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1. Introduction

This paper is essentially a continuation of [5] to which we refer for most of
our notation and terminology. In [5] we extended the theory of -reducers
to any QS-closed subclass of the class LI introduced in [2] and studied
further in [6] and [7]. In this paper we consider certain invariants of
groups and their subgroups which arise naturally from the study of -reducers.
As in [5], will denote an arbitrary QS-closed subclass of 12 and ()

the saturated -formation defined by the -preformation function on the
set of primes r. Furthermore, is assumed to be R0-closed, i.e.,

(1.1) nR0(p) (p) for allpe.

It will be convenient to make two further assumptions which were not made
in [5], namely

(1.2) is the set of all primes,

(1.3) (p) S[ (p) for all primes p.

The majority of our results seem to require the presence of both these con-
ditions though a few do hold without either and some with the presence of
only one.
We shall also assume that all groups belong to the class 1I, unless the

contrary is explicitly stated.
In section two we define two "convergence processes", similar to those

given in Sections 3, 4 of [3], from the second of which we obtain the first of
our invariants--the -speed of a -group. The convergence processes give
ways of constructing an -projector of an arbitrary -group G as the limiting
term of a "converging" series of subgroups of G. The first method is some-
what unsatisfactory in that at each stage one has to "construct" an -pro-
iector of some subgroup of G. The second approach, which consists of suc-
cessively taking -normalizers and -reducers, overcomes the previous
obiection but is, more often than not, too cumbersome for the actual compu-
tation of -proiectors. The processes we shall describe generalize not only
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those in [3] but also similar constructions for Carter subgroups of finite
soluble groups due to Carter [1], Fischer (unpublished), Mann [10] and Rose
[12]. The -speed of a -group G is, roughly speaking, the number of steps
that have to be taken before the second convergence process becomes sta-
tionary, and is denoted by iv (G). The -speed of G is easily seen to be an
invariant of G, and is always finite even though the groups we consider may
well be infinite. For each non-negative integer r the class r (, ), of -groups
with -speed at most r, is a -formation (Theorem 2.9) containing the class
n (L9)2. We have been unable to decide whether r(, ) is a saturated

-formation (except in trivial cases) though we do have an example (2.13)
to show that it need not be subgroup-closed.
SupposeH <_ Ge. We say thatachain (A, V;zet) fromH to G

(cf. [4, 5]) is -balanced if V is either -abnormal or -serial in A, for each
z e t. Now a maximal subgroup of a -group is either -normal (and hence
-serial) or -abnormal, so if (h, V e 2) is a maximal chain from H to G
then it is -balanced. Thus every subgroup can be joined to G by an -balanced chain. We shall be primarily interested in subgroups H of G which
can be joined to G by a finite -balanced chain, i.e., a chain

H H0_< H1 <_ _< H. G

such that H is either -abnormal or -serial in H+I (0 _< i < n). When
such a chain exists we denote by a (G:H) the minimal number of -abnormal
links in a finite -balanced chain from H to G. a(G:H) is called the -abnormal depth of H in G. It seems unlikely that every subgroup of G should
be joined to G by a finite -balanced chain though we have no example to the
contrary. However if G e n then every subgroup of G has -abnormal
depth at most one in G (Theorem 3.2). More generally, every -subgroup
of G e n (Lg)t (t > 0) has -abnormal depth at most in G; moreover if H
is an -ascendabnormal -subgroup of G (in the sense of [7]) then a (G:H) _<

1 (provided > 2) (Theorems 3.1 and 3.3). The concepts -balanced
chain and -abnormal depth generalize similar concepts considered by Rose
[13] for finite soluble groups.
In Section 4 we consider (R, )-chains which may be thought of as canonical

-balanced chains. They generalize the Q-chains introduced by Mann in [11]
and lead to our third and final invariant which we denote by b (G :H) (when
defined). It turns out that a (G:H) _< b (G:H) when the latter is defined
and that the same bounds apply to b (G:H) as apply to a (G:H) in the cases
mentioned earlier. Finally we generalize another of Rose’s concepts and
consider -contranormal subgroups; a subgroup being -contranormal in a
-group G if it is a subgroup of no proper -serial subgroup of G. Using some
rather elementary results on these subgroups we sharpen Theorems 3.8 and
4.8 to obtain the fact that if H is an -subgroup of G n (Lg)tI then
b (G:H) is at most t. Here, as usual, denotes the class of abelian groups.
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2. The convergence processes and -speed

The first convergence process.

