sigma}; \sigma \epsilon \Omega)$ from H to G (cf. [§4, 5]) is \mathfrak{F} -balanced if V_{σ} is either \mathfrak{F} -abnormal or \mathfrak{F} -serial in Λ_{σ} , for each $\sigma \epsilon \Omega$. Now a maximal subgroup of a \mathfrak{R} -group is either \mathfrak{F} -normal (and hence \mathfrak{F} -serial) or \mathfrak{F} -abnormal, so if $(\Lambda_{\sigma}, V_{\sigma}; \sigma \epsilon \Omega)$ is a maximal chain from H to G then it is \mathfrak{F} -balanced. Thus every subgroup can be joined to G by an \mathfrak{F} -balanced chain. We shall be primarily interested in subgroups H of G which can be joined to G by a finite \mathfrak{F} -balanced chain, i.e., a chain

$$H = H_0 \le H_1 \le \cdots \le H_n = G$$

such that H_i is either \mathfrak{F} -abnormal or \mathfrak{F} -serial in H_{i+1} $(0 \leq i < n)$. When such a chain exists we denote by $a^{\mathfrak{F}}(G:H)$ the minimal number of \mathfrak{F} -abnormal links in a finite \mathfrak{F} -balanced chain from H to G. $a^{\mathfrak{F}}(G:H)$ is called the \mathfrak{F} *abnormal depth of* H in G. It seems unlikely that every subgroup of G should be joined to G by a finite \mathfrak{F} -balanced chain though we have no example to the contrary. However if $G \in \mathfrak{N} \cap \mathfrak{A} \mathfrak{F}$ then every subgroup of G has \mathfrak{F} -abnormal depth at most one in G (Theorem 3.2). More generally, every \mathfrak{F} -subgroup of $G \in \mathfrak{N} \cap (\mathfrak{L}\mathfrak{N})^t \mathfrak{F}$ $(t \geq 0)$ has \mathfrak{F} -abnormal depth at most t in G; moreover if His an \mathfrak{F} -ascendabnormal \mathfrak{F} -subgroup of G (in the sense of [7]) then $a^{\mathfrak{F}}(G:H) \leq$ t-1 (provided $t \geq 2$) (Theorems 3.1 and 3.3). The concepts \mathfrak{F} -balanced chain and \mathfrak{F} -abnormal depth generalize similar concepts considered by Rose [13] for finite soluble groups.

In Section 4 we consider (R, \mathfrak{F}) -chains which may be thought of as canonical \mathfrak{F} -balanced chains. They generalize the Q-chains introduced by Mann in [11] and lead to our third and final invariant which we denote by $b^{\mathfrak{F}}(G:H)$ (when defined). It turns out that $a^{\mathfrak{F}}(G:H) \leq b^{\mathfrak{F}}(G:H)$ when the latter is defined and that the same bounds apply to $b^{\mathfrak{F}}(G:H)$ as apply to $a^{\mathfrak{F}}(G:H)$ in the cases mentioned earlier. Finally we generalize another of Rose's concepts and consider \mathfrak{F} -contranormal subgroups; a subgroup being \mathfrak{F} -contranormal in a \mathfrak{R} -group G if it is a subgroup of no proper \mathfrak{F} -serial subgroup of G. Using some rather elementary results on these subgroups we sharpen Theorems 3.8 and 4.8 to obtain the fact that if H is an \mathfrak{F} -subgroup of $G \in \mathfrak{R} \cap (\mathfrak{L}\mathfrak{N})^t \mathfrak{A}\mathfrak{F}$ then $b^{\mathfrak{F}}(G:H)$ is at most t. Here, as usual, \mathfrak{A} denotes the class of abelian groups.

2. The convergence processes and \mathfrak{F} -speed

The first convergence process.

THEOREM 2.1. Let D be an arbitrary \mathfrak{F} -subgroup of the \mathfrak{R} -group G and define subgroups R_i , D_i of G inductively as follows:

$$R_0 = G, \qquad D_0 = D,$$

and for $i \geq 0$,

$$R_{i+1} = R_G(D_i; \mathfrak{F}),$$

and D_{i+1} any \mathfrak{F} -projector of R_{i+1} .

Then this process yields an \mathfrak{F} -projector of G; more precisely, if

$$G \in \Re \cap (L \Re)^t \mathfrak{F} \quad (t \ge 0)$$

then D_{t+1} is an \mathfrak{F} -projector of G.

Proof. Since every \Re -group has finite $\mathfrak{L}\mathfrak{N}$ -length it is clearly sufficient to prove the final statement which we do by induction on t.

If t = 0 then $G \in \mathfrak{F}$ so by [5, 3.12] $G = R_{\mathfrak{G}}(D; \mathfrak{F})$, i.e., $G = R_1$. Thus D_1 is an \mathfrak{F} -projector of G by construction, so the induction begins.

If $t \ge 1$ let $R = \rho(G)$, the Hirsch-Plotkin radical of G. It is immediate, from [5, 3.4] and the "homomorphism invariance" of \mathfrak{F} -projectors, that the subgroups $D_i(G/R) = D_i R/R$ and $R_i(G/R) = R_i R/R$ are the *i*th terms in a convergence process for G/R, the first term in this series being the \mathfrak{F} -subgroup DR/R of G/R. Now $G/R \in \mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})^{t-1}\mathfrak{F}$ so by induction $D_i R/R$ is an \mathfrak{F} projector of G/R. Since $D_i \in \mathfrak{F}$ by construction, there is an \mathfrak{F} -projector E of $D_i R$ containing D_i by [2, 5.12]. Moreover E is an \mathfrak{F} -projector of G by Gaschütz Lemma [2, 5.3]. By 1.3 and [5, 3.11 (ii)], $E \leq R_G(D_i; \mathfrak{F}) = R_{i+1}$. Thus E is an \mathfrak{F} -projector of R_{i+1} and hence is conjugate in R_{i+1} to D_{i+1} . In particular therefore D_{i+1} is an \mathfrak{F} -projector of G, as claimed. Notice that $D_{i+1} = D_i = R_j$ for each $i \ge t + 1$ and $j \ge t + 2$ by [5, 3.18(i)] and 1.2.

The second convergence process.

LEMMA 2.2. Let D be the F-normalizer associated with the Sylow basis S of of the \Re -group of G. Then D is contained in the F-normalizer of $R_{\sigma}(D; \mathfrak{F})$ associated with the Sylow basis S $\cap R_{\sigma}(D; \mathfrak{F})$.

Proof. By [2, 2.13(ii)], **S** reduces into D, so by [5, 3.3], **S** reduces into every subgroup of G containing $R_G(D)$. In particular, by [5, 3.1], **S** reduces into $R_G(D; \mathfrak{F})$. The result is now immediate from [2, 4.10].

The second convergence is defined in the following way. Let **S** be a Sylow basis of the \Re -group G and let D be the \mathfrak{F} -normalizer of G associated with **S**. Put $D_0 = D_1 = D$ and $R_0 = G$. Let D_2 be the \mathfrak{F} -normalizer of $R_1 = R_G(D; \mathfrak{F})$ associated with the Sylow basis $\mathbf{S} \cap R_1$. Then $D_0 = D_1 \leq D_2$ by 2.2. The same argument shows that $D_2 \leq D_3$, the \mathfrak{F} -normalizer of $R_2 = R_{R_1}(D_2; \mathfrak{F})$ associated with the Sylow basis $(S \cap R_1) \cap R_2 = S \cap R_2$. Continuing in this way we obtain two sequences of subgroups of G,

$$(1) D = D_0 = D_1 \leq D_2 \leq D_3 \leq \cdots$$

$$(2) G = R_0 \ge R_1 \ge R_2 \ge R_3 \ge \cdots$$

where for each $i \ge 1$, $R_i = R_{R_{i-1}}(D_i; \mathfrak{F})$ and D_i is the \mathfrak{F} -normalizer of R_{i-1} associated with the Sylow basis $\mathbf{S} \cap R_{i-1}$, i.e.

$$D_{i} = \bigcap_{p} N_{R_{i-1}}(S_{p'} \cap C_{p}(R_{i-1})).$$

LEMMA 2.3 For each $i \ge 0, D_i \le D_{i+1} \le R_{i+1} \le R_i$.

Proof. We certainly have $D_i \leq D_{i+1} \leq D_{i+2}$ and $R_{i+1} \leq R_i$ for each $i \geq 0$. But by construction D_{i+2} is an \mathfrak{F} -normalizer of R_{i+1} , so in particular $D_{i+2} \leq R_{i+1}$. The result is now clear.

We therefore have

(3)
$$D = D_0 = D_1 \le D_2 \le D_3 \le \cdots \le R_3 \le R_2 \le R_1 \le R_0 = G$$

and, as in the proof of 2.2, **S** reduces into each D_i and R_i . Thus by [7, 5.8] (cf. also [5, 2.9])

(4) $\mathbf{S}^{\mathfrak{F}}$ strongly \mathfrak{F} -reduces into D_i , R_i for each $i \geq 0$.

Remark. Where we want to specify the group G in the above process we shall write $D_i = D_i(G)$ and $R_i = R_i(G)$. It is clear from the conjugacy of Sylow bases that the series obtained above, in some sense, is an invariant of G; for the corresponding series for the Sylow basis S^x , of G is just the conjugate, by x, of the series (3).