THEOREM 2.1. Let D be an arbitrary -subgroup of the -group G and
define subgroups R D of G inductively as follows"

and for i > O,
Ro G, Do D,

and Di+i any -projector of R+i.
Then this process yields an -projector of G; more precisely, if

G e n (I * (t >_ O)

then Dt+l is an -projector of G.

Proof. Since every -group has finite LYt-length it is clearly sufficient to
prove the final statement which we do by induction on t.

Ift 0thenGesoby[5,3.12]G Ra(D;),i.e.,G R1. ThusD
is an -projector of G by construction, so the induction begins.

If > 1 let R p (G), the Hirsch-Plotkin radical of G. It is immediate,
from [5, 3.4] and the "homomorphism invariance" of -projectors, that the
subgroups Di (G/R) DR/R and R(G/R) Ri R/R are the ith terms in a
convergence process for G/R, the first term in this series being the -subgroup
DR/R of G/R. Now G/R e n (L)t-l so by induction D R/R is an -projector of G/R. Since D e by construction, there is an -projector
E of D R containingD by [2, 5.12]. Moreover E is an -projector of G by
Gaschiitz Lemma [2, 5.3]. By 1.3 and [5, 3.11(ii)], E <_ Re(Dt ) Rt+l.
Thus E is an -projector of Rt+l and hence is conjugate in Rt+ to Dt+l. In
particular therefore Dt+ is an -proiector of G, as claimed. Notice that
D+ D R for each i > -t- 1 and j > -+- 2 by [5, 3.18(i)] and 1.2.

The second convergence process.

LEMMA 2.2. Let D be the -normalizer associated with the Sylow basis S of
of the -group of G. Then D is contained in the -normalizer of Re(D; )
associated with the Sylow basis S n Ra (D; ).

Proof. By [2, 2.13(ii)], S reduces into D, so by [5, 3.3], S reduces into
every subgroup of G containing Re (D). In particular, by [5, 3.1], S reduces
into Re(D; ). The result is now immediate from [2, 4.10].
The second convergence is defined in the following way. Let S be a Sylow

basis of the -group G and let D be the -normalizer of G associated with S.
Put Do D D and R0 G. Let D2 be the -normalizer of R Ra (D; )
associated with the Sylow basis S n R. Then Do D1 _< D2 by 2.2. The
same argument shows that D2 < D3, the -normalizer of R2 RR1 (D2 )
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associated with the Sylow basis (S n R1) n R. S n R. Continuing in
this way we obtain two sequences of subgroups of G,

(1) D Do DI_<D._<Da_<

(2) G R0 >_ R >_ R >_R >
where for each i _> 1, R R_ (D ) and D is the -normailzer of R_
associated with the Sylow basis S R_, i.e.

D f, NRi-1 (Sp, fl Cp (R_) ).

LEMMA 2.3 For each i >_ O, D <_ D+x <_ R+I _< R.

Proof. We certainly have D _< D+ _< D+ and R+ _< R for each i _> 0.
But by construction D+. is an -normalizer of R+, so in particular D+ _<
R+. The result is now clear.
We therefore have

(3) D Do D_<D_<Da_< _< Ra <_ R <_RI< R0 G

and, as in the proof of 2.2, S reduces into each D and R. Thus by [7, 5.8]
(cf. also [5, 2.9])

(4) Sv strongly -reduces into D, R for each i >_ 0.

Remark. Where we want to specify the group G in the above process we
shall write D D(G) and R R(G). It is clear from the conjugacy of
Sylow bases that the series obtained above, in some sense, is an invariant of
G; for the corresponding series for the Sylow basis S, of G is just the conju-
gate, by x, of the series (3).

As an immediate consequence of [5, 3.4] and the "homomorphism invari-
ance" of -normalizers we have

LEMMA 2.4. If N < G then

D (G/N) D (G)N/N and R (G/N) R(G)N/N for each i >_ O.

LEMMA 2.5. The sequences (3) converges. More precisely"

(1) if G (L)t (t >_ O) then D Dt Rt R for all i >_ t,

(2) if G f’l (L)2t+l (t _> 0) then D Dt+ Rt+ R for
all i >_. - 1.

Proof. Since every -group has finite LO-length it suffices to prove (1)
and (2) vhmh we do by a simultaneous induction on t.

Case (a). 0. (1) In this case Ge so thatD GandR G.
Hence D Do G R0 R for i >_ 0, as required.