As an immediate consequence of [5, 3.4] and the "homomorphism invariance" of \mathcal{F} -normalizers we have

LEMMA 2.4. If $N \triangleleft G \epsilon \Re$ then

$$D_i(G/N) = D_i(G)N/N$$
 and $R_i(G/N) = R_i(G)N/N$ for each $i \ge 0$.

LEMMA 2.5. The sequences (3) converges. More precisely:

- (1) if $G \in \Re \cap (L\Re)^{2t} \mathfrak{F}$ $(t \ge 0)$ then $D_i = D_t = R_t = R_i$ for all $i \ge t$,
- (2) if $G \in \Re \cap (\mathfrak{L} \mathfrak{R})^{2t+1} \mathfrak{F}$ $(t \ge 0)$ then $D_i = D_{t+1} = R_{t+1} = R_i$ for all $i \ge t+1$.

Proof. Since every \Re -group has finite $L\Re$ -length it suffices to prove (1) and (2) which we do by a simultaneous induction on t.

Case (a). t = 0. (1) In this case $G \in \mathfrak{F}$ so that D = G and $R_1 = G$. Hence $D_i = D_0 = G = R_0 = R_i$ for $i \ge 0$, as required.

(2) Here $G \in \Re \cap (L\mathfrak{N})\mathfrak{F}$ so that D is an \mathfrak{F} -projector of G by [2, 5.1]. Therefore, by 1.2 and [5, 3.18(i)], $R_1 = D$ and hence $D_i = D_1 = R_1 = R_i$ for $i \geq 1$. Case (b). t > 0. (1) By [5, 5.6],

$$R_1 = R_{\mathcal{G}}(D; \mathfrak{F}) \epsilon \mathfrak{K} \cap (\mathfrak{L}\mathfrak{N})^{2(t-1)} \mathfrak{F}.$$

Thus by induction, $D_j(R_1) = D_{t-1}(R_1) = R_{t-1}(R_1) = R_j(R_1)$ for $j \ge t - 1$. Now it is clear that, if we begin the construction for R_1 with the Sylow basis **S** n R_1 of R_1 then $D_j(R_1) = D_{j+1}(G)$ and $R_j(R_1) = R_{j+1}(G)$ for each $j \ge 0$. Therefore $D_i = D_t = R_t = R_i$ for each $i \ge t$, as required.

(2) In this case $R_1 = R_{\sigma}(D; \mathfrak{F}) \epsilon \mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})^{2(\tilde{t}-1)+1}\mathfrak{F}$ and a similar argument to that in case (1) gives $D_i = D_{t+1} = R_{t+1} = R_i$ for each $i \geq t + 1$, which completes the induction argument.

Remark. We shall show later that the results in 2.5 are best possible in the sense that there exists a QS-closed subclass \mathfrak{R} of \mathfrak{l} , a saturated \mathfrak{R} -formation \mathfrak{F} satisfying (1.1), (1.2), and (1.3), and groups G_{2t} , G_{2t+1} , in \mathfrak{R} such that

$$\begin{split} G_{2t} \epsilon \, \Re \, \cap \, (\mathbf{L} \mathfrak{N})^{2t} \mathfrak{F} \quad \text{but} \quad D_{t-1} \neq R_{t-1} \, , \\ G_{2t+1} \epsilon \, \Re \, \cap \, (\mathbf{L} \mathfrak{N})^{2t+1} \mathfrak{F} \quad \text{but} \quad D_t \neq R_t \, , \end{split}$$

for each $t \geq 1$.

LEMMA 2.6. For each integer $i \geq 1$, $R_i = R_g(D_i; \mathfrak{F})$.

Proof. We again argue by induction on *i*. If i = 1 then $R_1 = R_{\sigma}(D_1; \mathfrak{F})$ by definition so we may assume that i > 1 and that, by induction, $R_{i-1} = R_{\sigma}(D_{i-1}; \mathfrak{F})$. Now $D_{i-1} \leq D_i \epsilon \mathfrak{F}$, so by 1.3 and [5, 3.11(ii)], $R_{\sigma}(D_i; \mathfrak{F}) \leq R_{i-1}$. Now **S** reduces into R_{i-1} and D_i , so by [5, 2.6],

$$R_{G}(D_{i} ; \mathfrak{F}) = \langle x \epsilon G; \mathbf{S}^{xy} \searrow_{\mathfrak{F}} D_{i} \rangle$$
$$R_{i} = R_{R_{i-1}}(D_{i}, \mathfrak{F}) = \langle y \epsilon R_{i-1} ; (\mathbf{S} \cap R_{i-1})^{y\mathfrak{F}} \searrow_{\mathfrak{F}} D_{i} \rangle.$$

If $x \in G$ and $\mathbf{S}^{x\mathfrak{F}} \searrow_{\mathfrak{F}} D_i$ then, from above, $x \in R_{i-1}$. Since $\mathbf{S}^{x\mathfrak{F}}$ clearly \mathfrak{F} -reduces into R_{i-1} to $(\mathbf{S} \cap R_{i-1})^{x\mathfrak{F}}$ it follows, from [5, 2.16], that $(\mathbf{S} \cap R_{i-1})^{x\mathfrak{F}}$ \mathfrak{F} -reduces into D_i . Thus $x \in R_i$ and hence $R_{\sigma}(D_i; \mathfrak{F}) \leq R_i$. From [5, 3.10] we now obtain the result.

If $G \in \mathfrak{R}$ we let $E(\mathbf{S})$ be the limit of the sequence (3), i.e. if $G \in \mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})^{2t}\mathfrak{F}$ then $E(\mathbf{S}) = R_t = D_t$ and if G is a $\mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})^{2t+1}\mathfrak{F}$ -group then $E(\mathbf{S}) = R_{t+1} = D_{t+1}$. Since each subgroup D_t belongs to \mathfrak{F} we have, from 2.6,

(5)
$$E(\mathbf{S}) = R_{\mathbf{G}}(E(\mathbf{S});\mathfrak{F}) \ \epsilon \mathfrak{F}.$$

Thus, by [5, 3.18(ii)], we have

THEOREM 2.7. $E(\mathbf{S})$ is a \mathfrak{F} -projector of G.

COROLLARY 2.8. E(S) is the unique F-projector of G into which S reduces and into which S[§] F-reduces. Moreover S[§] strongly F-reduces into E(S).

Proof. By construction S reduces and $S^{\mathfrak{F}}$ strongly \mathfrak{F} -reduces into each D_i and R_i . In particular therefore S reduces and $S^{\mathfrak{F}}$ strongly \mathfrak{F} -reduces into

 $E(\mathbf{S})$. If $x \in G$ and $\mathbf{S}^{\mathfrak{F}}$ Foreduces into $E(\mathbf{S})^{x}$ then $x \in R_{\sigma}(E(\mathbf{S}); \mathfrak{F}) = E(\mathbf{S})$, so that $E(\mathbf{S})^{x} = E(\mathbf{S})$. Thus $E(\mathbf{S})$ is the unique \mathfrak{F} -projector of G into which $\mathbf{S}^{\mathfrak{F}}$ Foreduces. Finally, by [5, 2.6(iii)], $E(\mathbf{S})$ is the unique \mathfrak{F} -projector of G into which \mathbf{S} reduces.

If G is a \Re -group we define the \mathfrak{F} -speed of G to be the least integer $i = i_{\mathfrak{F}}(G)$ such that $R_i(G) = E(\mathbf{S})$. It is immediate from the conjugacy of Sylow bases, that $i_{\mathfrak{F}}(G)$ is an invariant of G.

If r is a non-negative integer we define $r(\Re, \mathfrak{F})$ to be the class of all \Re groups with \mathfrak{F} -speed at most r, i.e.,

$$r(\Re, \mathfrak{F}) = \{G \in \Re; i_{\mathfrak{F}}(G) \leq r\}.$$

THEOREM 2.9. $r(\Re, \mathfrak{F})$ is a \Re -formation for each non-negative integer r.

Proof. Suppose S is a Sylow basis and N a normal subgroup of a \Re -group G. Then, by 2.4,

(6)
$$E(\mathbf{S}N/N) = E(\mathbf{S})N/N.$$

Since the sequence (3) becomes stationary when it reaches $E(\mathbf{S})$, it is clear that the \Re -group G belongs to $r(\Re, \mathfrak{F})$ if and only if $R_r(G) = E(\mathbf{S})$.

We show first that $r(\mathfrak{A}, \mathfrak{F})$ is Q-closed. Indeed let N be a normal subgroup of the $r(\mathfrak{A}, \mathfrak{F})$ -group G. Then $R_r(G) = E(\mathbf{S})$ so, by 2.4 and (6), $R_r(G/N) = E(\mathbf{S}N/N)$. Thus by our previous remarks, $G/N \epsilon r(K, \mathfrak{F})$. This shows that $r(\mathfrak{A}, \mathfrak{F})$ is Q-closed.

If $G \in \Re \cap R(r(\Re, \mathfrak{F}))$ then there exist normal subgroups N_{λ} of $G(\lambda \in \Lambda)$ such that $G/N_{\lambda} \in r(\Re, \mathfrak{F})$ for each $\lambda \in \Lambda$ and $\bigcap_{\lambda \in \Lambda} N_{\lambda} = 1$. Thus, by 2.4 and (6) we have $R_r(G)N_{\lambda} = E(\mathbf{S})N_{\lambda}$ for each $\lambda \in \Lambda$. Hence, by [2, 3.6(i)], $R_r(G) \leq \bigcap_{\lambda \in \Lambda} (E(\mathbf{S})N_{\lambda}) = E(\mathbf{S})$. But $E(\mathbf{S}) \leq R_r(G)$ by construction, so we must have $R_r(G) = E(\mathbf{S})$. Thus $G \in r(\Re, \mathfrak{F})$ and hence $\Re \cap R(r(\Re, \mathfrak{F})) =$ $r(\Re, \mathfrak{F})$. This shows that $r(\Re, \mathfrak{F})$ is a \Re -formation, as claimed.

Thus for every saturated \Re -formation \Im satisfying (1.1), (1.2) and (1.3) we obtain a series of \Re -formations

(7)
$$0(\mathfrak{R},\mathfrak{F}) \leq 1(\mathfrak{R},\mathfrak{F}) \leq 2(\mathfrak{R},\mathfrak{F}) \leq \cdots$$

and it is immediate, from Lemma 2.5, that for each $t \ge 0$,

(8)
$$\Re \cap (L\Re)^{2t}\mathfrak{F} \leq t(\mathfrak{R},\mathfrak{F}), \quad \Re \cap (L\Re)^{2t+1}\mathfrak{F} \leq t+1(\mathfrak{R},\mathfrak{F}).$$

Since every \Re -group has finite $L\Re$ -length we also have

(9)
$$\Re = \bigcup_{n=0}^{\infty} n(\Re, \mathfrak{F})$$

Lemma 2.10. (1) $0(\Re, \Im) = \Im$

(2) $1(\Re, \mathfrak{F})$ contains the class of \Re -groups in which the \mathfrak{F} -normalizer and \mathfrak{F} -projectors coincide.

(3) $\Re \cap (L\Re)^2 t(\Re, F) \leq t + 1(\Re, \Im)$ for each $t \geq 0$.

Proof. (1) $G \in O(\Re, \mathfrak{F}) \Leftrightarrow G = R_0 = E(\mathbf{S})$. Therefore $O(\Re, \mathfrak{F}) = \mathfrak{F}$. (2) If the \mathfrak{F} -normalizers and \mathfrak{F} -projectors of the \mathfrak{R} -group G coincide, then with the usual notation, $D = E(\mathbf{S})$. Thus $R_1(G) = R_G(D; \mathfrak{F}) = D = E(\mathbf{S})$ by [5, 3.18(i)]. Hence $G \in 1(\mathfrak{K}, \mathfrak{F})$.

(3) Suppose $G \in \mathbb{R} \cap (\mathfrak{L}\mathfrak{N})^2 t(\mathfrak{R}, \mathfrak{F})$ and let F denote the $(\mathfrak{L}\mathfrak{N})^2$ -radical of G, i.e., $F/\rho(G) = \rho(G/\rho(G))$. Then $G/F \in t(\mathfrak{R}, \mathfrak{F})$ since this class is Q-closed by 2.9. Thus, by 2.4 and (6), $R_t(G)F = E(\mathbf{S})F$. Hence

$$R_t(G) \in \Re \cap (\mathfrak{L} \mathfrak{N})^2 \mathfrak{F}.$$

Now $D_{t+1}(G)$ is an \mathcal{F} -normalizer of $R_t(G)$ so, by [5, Theorem 5.2],

$$R_{t+1}(G) = R_{R_t(G)}(D_{t+1}(G); \mathfrak{F})$$

is an \mathfrak{F} -projector of $R_t(G)$. Since $E(\mathbf{S})$ is an \mathfrak{F} -projector of $R_t(G)$ contained in $R_{t+1}(G)$ we must have $R_{t+1}(G) = E(\mathbf{S})$. Thus $G \in t + 1(\mathfrak{R}, \mathfrak{F})$ as required.

COROLLARY 2.11. If $t \ge 0$ then $t(\Re, \Im) < t + 1(\Re, \Im)$ if and only if $t(\Re, \Im) < \Re$.

Proof. It is clear that we need only show that $t(\mathfrak{R}, \mathfrak{F})$ is a proper subclass of $t + 1(\mathfrak{R}, \mathfrak{F})$ if it is a proper subclass of \mathfrak{R} . Suppose that this is not the case. Then, by 2.10(3), we have

$$\Re \cap (\mathfrak{L}\mathfrak{N})^{2} t(\mathfrak{R},\mathfrak{F}) \leq t+1(\mathfrak{R},\mathfrak{F}) = t(\mathfrak{R},\mathfrak{F})$$

whence

$$\Re \cap (\mathfrak{L}\mathfrak{N})^2 t(\mathfrak{R},\mathfrak{F}) = t(\mathfrak{R},\mathfrak{F}).$$

An easy induction argument now shows that for each $n \ge 0$,

$$\Re \cap (L\Re)^n t(\Re, \mathfrak{F}) = t(\mathfrak{K}, \mathfrak{F}).$$

Since every \Re -group has finite $\iota \Re$ -length it follows that $\Re \leq t(\Re, \mathfrak{F})$ contradicting the hypothesis that $t(\Re, \mathfrak{F})$ is a proper subclass of \Re . This contradiction completes the proof.

From 2.10 and 2.11 we see that the ascending sequence (7) commences at \mathfrak{F} and becomes stationary only when it reaches \mathfrak{R} .

COROLLARY 2.12. $G \in 1(\Re, \mathfrak{F})$ if and only if $E(\mathbf{S})$ is the strong \mathfrak{F} -serializer of D in G.

Proof. Suppose firstly that $G \in 1(\mathfrak{R}, \mathfrak{F})$. Then $R_{\mathfrak{g}}(D; \mathfrak{F}) = R_1 = E(\mathbf{S})$. Now $D \mathfrak{F}$ -ser $E(\mathbf{S})$ by 1.2 and [5, 5.9(i)], so in this case D is \mathfrak{F} -serial in $R_{\mathfrak{g}}(D; \mathfrak{F})$. Thus, by [5,41.7], $E(\mathbf{S})$ is the strong \mathfrak{F} -serializer of D in G.

If on the other hand $E(\mathbf{S})$ is the strong \mathfrak{F} -serializer of D in G then $E(\mathbf{S}) = R_{\mathcal{G}}(D; \mathfrak{F})$ by definition (cf. [5, §4]). Thus $R_1 = E(\mathbf{S})$ and $G \in 1(\mathfrak{K}, \mathfrak{F})$ as required.

From 1.2 and 2.10 we see that $O(\mathfrak{K}, \mathfrak{F})$ is both subgroup-closed and saturated. We have been unable to decide whether $t(\mathfrak{K}, \mathfrak{F})$ is saturated for $t \geq 1$. However, we now give an example to show that the classes $t(\mathfrak{K}, \mathfrak{F})$

are in general not subgroup-closed. This example also shows that the sequence (7) can be strictly ascending and that (1), (2) in Lemma 2.5 are best possible.

Example 2.13. We take $\Re = \mathfrak{S}^*$ the class of finite soluble groups and $\mathfrak{F} = \mathfrak{N}^*$ the class of finite nilpotent groups. Certainly these satisfy (1.1), (1.2) and (1.3) and in this case the \mathfrak{N}^* -reducers are exactly the reducers.

If G is an A-group (that is a finite soluble group with abelian Sylow p-subgroups for each prime p) then the basis (i.e. system) normalizers of G are pronormal in G [12, 2.4]. Thus if D is a basis normalizer of G, then by [5, 3.22], $R_{\sigma}(D) = N_{\sigma}(D)$. Inspection now shows, using [1, Theorem 6] that for A-groups our second convergence process reduces to that defined by Carter [1, §4].

In [1], Carter constructs an A-group G_j for each $j \ge 1$, in the following way. Let p_1, p_2, p_3, \cdots be a sequence of distinct primes and inductively define

$$G_1 = C_{p_1}, G_k = C_{p_k} \setminus G_{k-1} \quad (k > 1)$$

where C_{p_i} denotes a cyclic group of order p_i . Carter shows [1, Theorem 12], that, for each $n \geq 1$, G_{2n} is an A-group of nilpotent length 2n in which $F_{n-1} \neq E$ (i.e. in our notation $R_{n-1} \neq E(\mathbf{S})$) and G_{2n+1} is an A-group of nilpotent length 2n + 1 in which $D_n \neq E$ (i.e. in our notation $D_n \neq E(\mathbf{S})$). In the latter case $R_{n-1} \neq E(\mathbf{S})$ since D_n is a basis normalizer of R_{n-1} . Thus, by (8), we have

(10)
$$G_{2n+1} \epsilon \left(\mathfrak{N}^*\right)^{2n+1} \mathsf{n} \left(n(\mathfrak{S}^*,\mathfrak{N}^*) - n - 1(\mathfrak{S}^*,\mathfrak{N}^*)\right),$$
$$G_{2n+2} \epsilon \left(\mathfrak{N}^*\right)^{2n+2} \mathsf{n} \left(n + 1(\mathfrak{S}^*,\mathfrak{N}^*) - n(\mathfrak{S}^*,\mathfrak{N}^*)\right).$$

Hence equations (1), (2), in 2.5 are best possible. Also the sequence (7) is strictly ascending in this case, i.e.,

$$\mathfrak{N}^* = 0(\mathfrak{S}^*, \mathfrak{N}^*) < 1(\mathfrak{S}^*, \mathfrak{N}^*) < 2(\mathfrak{S}^*, \mathfrak{N}^*) < \cdots$$

For each $t \ge 1$, the \mathfrak{S}^* -formation $t(\mathfrak{S}^*, \mathfrak{N}^*)$ is not subgroup closed. For, by 2.10(2), $1(\mathfrak{S}^*, \mathfrak{N}^*)$ contains all *SC*-groups, i.e., finite soluble groups in which the basis normalizers and Carter subgroups coincide. Now the Alperin-Thompson Theorem [9, page 747] states that every finite soluble group can be embedded in an *SC*-group. Thus if $t(\mathfrak{S}^*, \mathfrak{N}^*)$ were subgroup-closed for some $t \ge 1$ then we would have to have $t(\mathfrak{S}^*, \mathfrak{N}^*) = \mathfrak{S}^*$, contradicting (10) above. Thus $t(\mathfrak{S}^*, \mathfrak{N}^*)$ is not subgroup-closed for each $t \ge 1$.