(2) Here Ge a (L) SO that D is an -projector of G by [2, 5.1].
Therefore, by 1.2 and [5, 3.18(i)], R D and hence D D R R
for i > 1.
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Case (b). > 0. (1) By [5, 5.6],

R1 Ra(D; ) e n ()(’-).
Thus by induction, D(RI) Dr-1 (R.) Rt-. (R,) R.(R1) for j >_ 1.
Now it is clear that, if we begin the construction for R with the Sylow basis
S n R1 of R1 then D.(R) D+ (G) and R(R) Ri+I (G) for each j >_ 0.
ThereforeD D Rt R for each i >_ t, as required.

(2) In this case R Ra(D; ) e n (L)2(t-1)+l and a similar argu-
ment to that in case (1) gives D Dt+l Rt+l R for each i _> + 1,
which completes the induction argument.

Remark. We shall show later that the results in 2.5 are best possible in the
sense that there exists a QS-closed subclass of 1I, a saturated 9-formation

satisfying (1.1), (1.2), and (1.3), and groups G2t, G2t+l, in 9 such that

G2t e ()t but Dr-1 Rt-,

Gt+ e n (L).t+l but Dt Rt,

for each > 1.

2.6. For each integer i >_ 1, Ri Ra(D ).

Proof. We again argue by induction on i. If i 1 then R Ra(D )
by definition so we may assume that i > 1 and that, by induction, Ri-1
Ra(D_ g). Now D_I

_
n g, so by 1.3 and [5, 3.11(ii)], Ra(D )

_
R_. Now S reduces into R_ and Di, so by [5, 2.6],

Ra(D ) (x e G; S’ "R R,_.(D, ) (yeR_ (S n R_) D).

If x e G and Sv vD then, from above, x e R_. Since S clearly
reduces into R_I to (S n R_)v it follows, from [5, 2.16], that (S n R_)v

-reduces into D. Thus x e R and hence Ra(D )

_
R. From [5, 3.10]

we now obtain the result.
If G e we let E(S) be the limit of the sequence (3), i.e. if G e n (L)

then E (S) R D and if G is a n ()+-group then E (S) R+
D+. Since each subgroup D belongs to we have, from 2.6,

(5) E(S) Ra(E(S); ) e .
Thus, by [5, 3.18 (ii)], we have

THEOREM 2.7. E (S) is a -projector of G.

COROLLARY 2.8. E (S) is the unique g-projector of G into which S reduces
and into which S g-reduces. Moreover S strongly g-reduces into E (S).

By construction S reduces and Sv strongly -reduces into each D
In particular therefore S reduces and Sv strongly -reduces into
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E(S). If x eG and Sn -reduces into E(S) then x eRa(E(S); ) E(S),
so that E (S) E (S). Thus E (S) is the unique -projector of G into
whichrSn -reduces. Finally, by [5, 2.6(iii)], E (S) is the unique -pro-
jector of G into which S reduces.

If G is a -group we define the -speed of G to be the least integer i in (G)
such that Ri(G) E(S). It is immediate from the coniugacy of Sylow
bases, that in (G) is an invariant of G.

If r is a non-negative integer we define r (, ) to be the class of all
groups with -speed at most r, i.e.,

THEOREM 2.9.

r(, ) IG e; in(G)

_
r}.

r (, ) is a -formation for each non-negative integer r.

Proof. Suppose S is a Sylow basis and N a normal subgroup of a -group
G. Then, by 2.4,

(6) E (SN/N) E (S)N/N.
Since the sequence (3) becomes stationary when it reaches E (S), it is

clear that the -group G belongs to r(, ) if and only if Rr(G) E (S).
We show first that r (o, ) is Q-closed. Indeed let N be a normal subgroup

of the r(, )-group G. ThenRr(G) E(S) so, by 2.4 and (6),R(G/N)
E (SN/N). Thus by our previous remarks, GIN e r(K, ). This shows
that r (, ) is Q-closed.

If G e n R (r (, ) then there exist normal subgroups Nx of G (X e A)
such that G/Nx e r (, ) for each e A and VIA Nx 1. Thus, by 2.4 and
(6) we have R(G)Nx E(S)Nx for each cA. Hence, by [2, 3.6(i)],
R,(G) <_ x,A (E (S)Nx) E (S). But E (S) _< Rr(G) by construction, so
we must have Rr (G E(S). ThusG er(, ) andhenceRnR(r(, ))
r (o’, ). This shows that r (, ) is a -formation, as claimed.
Thus for every saturated -formation satisfying (1.1), (1.2) and (1.3)

we obtain a series of o-formations

(7) 0(o, ) <: 1 (o, ) <__ 2(o, ) __<

and it is immediate, from Lemma 2.5, that for each _> 0,

(s) n ()* < t(, ), (t)*+ _< t+ (, ).
Since every -group has finite L-length we also have

(9) o (J:=0 n(o, )
LEM2.10. (1) 0(,)
(2) 1 (o, ) contains the class of -groups in which the -normalizer and

-projectors coincide.
(3) o a (L)t (o, F) _< "-k 1 (o, ) for each >_ O.

Proof. (1) Ge0(, ) =, G R0 E(S). Therefore0(, ) .
(2) If the -normalizers and i-projectors of the -group G coincide,
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then with the usual notation, D E(S). Thus RI(G) Ra(D; )
D E(S) by [5, 3.18(i)]. Hence G e 1 (, ).

(3) Suppose G e n (LT)t (, ) and let F denote the (LTC)-radical of
G, i.e., F/p(G) p(G/p(G)). Then G/F e t(, ) since this class is Q-
closed by 2.9. Thus, by 2.4 and (6), Rt(G)F E(S)F. Hence

Rt(G) n (9).
NowDt+ (G) is an -normalizer of Rt (G) so, by [5, Theorem 5.2],

Rt+ (G) R(a) (Dt+ (G);

is an {-projector of Rt (G). Since E (S) is an {-projector of Rt (G) contained
in Rt+ (G) we must have Rt+ (G) E (S). Thus G e -t- 1 (, {) as required.

COROLLARY 2.11.
t(, {) < . If >_ 0 then t(, ) < + 1(, ) if and only if

Proof. It is clear that we need only show that (, ) is a proper subclass
of -t- 1 (, {) if it is a proper subclass of . Suppose that this is not the
case. Then, by 2.10 (3), we have, n (,)t(., ) _< --I- 1 (., ) t(., )

whence

n (L)2t(, ) t(, ).

An easy induction argument now shows that for each n >_ 0,

n ()"t(, ) t(, ).

Since every -group has finite LO-length it follows that

__
(, ) contra-

dicting the hypothesis that t(, {) is a proper subclass of . This contra-
diction completes the proof.

From 2.10 and 2.11 we see that the ascending sequence (7) commences at
and becomes stationary only when it reaches .
COROInR 2.12.

of DinG.
G 1 (, ) if and only if E (S) is the strong -serializer

Proof. Suppose firstly that G e 1 (, ). Then Ra (D; ) R1 E (S).
Now D -ser E(S) by 1.2 and [5, 5.9(i)], so in this case D is -serial in
Ra (D; ). Thus, by [5,41.7], E (S) is the strong -serializer of D in G.

If on the other hand E (S) is the strong -serializer of D in G then
E(S) Ra(D; ) by definition (cf. [5, 4]). Thus R1 E(S) and
G e 1 (, ) as required.

From 1.2 and 2.10 we see that 0(, ) is both subgroup-closed and satu-
rated. We have been unable to decide whether t(, ) is saturated for

>_ 1. However, we now give an example to show that the classes (, )
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are in general not subgroup-closed. This example also shows that the se-
quence (7) can be strictly ascending and that (1), (2) in Lemma 2.5 are best
possible.

Example 2.13. We take * the class of finite soluble groups and
9* the class of finite nilpotent groups. Certainly these satisfy (1.1),

(1.2) and (1.3) and in this case the 9*-reducers are exactly the reducers.
If G is an A-group (that is a finite soluble group with abelian Sylow p-sub-

groups for each prime p) then the basis (i.e. system) normalizers of G are
pronormal in G [12, 2.4]. Thus if D is basis normalizer of G, then by [5, 3.22],
Ra(D) Na(D). Inspection now shows, using [1, Theorem 6] that for
A-groups our second convergence process reduces to that defined by Carter
[1, 4].
In [1], Carter constructs an A-group G. for each j >_ 1, in the following way.

Let p, p., pa, be a sequence of distinct primes and inductively define

G1 Cp, Gk C G_ (k > 1)

where C denotes a cyclic group of order p. Carter shows [1, Theorem 12],
that, for each n >__ 1, G. is an A-group of nilpotent length 2n in which F-I
E (i.e. in our notation R_I E (S)) and G+ is an A-group of nilpotent

length 2n -t- 1 in which D E (i.e. in our notation D E (S)). In the
latter case R_ E (S) since D is a basis normalizer of R_. Thus, by
(8), we have

(,).+(10) G:+x e (n(*, *) n 1 (*, *)),

G+. e (*)+ (n -t- 1 (*, *) n(*, *)).