Suppose f_i (i = 1, 2) is a \Re -preformation function on the set of all primes satisfying (1.1) and (1.3), and \mathfrak{F}_i is the saturated \Re -formation defined by \mathfrak{f}_i . We close this section with examples that show that

(a) $\mathfrak{F}_1 \leq \mathfrak{F}_2$ does not imply $t(\mathfrak{K}, \mathfrak{F}_1) \leq t(\mathfrak{K}, \mathfrak{F}_2)$ (t > 0), (b) $\mathfrak{F}_1 \leq \mathfrak{F}_2$ does not imply $t(\mathfrak{K}, \mathfrak{F}_2) \leq t(\mathfrak{K}, \mathfrak{F}_1)$ (t > 0). In fact (b) follows easily from our previous example. For if we take $\Re = \mathfrak{F}_2 = \mathfrak{S}^*$ and $\mathfrak{F}_1 = \mathfrak{N}^*$ then, by (10), $t(\mathfrak{S}^*, \mathfrak{N}^*) < t(\mathfrak{S}^*, \mathfrak{S}^*) = \mathfrak{S}^*$ for all $t \geq 0$.

Our example for (a) is somewhat more complex.

Example 2.14. We in fact consider the group G which Hawkes [8] constructed as follows:

Let $Q = \langle a, b; a^4 = 1, a^2 = b^2 = [a, b] \rangle$ be a quaternion group of order 8 and S a subgroup of the automorphism group of Q isomorphic to the symmetric group of degree 3. S is chosen so as to contain an involution x whose action on Q is defined by $a^x = b, b^x = a$. Let R = QS be the semidirect product of Q by S. We write z = [a, b] and $Z = \langle z \rangle$; Z is the centre of both Q and R. We let T denote the normal subgroup of index 2 in S.

Now set $K = \langle (12)(35), (12345) \rangle$, a dihedral group of order 10 considered as a subgroup of the alternating group of degree 5, and let $H = \langle (12345) \rangle$ be the normal subgroup of index 2 in K. Let $G = R \wr K$, the wreath product of R by K according to this permutation representation. Let $\sigma_i : R \to R_i$ denote an isomorphism (i = 1, -, 5) and let $D = R_1 \times \ldots \times R_5$ be the base group of G. Using the suffix i to denote images under σ_i Hawkes sets

$$\bar{x} = x_1 x_2 x_3 x_4 x_5$$
, $\bar{z} = z_1 z_2 z_3 z_4 z_5$ and $k = (12) (35)$.

He also defines the following subgroups of G:

$$A = \langle \bar{z} \rangle; \qquad A = Z_1 \times \cdots \times Z_5;$$

$$B = Q_1 \times \cdots \times Q_s; \qquad C = B(T_1 \times \cdots \times T_5);$$

$$\bar{D} = C \langle \bar{x} \rangle; \qquad \bar{S} = S_1 \times \cdots \times S_5;$$

$$E_1 = \langle \bar{x} \rangle \times \langle \bar{z} \rangle \times \langle \bar{k} \rangle; \qquad F = (A \times \bar{S}) \langle k \rangle.$$

Hawkes also considers the saturated \mathfrak{S}^* -formation \mathfrak{F} defined by the \mathfrak{S}^* -formation function

$$f(p) = \{1\}$$
 for $p \neq 3$
 $f(3) = \mathfrak{S}_2^*$, the class of finite 2-groups

It is easy to see that the upper nilpotent series of G is 1 < B < C < D < DH < G so that G has nilpotent length 5 and belongs to $(\mathfrak{N}^*)^4\mathfrak{F}$ but not to $(\mathfrak{N}^*)^3\mathfrak{F}$.

Hawkes showed in his paper that E_1 is both an \mathcal{F} -normalizer and basis normalizer of G and that F is an \mathcal{F} -projector of G.

Let $S_2 = B(\langle x_1 \rangle \times \cdots \times \langle x_5 \rangle) \langle k \rangle$, $S_3 = T_1 \times \cdots \times T_5$, $S_5 = H$. Then $\mathbf{S} = \{S_2, S_3, S_5\}$ is a Sylow basis of G which reduces into both E_1 and F. Thus in our usual terminology $F = E(\mathbf{S})$. The *p*-complement system of G

associated with **S** is $\{S_{2'}, S_{3'}, S_{5'}\}$ where

$$S_{2'} = (T_1 \times \ldots \times T_5)H,$$

$$S_{3'} = B(\langle x_1 \rangle \times \cdots \times \langle x_5 \rangle)K,$$

$$S_{5'} = D\langle k \rangle.$$

We calculate the \mathfrak{F} -reducer of E_1 in G. Since **S** reduces into E_1 we have $R_G(E_1; \mathfrak{F}) = \langle y \ \epsilon \ G; \ \mathbf{S}^{p_{\mathfrak{F}}} \searrow_{\mathfrak{F}} E_1 \rangle$ by [5, 2.6]. Now the $\mathfrak{f}(p)$ -residual E_1^p of E_1 is E_1 for $p \neq 3$ and 1 if p = 3. Also $C_p(G) = G$ for $p \neq 3$. Thus

$$\begin{split} \mathbf{S}^{y_{\overline{v}}} \searrow_{\widetilde{v}} E_{1} &\Leftrightarrow S_{p'}^{y} \cap E_{1} \epsilon Syl_{p'}(E_{1}) \quad \text{for each } p \neq 3 \\ &\Leftrightarrow S_{b'}^{y} \text{ reduces into } E_{1} \quad (\text{since } E_{1} \text{ is a 2-group}) \\ &\Leftrightarrow E_{1} \leq (D\langle k \rangle)^{y} \\ &\Leftrightarrow D\langle k \rangle = (D\langle k \rangle)^{y} \quad (\text{since } D \triangleleft G) \\ &\Leftrightarrow y \epsilon N_{g}(D\langle k \rangle) = D\langle k \rangle. \end{split}$$

Thus $R_{\mathcal{G}}(E_1; \mathfrak{F}) = D\langle k \rangle$. Since $D\langle k \rangle$ is not an \mathfrak{F} -projector of G we therefore have $G \notin 1(\mathfrak{S}^*, \mathfrak{F})$.

We now calculate the reducer of E_1 in G. Since

$$R_{g}(E_{1}) \leq R_{g}(E_{1};\mathfrak{F}) = D\langle k \rangle$$

by [5, 3.1], we have $R_{\mathfrak{G}}(E_1) = R_{D\langle k \rangle}(E_1)$. Now **S** reduces into $D\langle k \rangle$ so that $R_{D\langle k \rangle}(E_1)$ is generated by those elements $y \in D\langle k \rangle$ such that $(\mathbf{S} \cap D\langle k \rangle)^{\mathfrak{g}}$ reduces into E_1 . But E_1 is a 2-group so it follows that

$$R_{\mathcal{G}}(E_1) = R_{D\langle k \rangle}(E_1) = \langle y \in D\langle k \rangle; S_2^{\mathcal{Y}} \text{ reduces into } E_1 \rangle.$$

Hence $S_2 \leq R_{D(k)}(E_1)$.

Suppose $y \in D\langle k \rangle$ and S_2^y reduces into E_1 . Now

$$D\langle k\rangle = S_2(T_1 \times \neg \times T_5)$$

so that y = uv where $u \in S_2$ and $v \in T_1 \times \cdots \times T_5$. Thus $S_2^v = S_2^y$ reduces into E_1 . Therefore $E_1 \leq S_2^v$ and, since \bar{x} normalizes $T_1 \times \cdots \times T_5$,

 $[\bar{x}, v] \in S_2^v \cap (T_1 \times \cdots \times T_5) = 1.$

Now the centralizer of x_i in T_i is the identity, so it follows that the centralizer of \bar{x} in $T_1 \times \cdots \times T_5$ is also the identity. Thus v = 1 and $y = u \in S_2$. Hence $R_{D(k)}(E_1) \leq S_2$ and from our previous inequality we have $R_{\sigma}(E_1) = S_2$.

It follows, for example from [5, 3.9 and 3.19], that S_2 is a Carter subgroup of G. Therefore the \mathfrak{N}^* -convergence process for G takes one step, i.e., $G \in 1(\mathfrak{S}^*, \mathfrak{N}^*)$.

Now it is clear that $\mathfrak{N}^* \leq \mathfrak{F}$ so we have an example to show (a) since $G \in 1(\mathfrak{S}^*, \mathfrak{N}^*) - 1(\mathfrak{S}^*, \mathfrak{F})$.

C. J. GRADDON

3. 8-abnormal depth

We recall that, when defined, the \mathfrak{F} -abnormal depth, $a^{\mathfrak{F}}(G:H)$, of a subgroup H in a \mathfrak{R} -group G is the minimal number of \mathfrak{F} -abnormal links in a finite \mathfrak{F} -balanced chain from H to G, i.e., a chain

$$H = H_0 \le H_1 \le H_2 \le \cdots \le H_n = G$$

in which H_i is either \mathfrak{F} -abnormal or \mathfrak{F} -serial in H_{i+1} $(0 \leq i < n)$.

If we take $\Re = \mathfrak{S}^*$ and $\mathfrak{F} = \mathfrak{N}^*$ then the concepts " \mathfrak{F} -balanced chain", " \mathfrak{F} -abnormal depth" reduce to the concepts "balanced chain", "abnormal depth" defined by Rose [13]. If H is a subgroup of a finite soluble group Gthen the abnormal depth of H in G is, as in [13], denoted a(G:H). The first three theorems in this section generalize similar results of Rose [13].

THEOREM 3.1. Suppose H is an F-subgroup of the $\Re \cap (\mathfrak{L}\mathfrak{N})^t \mathfrak{F}$ -group $G \ (t \geq 0)$. Then $a^{\mathfrak{F}}(G:H) \leq t$.

Proof. Since $G \in \Re \cap (L\mathfrak{N})^t \mathfrak{F}$ there is a series

$$1 = U_0 \leq U_1 \leq U_2 \leq \cdots \leq U_t \leq U_{t+1} = G$$

of normal subgroups U_i of G such that $U_i/U_{i-1} \epsilon \operatorname{L} \mathfrak{N}$ for $1 \leq i \leq t$ and $G/U_t \epsilon \mathfrak{F}$. Set $H_i = HU_i$. Then

$$H = H_0 \leq H_1 \leq \cdots \leq H_t \leq H_{t+1} = G.$$

Let $i \in \{0, \dots, t-1\}$. Then $H_{i+1}/U_i = U_{i+1}/U_i$. H_i/U_i and $H_i/U_i \in \mathfrak{F}$, so, by [2, 5.12], there is an \mathfrak{F} -projector F_i/U_i of H_{i+1}/U_i containing H_i/U_i . Now F_i/U_i is \mathfrak{F} -abnormal in H_{i+1}/U_i by [7, 3.5], and H_i/U_i is \mathfrak{F} -serial in F_i/U_i by 1.3 and [5, 5.9(i)]. Thus

$$H_i \mathfrak{F}$$
-ser $F_i \Join_{\mathfrak{F}} H_{i+1}$,

and we have

(1)
$$H = H_0 \mathfrak{F}\text{-ser } F_0 \rtimes_{\mathfrak{F}} H_1 \mathfrak{F}\text{-ser } F_1 \rtimes_{\mathfrak{F}} H_2 \cdots \rtimes_{\mathfrak{F}} H_t \leq G$$

Now $G/U_t \in \mathfrak{F}$, so, by [5, 5.9], $H_t/U_t \mathfrak{F}$ -ser G/U_t . Thus $H_t \mathfrak{F}$ -ser G and the chain (1) is \mathfrak{F}-balanced. Since there are (at most) $t \mathfrak{F}$ -abnormal links in this chain we have $a^{\mathfrak{F}}(G:H) \leq t$, as required.

THEOREM 3.2. If $G \in \mathfrak{X} \cap \mathfrak{X} \mathfrak{F}$ and H is any subgroup of G then $a^{\mathfrak{F}}(G:H) \leq 1$.

Proof. Let $A = G^{\mathfrak{F}}$, the \mathfrak{F} -residual of G. Then A is abelian by hypothesis and it is clear that

(2)
$$a^{\mathfrak{F}}(G:H) \leq a^{\mathfrak{F}}(G:AH) + a^{\mathfrak{F}}(AH:H).$$

Now $G/A \in \mathfrak{F}$ so, by [5, 5.9 (i)], $AH \mathfrak{F}$ -ser G. Thus $a^{\mathfrak{F}}(G:AH) = 0$. Since A is an abelian normal subgroup of $G, A \cap H$ is a normal subgroup of AH. It follows that

$$a^{\mathfrak{F}}(AH:H) = a^{\mathfrak{F}}(AH/A \cap H:AH/A \cap H).$$

Since \mathfrak{F} is a subgroup-closed and $H/A \cap H \cong AH/A$, we have $H/A \cap H \mathfrak{E} \mathfrak{F}$. Thus by Theorem 3.1, $a^{\mathfrak{F}}(AH/A \cap H:H/A \cap H) \leq 1$. From (2) and our previous remarks we now deduce $a^{\mathfrak{F}}(G:H) \leq 1$, as required.

Remark. In his paper, [13], Rose shows that for each integer $n \ge 1$ there is a finite supersoluble group G with a subgroup H such that a(G:H) = n. Such a group G is necessarily metanilpotent so Theorem 3.2 cannot be extended to the case where $G \in \Re$ n (L \Re) \mathfrak{F} .

THEOREM 3.3. Suppose H is an F-ascendabnormal F-subgroup of the $\Re \cap (L\Re)^t$ F-group G $(t \ge 2)$. Then $a^{\Re}(G:H) \le t - 1$.

Proof. As in the proof of 3.1 we have a series

$$1 = U_0 \leq U_1 \leq U_2 \leq \cdots \leq U_t \leq U_{t+1} = G$$

of normal subgroups of G such that $U_i/U_{i-1} \in \mathfrak{LN}$ for $1 \leq i \leq t$ and $G/U_t \in \mathfrak{F}$. Now $HU_{t-2} \in \mathfrak{R} \cap (\mathfrak{LN})^{t-2}\mathfrak{F}$ so, by Theorem 3.1, we have $a^{\mathfrak{F}}(HU_{t-2}:H) \leq t-2$. Since

$$a^{\mathfrak{F}}(G:H) \leq a^{\mathfrak{F}}(G:HU_{t-2}) + a\mathfrak{F}(HU_{t-2}:H)$$

it suffices to prove that $a^{\mathfrak{F}}(G:HU_{t-2}) \leq 1$.

By [7, 4.1], *H* contains an \mathfrak{F} -normalizer of *G*, so HU_{t-2}/U_{t-2} contains some \mathfrak{F} -normalizer D/U_{t-2} of G/U_{t-2} . Since $H \in \mathfrak{F}$,

$$HU_{t-2}/U_{t-2} \leq R_{G/U_{t-2}}(D/U_{t-2};\mathfrak{F}) = X/U_{t-2}$$

by [5, 3.11]. Now $G/U_{t-2} \in \Re \cap (\mathfrak{L} \mathfrak{N})^2 \mathfrak{F}$ so, by [5, 5.2], X/U_{t-2} is an \mathfrak{F} -projector of G/U_{t-2} . In particular therefore

$$X/U_{t-2} \Join_{\mathfrak{F}} G/U_{t-2}$$
.

Also HU_{t-2}/U_{t-2} &-ser X/U_{t-2} by [5, 5.9(i)]. Thus

$$HU_{t-2}$$
 F-ser $X \Join_{\mathfrak{F}} G$

and we have $a^{\mathfrak{F}}(G:HU_{t-2}) \leq 1$, as required.

Remarks 1. Theorem 3.3 does not hold if t = 1. For if H is an \mathfrak{F} -ascendabnormal \mathfrak{F} -subgroup of $G \,\epsilon \, K \,\cap \, (\mathfrak{L}\mathfrak{N})\mathfrak{F}$ then, by [7, 4.1], H contains an \mathfrak{F} -normalizer D of G which, by [2, 5.1], is also an \mathfrak{F} -projector of G. Since $H \,\epsilon \, \mathfrak{F}$ we must then have H = D, an \mathfrak{F} -abnormal subgroup of G by [7, 3.5]. Thus $a^{\mathfrak{F}}(G:H) = 1$ and 3.3 does not hold.

2. If *H* is a subgroup of an \mathfrak{F} -projector *E* of the \mathfrak{R} -group *G* then, by $[5, 5.9(\mathbf{i})]$ and [7, 3.5], *H* \mathfrak{F} -ser $E \rtimes_{\mathfrak{F}} G$ whence $a^{\mathfrak{F}}(G:H) \leq 1$. In particular if *D* is an \mathfrak{F} -normalizer of *G* then $a^{\mathfrak{F}}(G:D) \leq 1$.

LEMMA 3.4. Suppose D is an \mathfrak{F} -normalizer of the \mathfrak{R} -group G. Then $a^{\mathfrak{F}}(G:H) = 0$ if and only if $G \in \mathfrak{F}$. Hence $a^{\mathfrak{F}}(G:D) = 1$ if and only if $G \notin \mathfrak{F}$.

Proof. Suppose $a^{\mathfrak{F}}(G:D) = 0$. Then there is a series

 $D = D_0 \le D_1 \le \cdots \le D_n = G$

with D_i \mathfrak{F} -ser D_{i+1} for $0 \leq i \leq n-1$. Clearly this implies that D \mathfrak{F} -ser G. It now follows, from [5, 4.10], that $G = R_G(D; \mathfrak{F})$. From [5, 5.6] we now deduce that G belongs either to \mathfrak{F} or to $\mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})\mathfrak{F}$. If $G \in \mathfrak{R} \cap (\mathfrak{L}\mathfrak{R})\mathfrak{F}$ then, by [2, 5.1] and [5, 3.18(i)], $G = D \in \mathfrak{F}$. Thus in either case we have $G \in \mathfrak{F}$, as required.

If conversely $G \in \mathfrak{F}$ then G = D and clearly $a^{\mathfrak{F}}(G:D) = 0$. We have therefore shown that $a^{\mathfrak{F}}(G:D) = 0$ if and only if $G \in \mathfrak{F}$. The last part of the lemma now follows from the second remark prior to the statement of the result.