Hence equations (1), (2), in 2.5 are best possible. Also the sequence (7)
is strictly ascending in this case, i.e.,

* 0((R)*, *) 1((R)*, *) 2(*, *) ....
For each >_ 1, the (R)*-formation t((R)*, *) is not subgroup closed. For,

by 2.10(2), 1 ((R)*, *) contains all SC-groups, i.e., finite soluble groups in
which the basis normalizers and Carter subgroups coincide. Now the Alperin-
Thompson Theorem [9, page 747] states that every finite soluble group can
be embedded in an SC-group. Thus if t((R)*, *) were subgroup-closed for
some >_ 1 then we would have to have ((R)*, *) (R)*, contradicting (10)
above. Thus ((R)*, t*) is not subgroup-closed for each >_ 1.

Suppose f (i 1, 2) is a -preformation function on the set of all primes
satisfying (1.1) and (1.3), and is the saturated -formation defined by
We close this section with examples that show that

(a)

_ . does not imply t(,x) _< t(,:) (t > 0),
(b)

_
does not imply t(,.)

_
t(,) (t > 0).
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In fact (b) follows easily from our previous example. For if we take

* and 1 9* then, by (10), t(*, *) < t(*, *) * for
all > 0.
Our example for (a) is somewhat more complex.

Example 2.14. We in fact consider the group G which Hawkes [8] con-
structed as follows"

Let Q {a, b; a 1, a b [a, b]} be a quaternion group of order 8
and S a subgroup of the automorphism group of Q isomorphic to the sym-
metric group of degree 3. S is chosen so as to contain an involution x whose
action on Q is defined by a b,b a. LetR QSbethesemidirect
product of Q by S. We write z [a, b] and Z (z}; Z is the centre of both
Q and R. We let T denote the normal subgroup of index 2 in S.
Now set K ((12)(35), (12345)}, a dihedral group of order 10 considered

as a subgroup of the alternating group of degree 5, and let H ((12345)} be
the normal subgroup of index 2 in K. Let G R K, the wreath product of
R by K according to this permutation representation. Let a’R --+ R
denote an isomorphism (i 1,-, 5) and let D R1 ><_ >< R5 be the base
group of G. Using the suffix i to denote images under a Hawkes sets

2 xxxx4xs zzzz4z5 and ] (12) (35).

He also defines the following subgroups of G"

2: (}; A Z >< >< Z;
B Q >< >< Qs C B(T, >< >< Ts);

b c<>; $ s x-.. x s;
E, <} X <> X </>; F (A X )</>.

Hawkes also considers he saturated *-formation defined by the *-
formation function

[(p) {1} for p 3

(3) *, the class of finite 2-groups.

It is easy to see that the upper nilpotent series of G is 1 < B < C < D <
DH < G so that G has nilpotent length 5 and belongs to (*)4 but not to
(*).
Hawkes showed in his paper that E is both an {-normalizer and basis

normalizer of G and that F is an -proiector of G.
LetS B(<x} >< >< <x>)</>,S TX >< T,S H. Then

S {S, S, S} is a Sylow basis of G which reduces into both E1 and F.
Thus in our usual terminology F E (S). The p-complement system of G
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associated with S is {S.,, $3,, $5,} where

$2, (T1)< )< Ts)H,

$3, B((xl) )<... )< (xs))g,

S, D(k}.

We calculate the -reducer of E in G. Since S reduces into E we have
Ro(E ) (y e G; S E) by [5, 2.6]. Now the (p)-residual E of
ExisEforp # 3andlifp 3. AlsoC(G) Gforp # 3. Thus

S ES,nEeSyl,(E) for eachp 3
S, reduces into E (since E is a 2-group)
E (D())

D(k) (D(k)) (sinceD G)
y eNa(D(k})

Thus Ra(E ) D(k}. Since D(k) is not an 3-projector of G we therefore
have G 1 (*, 3).
We now calculate the reducer of Ex in G. Since

R((E) <_ Ra(E ;)

by [5, 3.1], we have Ra(E) R)(k)(E). Now S reduces into D(k) so that
RD(k) (El) is generated by those elements y e D(k) such that (S n D(/))
reduces into Ex. But E is a 2-group so it follows that

Ra(E) R)(k)(E) (y e.D(k,); S reduces into El).

Hence $2 <_ R,(k)(E).
Suppose y e D(k) and Sg reduces into E. Now

D(]) S. (T X-X T)

so thaty uvwhereueS.andveTX X T. ThusS Sreduces
into E1. Therefore E1

_
S and, since normalizes T1 X X Ta,

[4, v]eSn (T X X Ts) 1.

Now the centralizer of xi in Ti is the identity, so it follows that the centralizer
of2in T X X Tis also the identity. Thus