4. (R, \mathfrak{F}) -chains

LEMMA 4.1. Suppose H is a subgroup of the \Re -group G. Then there is a unique smallest \Im -serial subgroup of G containing H.

Proof. Let **B** be the collection of all \mathfrak{F} -serial subgroups of G containing H; **B** is non-empty since $G \in \mathbf{B}$. From [5, 2.21 and 4.10] it follows that intersection B of all the members of **B** is also \mathfrak{F} -serial in G. Clearly B is the unique smallest \mathfrak{F} -serial subgroup of G containing H.

If H is a subgroup of a \Re -group G we denote by $S^{\mathfrak{F}}(G:H)$ the unique smallest \mathfrak{F} -serial subgroup of G containing H.

LEMMA 4.2. Suppose $H \leq G \in \mathfrak{R}$ and $N \triangleleft G$. Then $S^{\mathfrak{F}}(G/N:HN/N) = S^{\mathfrak{F}}(G:H)N/N$.

Proof. Let $S^{\mathfrak{F}}(G/N:HN/N) = X/N$. Then $HN/N \leq X/N$ \mathfrak{F} -ser G/N so that $H \leq X$ \mathfrak{F} -ser G. Thus $S^{\mathfrak{F}}(G:H) \leq X$ by definition and hence

$$S^{\mathfrak{F}}(G:H)N/N \leq X/N.$$

But $S^{\mathfrak{F}}(G:H)N/N$ \mathfrak{F} -ser G/N by [5, 4.11], so we must have $S^{\mathfrak{F}}(G:H)N/N = X/N$, as claimed.

Suppose *H* is a subgroup of the \Re -group *G*. We define subgroups $S_i = S_i(G:H:\mathfrak{F})$ and $R_i = R_i(G:H:\mathfrak{F})$ of *G* containing *H* inductively as follows:

$$S_{1} = S^{\mathfrak{F}}(G:H); \qquad R_{1} = R_{s_{1}}(H;\mathfrak{F});$$

$$S_{i+1} = S^{\mathfrak{F}}(R_{i}:H); \qquad R_{i+1} = R_{s_{i+1}}(H;\mathfrak{F}) \qquad (i \ge 1).$$

In this way we obtain a chain

$$(3) G \ge S_1 \ge R_1 \ge S_2 \ge R_2 \ge \cdots$$

of subgroups of G containing H. It seems possible that in the most general cases the series (3) may not reach H after a finite number of steps, though we have no example to verify this. However, by [5, 3.8 and 3.13(ii)] we do

have

$$(4) H \leq \cdots R_2 \rtimes_{\mathfrak{F}} S_2 \mathfrak{F}\text{-ser } R_1 \rtimes_{\mathfrak{F}} S_1 \mathfrak{F}\text{-ser } G$$

Thus when the chain (4) is finite and reaches H it is an \mathfrak{F} -balanced chain from H to G. We call (3) the (R, \mathfrak{F}) -chain of H in G, and when it reaches H after a finite number of steps we denote by $b^{\mathfrak{F}}(G:H)$ the number of \mathfrak{F} abnormal links in it. It is clear that $a^{\mathfrak{F}}(G:H) \leq b^{\mathfrak{F}}(G:H)$ when defined. It is immediate that if $t \geq 0$ then $b^{\mathfrak{F}}(G:H) = t$ if and only if $S_{t+1}(G:H:\mathfrak{F}) = H$.

Our (R, \mathfrak{F}) -chains generalize Mann's *Q*-chains [11] and our first aim is to show that at least in finite \mathfrak{R} -groups they have some meaning, i.e. if *H* is a subgroup of a finite \mathfrak{R} -group *G* then the (R, \mathfrak{F}) -chain of *H* in *G* reaches *H* (after a finite number of steps). To do this we require two lemmas.

LEMMA 4.3. Suppose H is a subgroup of the finite \Re -group G and

$$H < R_G(H; \mathfrak{F}) = G.$$

Then H lies in an \mathfrak{F} -normal maximal subgroup of G. Hence $S^{\mathfrak{F}}(G:H) < G$.

Proof. We argue by induction on the order of G. Since H is a proper subgroup of G, G is nontrivial. Let N be a minimal normal subgroup of G; then $R_{G/N}(HN/N; \mathfrak{F}) = G/N$ by [5, 3.4]. If HN/N is a proper subgroup of G/N then, by induction, HN/N lies in an \mathfrak{F} -normal maximal subgroup M/Nof G/N. Thus H is contained in the \mathfrak{F} -normal maximal subgroup M of G. If HN = G then H is a maximal subgroup of G and, by [5, 3.13 (i)], must be \mathfrak{F} -normal in G. Thus in either case H lies in an \mathfrak{F} -normal maximal subgroup M of G. By definition, $S^{\mathfrak{F}}(G:H) \leq M$ so the final statement of the lemma is immediate.

LEMMA 4.4. If $H \leq G \in \mathbb{R}$ and $X = R_G(H; \mathfrak{F})$ then $R_X(H; \mathfrak{F}) = X$.

Proof. Let **S** be a Sylow basis of G which reduces into both H and X. Then, by [5, 2.6 (iii)],

$$X = R_{\mathfrak{G}}(H; \mathfrak{F}) = \langle x \epsilon G; S^{\mathfrak{F}} \searrow_{\mathfrak{F}} H \rangle,$$

$$R_{\mathfrak{X}}(H; \mathfrak{F}) = \langle y \epsilon X; (\mathbf{S} \cap X)^{\mathfrak{V}} \searrow_{\mathfrak{F}} H \rangle.$$

Suppose $x \in G$ and $\mathbf{S}^{x\mathfrak{F}}$ \mathfrak{F} -reduces into H. Then $x \in X$ and, since $\mathbf{S}^{x\mathfrak{F}}$ clearly \mathfrak{F} -reduces into X to $(\mathbf{S} \cap X)^{x\mathfrak{F}}$, we have $(\mathbf{S} \cap X)^{x\mathfrak{F}}$ \mathfrak{F} -reduces into H, by [5, 2.16]. Thus $X \leq R_x(H:\mathfrak{F})$ and the result now follows.

Suppose now that H is a subgroup of the finite \Re -group G. Then, by 4.3 and 4.4, every containment in the chain (3) is strict (except possibly $G \geq S_1$) until H is reached. Thus the (R, \mathfrak{F}) -chain of H in G reaches H and $b^{\mathfrak{F}}(G:H)$ is defined.

We have been unable to decide whether Lemma 4.3 holds in general.

Our aim now is to improve Theorems 3.1, 3.2 and 3.3 by showing that

 $b^{\mathfrak{F}}(G:H)$ may replace $a^{\mathfrak{F}}(G:H)$ in each of the statements. Techniques similar to those employed by Mann [11] can be used to prove these extensions but we give here alternative proofs which use our work on \mathfrak{F} -reducers [5].

We shall require the following

LEMMA 4.5. Suppose H is an F-ascendabnormal subgroup of the \Re -group G. Then $S^{\mathfrak{F}}(G:H) = G$.

Proof. Let $S = S^{\mathfrak{F}}(G:H)$. Since H is \mathfrak{F} -ascendabnormal in G there is an ordinal σ and a chain $(H_{\beta}; \beta \leq \sigma)$ of subgroups of G such that $H = H_0$, $H_{\beta} \rtimes_{\mathfrak{F}} H_{\beta+1}$ for $\beta < \sigma$, $H_{\lambda} = \bigcup_{\beta < \lambda} H_{\beta}$ for limit ordinals $\lambda \leq \sigma$, and $H\sigma = G$. We prove by transfinite induction that $H_{\beta} \leq S$ for each $\beta \leq \sigma$. This will show that $G = H_{\sigma} \leq S$, proving the result.

If $\beta = 0$ then $H = H_0 \leq S$ by definition; therefore the induction begins. Suppose $\beta = \alpha + 1$ for some $\alpha < \sigma$ and $H_{\alpha} \leq S$. Then $H_{\alpha} \leq S \cap H_{\alpha+1}$. Now $H_{\alpha} \rtimes_{\mathfrak{F}} H_{\alpha+1}$ so that $S \cap H_{\alpha+1} \rtimes_{\mathfrak{F}} H_{\alpha+1}$. Also

$$S \cap H_{\alpha+1}$$
 \mathfrak{F} -ser $H_{\alpha+1}$ by $[5, 4.3(i)]$.

A proper subgroup of a \Re -group cannot be both \mathfrak{F} -abnormal and \mathfrak{F} -serial so we must have $S \cap H_{\alpha+1} = H_{\alpha+1}$. Thus $H_{\beta} = H_{\alpha+1} \leq S$ and the induction goes through in this case.

If $\lambda \leq \sigma$ is a limit ordinal and $H_{\beta} \leq S$ for each $\beta < \lambda$ then certainly $H_{\lambda} = \bigcup_{\beta < \lambda} H_{\beta} \leq S$. This completes the induction argument and the proof.

As an immediate consequence of 4.5 and [7, 4.1] we have

COROLLARY 4.6. If D is an \mathfrak{F} -normalizer of a \mathfrak{R} -group G then $S^{\mathfrak{F}}(G:D) = G$.

LEMMA 4.7. Suppose H is an F-subgroup of the $\Re \cap (L\Re)$ F-group G. Then $b^{\$}(G:H) \leq 1$.

Proof. Let $R = \rho(G)$, the Hirsch-Plotkin radical of G. Then $G/R \in \mathfrak{F}$ so, by [5, 5.9(i)], $HR \mathfrak{F}$ -ser G. Therefore

$$S_1 = S_1(G:H:\mathfrak{F}) = S^{\mathfrak{F}}(G:H) \leq HR.$$

Since $H \leq S_1$ the modular law gives $S_1 = H(S_1 \cap R)$. Now $H \in \mathfrak{F}$ so, by [5, 4.21], $H \mathfrak{F}$ -ser $R_{s_1}(H; \mathfrak{F}) = R_1(G:H:\mathfrak{F})$. Thus

$$H = S^{\mathfrak{F}}(R_1:H) = S_2(G:H:\mathfrak{F}).$$

Hence

$$H = S_2 \mathfrak{F}$$
-ser $R_1 \rtimes_{\mathfrak{F}} S_1 \mathfrak{F}$ -ser G

and $b^{\mathfrak{F}}(G:H) \leq 1$.

THEOREM 4.8. Suppose H is an F-subgroup of the $\Re \cap (L\Re)^t$ F-group G $(t \ge 0)$. Then $b^{\Re}(G:H) \le t$.

Proof. We argue by induction on t. If t = 0 then $G \in \mathfrak{F}$ and, by [5, 5.9(i)], $H \mathfrak{F}$ -ser G. Thus $S_1(G:H:\mathfrak{F}) = H$ and $b^{\mathfrak{F}}(G:H) = 0$.

If t > 0 set $R = \rho(G)$. Then HR/R is an \mathfrak{F} -subgroup of G/R so by induction $b^{\mathfrak{F}}(G/R:HR/R) \leq t-1$ and hence

$$S_t(G/R:HR/R:\mathfrak{F}) = HR/R.$$

Now it is clear, from [5, 3.4] and 4.2, that

$$S_i(G/R:HR/R:\mathfrak{F}) = S_i(G:H:\mathfrak{F})R/R,$$

$$R_i(G/R:HR/R:\mathfrak{F}) = R_i(G:H:\mathfrak{F})R/R$$

for each $i \ge 1$, i.e. that the (R, \mathfrak{F}) -chain of HR/R in G/R is the image in G/R of the (R, \mathfrak{F}) -chain of H in G. Thus

$$S_t = S_t(G:H:\mathfrak{F}) \leq HR$$

and in particular

$$S_t \in \Re \cap (L\Re) \mathfrak{F}.$$

Therefore, by 4.7, $b^{\mathfrak{F}}(S_{\iota}:H) \leq 1$. Now it is clear from the definitions that $S_1(S_{\iota}:H:\mathfrak{F}) = S_{\iota}$, $R_1(S_{\iota}:H:\mathfrak{F}) = R_{\iota}$, $S_2(S_{\iota}:H:\mathfrak{F}) = S_{\iota+1}$. Since $b^{\mathfrak{F}}(S_{\iota}:H) \leq 1$ we have $H = S_2(S_{\iota}:H:\mathfrak{F}) = S_{\iota+1}$ and hence $b^{\mathfrak{F}}(G:H) \leq t$, as claimed.

THEOREM 4.9. If $G \in \mathfrak{R} \cap \mathfrak{AF}$ and $H \leq G$ then $b^{\mathfrak{F}}(G:H) \leq 1$.

Proof. Let $A = G^{\mathfrak{F}}$, the \mathfrak{F} -residual of G; A is abelian by hypothesis. Therefore $H \cap A$ is a normal subgroup of AH and, as in the proof of 4.8,

$$b^{\mathfrak{F}}(AH/H \cap A : H/A \cap H) = b^{\mathfrak{F}}(AH:H).$$

Now $H/A \cap H$ is isomorphic to a subgroup of the \mathfrak{F} -group G/A so, by 1.3, $H/A \cap H \mathfrak{e} \mathfrak{F}$. Thus, by 4.8, $b^{\mathfrak{F}}(AH/H \cap A:H/A \cap H) \leq 1$. Hence

 $b^{\mathfrak{F}}(AH:H) \leq 1.$

Now $G/A \in \mathfrak{F}$ so, by $[5, 5.9(\mathbf{i})]$, $AH \mathfrak{F}$ -ser G. Therefore $S^{\mathfrak{F}}(G:H) \leq AH$ and it follows that $S^{\mathfrak{F}}(G:H) = S^{\mathfrak{F}}(AH:H)$. Thus the (R, \mathfrak{F}) -chain of Hin G coincides with the (R, \mathfrak{F}) -chain of H in AH, so that

 $b^{\mathfrak{F}}(G:H) = b^{\mathfrak{F}}(AH:H) \le 1,$

as required.

Remark. Since $a^{\mathfrak{F}}(G:H) \leq b^{\mathfrak{F}}(G:H)$ when the latter is defined, it follows, from the remark after the proof of 3.2, that we cannot hope to extend 4.9 to the case where G is a $\mathfrak{R} \cap (\mathfrak{l}\mathfrak{R})\mathfrak{F}$ -group.

LEMMA 4.10. Suppose H is an \mathfrak{F} -ascendabnormal \mathfrak{F} -subgroup of

Then $b^{\mathfrak{F}}(G:H) \leq 1$.

Proof. By [7, 4.1], H contains an \mathfrak{F} -normalizer D of G, and since $H \in \mathfrak{F}$ we have $R_{\mathfrak{G}}(H; \mathfrak{F}) \leq R_{\mathfrak{G}}(D; \mathfrak{F})$ by [5, 3.11 (ii)]. Now \mathfrak{F} is subgroup-closed

and $R_{\sigma}(D; \mathfrak{F})$ is an \mathfrak{F} -projector of G by [5, 5.2]. Therefore $R_{\sigma}(H; \mathfrak{F}) \epsilon \mathfrak{F}$ and, by [5, 5.9(i)], $H \mathfrak{F}$ -ser $R_{\sigma}(H; \mathfrak{F})$. Now $S_1(G:H:\mathfrak{F}) = G$ since H is \mathfrak{F} -ascendabnormal in G by (4.5), so $R_1(G:H:\mathfrak{F}) = R_{\sigma}(H; \mathfrak{F})$. Therefore

$$S_2(G:H:\mathfrak{F}) = S^{\mathfrak{F}}(R_{\mathfrak{G}}(H:\mathfrak{F}):H) = H$$

Thus $b^{\mathfrak{F}}(G:H) \leq 1$, as required.

THEOREM 4.11. Suppose H is an \mathcal{F} -ascendabnormal \mathcal{F} -subgroup of the

$$\Re \cap (\mathfrak{L}\mathfrak{N})^{t}\mathfrak{F}\operatorname{-group} G \qquad (t \ge 2).$$

Then $b^{\mathfrak{F}}(G:H) \leq t-1$.

Proof. We argue by induction on t, the case t = 2 being covered by 4.10. If t > 2 and $R = \rho(G)$ then HR/R is an \mathfrak{F} -ascendabnormal \mathfrak{F} -subgroup of G/R by [7, 4.5] so by induction $b^{\mathfrak{F}}(G/R:HR/R) \leq t-2$. In particular therefore $S_{t-1}(G/R:HR/R:\mathfrak{F}) = HR/R$. As in the proof of 4.8 we now obtain $S_{t-1}(G:H:\mathfrak{F}) \leq HR$ and in particular

$$S_{t-1}(G:H:\mathfrak{F}) \in \mathfrak{R} \cap (\mathfrak{L}\mathfrak{N})\mathfrak{F}.$$

The argument used to complete the proof of 4.8 now shows that $S_t(G:H:\mathfrak{F}) = H$. Thus $b^{\mathfrak{F}}(G:H) \leq t-1$, as claimed.

To show the difference between the invariants $a^{\mathfrak{F}}(G:H)$ and $b^{\mathfrak{F}}(G:H)$ we have

THEOREM 4.12. Suppose D is an F-normalizer of the \Re -group G. Then $a^{\mathfrak{F}}(G:D) = b^{\mathfrak{F}}(G:D)$ if and only if D has a strong F-serializer in G.

Proof. If $G \in \mathfrak{F}$ then D = G and $a^{\mathfrak{F}}(G:D) = b^{\mathfrak{F}}(G:D) = 0$, so there is nothing to prove. We may therefore suppose that $G \notin \mathfrak{F}$. Then $a^{\mathfrak{F}}(G:D) = 1$ by 3.4.

By 4.6, $S_1(G:D:\mathfrak{F}) = G$ so that

$$R_1(G:D:\mathfrak{F}) = R_g(D:\mathfrak{F})$$
 and $S_2(G:D:\mathfrak{F}) = S^{\mathfrak{G}}(R_g(D:\mathfrak{F}):D).$

Thus

$$\begin{aligned} a^{\mathfrak{F}}(G:D) &= b^{\mathfrak{F}}(G:D) \Leftrightarrow b^{\mathfrak{F}}(G:D) = 1 \\ \Leftrightarrow S_2(G:D:\mathfrak{F}) &= D \\ \Leftrightarrow D \ \mathfrak{F}\text{-ser} \ R_{\mathfrak{G}}(D; \mathfrak{F}) \\ \Leftrightarrow D \ \text{has a strong } \mathfrak{F}\text{-serializer in } G \ [5, 4.17] \end{aligned}$$

Suppose D is the \mathfrak{F} -normalizer of the \mathfrak{R} -group G associated with the Sylow basis S of G. The (R, \mathfrak{F}) -chain of D in G is, in some respects, similar to the second convergence process of G for the Sylow basis S. We consider briefly the question of whether there is any relation between $b^{\mathfrak{F}}(G:D)$ and $i_{\mathfrak{F}}(G)$.

Firstly $i_{\mathfrak{F}}(G)$ is not bounded in terms of $b^{\mathfrak{F}}(G:D)$. For take $\mathfrak{R} = \mathfrak{S}^*$

and $\mathfrak{F} = \mathfrak{N}^*$. If D is a basis normalizer of an A-group G then D is pronormal in G by [12, 2.4] so, by [5, 3.22], $R_{\mathfrak{g}}(D) = N_{\mathfrak{g}}(D)$. Thus, by 4.6,

$$S_1(G:D:\mathfrak{N}^*) = G, \qquad R_1(G:D:\mathfrak{N}^*) = R_G(D),$$

 $S_2(G:D:\mathfrak{N}^*) = S^{\mathfrak{N}^*}(R_G(D):D) = D$

as $D \triangleleft R_{\mathfrak{g}}(D)$. Hence $b^{\mathfrak{N}^{\bullet}}(G:D) \leq 1$. Now the groups G_i , in Example 2.13, are A-groups and for each $n \geq 0$, $i_{\mathfrak{N}^{\bullet}}(G_{2n+1}) = n$. Thus if D_i is a basis normalizer of G_i then we have $b^{\mathfrak{N}^{\bullet}}(G_i:D_i) \leq 1$ for all i but the \mathfrak{N}^* -speeds $i_{\mathfrak{N}^{\bullet}}(G_i)$ are unbounded. Thus $i_{\mathfrak{F}}(G)$ is in general not bounded by some function of $b^{\mathfrak{F}}(G:D)$. We leave open the question of whether $b^{\mathfrak{F}}(G:D)$ is bounded in terms of $i_{\mathfrak{F}}(G)$.

We close this section by considering briefly a generalization of another of Rose's concepts [14].

If $H \leq G \in \mathbb{R}$ we say H is \mathfrak{F} -contranormal in G if $S^{\mathfrak{F}}(G:H) = G$, i.e. if H is a subgroup of no proper \mathfrak{F} -serial subgroup of G.

By 4.5 every F-ascendabnormal subgroup is F-contranormal.

LEMMA 4.13. If H is an F-contranormal F-subgroup of the $\Re \cap (L\Re)$ Fgroup G then H lies in some F-projector of G.

Proof. Let $R = \rho(G)$. Then $G/R \in \mathfrak{F}$ so, by [5, 5.9(i)], $HR \mathfrak{F}$ -ser G. Since H is \mathfrak{F} -contranormal in G we must have HR = G. The result is now immediate from [2, 5.10].

LEMMA 4.14. If $G \in \Re \cap \mathfrak{AF}$ then the F-contranormal F-subgroups of G are precisely the F-projectors of G.

Proof. The \mathfrak{F} -projectors of G are \mathfrak{F} -contranormal \mathfrak{F} -subgroups of G by [7, 3.5] and 4.5. On the other hand suppose H is an \mathfrak{F} -contranormal \mathfrak{F} -subgroup of G. Let $A = G^{\mathfrak{F}}$, the \mathfrak{F} -residual of G; by hypothesis A is abelian. Now $G/A \in \mathfrak{F}$ so, by [5, 5.9 (i)], $HA \mathfrak{F}$ -ser G. Since H is \mathfrak{F} -contranormal in G we must therefore have G = HA. Now H is contained in some \mathfrak{F} -projector E of G by 4.13, so by the modular law $E = H(E \cap A)$. But E complements A in G by [2, 4.12 and 5.1]. Therefore E = H, and the proof is complete.

Remark. If G is a finite soluble group then a subgroup H of G is \mathfrak{N}^* contranormal in G if and only if H lies in no proper normal subgroup of G, i.e. if and only if the normal closure H^{σ} of H in G is G. Thus for \mathfrak{S}^* -groups the concepts " \mathfrak{N}^* -contranormal" and "contranormal" (as defined in [14]) coincide.

In his paper, [14], Rose gives an example to show that $(\mathfrak{N}^*)^2$ -groups may have nilpotent contranormal subgroups which are not Carter subgroups. We cannot therefore hope to improve 4.14 to the case where $G \in \mathfrak{N} \cap (\mathfrak{L}\mathfrak{N})\mathfrak{F}$. Using Lemma 4.14 we can sharpen 4.13 to give

LEMMA 4.15. If H is an F-contranormal F-subgroup of the $\Re \cap (\mathfrak{L} \mathfrak{N}) \mathfrak{A} \mathfrak{F}$ group G then H lies in some \mathfrak{F} -projector of G.

Proof. Let $R = \rho(G)$. Then HR/R is an \mathfrak{F} -contranormal \mathfrak{F} -subgroup of G/R by 4.2. Thus, by 4.14, HR/R is an \mathfrak{F} -projector of G/R. By [2, 5.10], H lies in an \mathfrak{F} -projector E of HR, and since E is an \mathfrak{F} -projector of G by [2, 5.3] we have the desired result.

Our final result sharpens 3.1 and 4.8.

THEOREM 4.16. If H is an F-subgroup of the $\Re \cap (L\Re)^t \mathfrak{AF}$ -group $G(t \ge 1)$ then $b^{\mathfrak{F}}(G:H) \le t$.

Proof. We argue by induction on t.

If t = 1, then H is an F-contranormal F-subgroup of the

 $\Re \cap (\mathfrak{L} \mathfrak{N}) \mathfrak{A} \mathfrak{F}$ -group $S_1 = S_1(G:H:\mathfrak{F}) = S^{\mathfrak{F}}(G:H).$

Thus, by 4.15, *H* lies in an \mathfrak{F} -projector *E* of S_1 . Let *R* be the Hirsch-Plotkin radical of S_1 . Then, by 4.2, *HR/R* is an \mathfrak{F} -contranormal \mathfrak{F} -subgroup of S_1/R so, by 4.14, HR = ER. Hence $E = H(E \cap R)$. Now applying [5, 2.17 (iii)] we have $R_{S_1}(H; \mathfrak{F}) \leq R_{S_1}(E; \mathfrak{F})$. From [5, 3.18 (i)] we obtain $R_{S_1}(H; \mathfrak{F}) \leq E$. Now $E \in \mathfrak{F}$ so, by [5, 3.11 (i)], $E \leq R_{S_1}(H; \mathfrak{F})$. Thus

 $R_1 = R_1(G:H:\mathfrak{F}) = R_{s_1}(H;\mathfrak{F}) = E.$

But H \mathfrak{F} -ser E by [5, 5.9(i)], so we have $S_2(G:H:\mathfrak{F}) = H$, whence $b^{\mathfrak{F}}(G:H) \leq 1$ and the induction begins.

If t > 1 and $Y = \rho(G)$ then HY/Y is an \mathfrak{F} -subgroup of the

 $\Re \cap (L\mathfrak{N})^{t-1}\mathfrak{AF}$ -group G/Y,

so by induction $b^{\mathfrak{F}}(G/Y:HY/Y) \leq t-1$. Thus

 $S_t(G/Y:HY/Y:\mathfrak{F}) = HY/Y.$

The argument at the end of the proof of 4.8 now shows that $S_{t+1}(G:H:\mathfrak{F}) = H$. Thus $b^{\mathfrak{F}}(G:H) \leq t$, which completes the proof.

The material in this paper forms part of a thesis submitted to the University of Warwick in 1971 for the degree of Doctor of Philosophy. I would like to thank my supervisor Dr. B. Hartley for all his help and encouragement.

References

- 1. R. W. CARTER, Nilpotent self-normalizing subgroups and system normalizers, Proc. London Math. Soc. (3), vol. 12 (1962), pp. 535-563.
- 2. A. D. GARDINER, B. HARTLEY AND M. J. TOMKINSON, Saturated formations and Sylow structure in locally finite groups, J. Algebra, vol. 17 (1971), pp. 177–211.

- C. J. GRADDON, F-reducers in finite soluble groups, J. Algebra, vol. 18 (1971), pp. 574-587.
- The relation between F-reducers and F-subnormalizers in finite soluble groups, J. London Math. Soc. (2), vol. 4 (1971), pp. 51-61.
- 5. , F-reducers and F-serializers in certain locally finite groups, to appear.
- C. J. GRADDON AND B. HARTLEY, Basis normalizers and Carter subgroups in a class of locally finite groups, Proc. Cambridge Philos. Soc., vol. 71 (1972), pp. 189– 198.
- B. HARTLEY, F-abnormal subgroups of certain locally finite groups, Proc. London Math. Soc. (3), vol. 23 (1971), pp. 128-158.
- T. O. HAWKES, An example in the theory of soluble groups, Proc. Cambridge Philos. Soc., vol. 67 (1970), pp. 13-16.
- 9. B. HUPPERT, Endliche Gruppen I, Springer-Verlag, Berlin-Heidelberg, 1967.
- A. MANN, System normalizers and subnormalizers, Proc. London Math. Soc. (3), vol. 20 (1970), pp. 123–143.
- 11. A. MANN, On subgroups of finite soluble groups II, to appear.
- J. S. ROSE, Finite soluble groups with pronormal system normalizers, Proc. London Math. Soc. (3), vol. 17 (1967), pp. 447-469.
- 13. , Abnormal depth and hypereccentric length in finite soluble groups, Math. Zeitschr., vol. 90 (1965), pp. 29-40.
- 14. ——, Nilpotent subgroups of finite soluble groups, Math. Zeitschr., vol. 106 (1968), pp. 97-112.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS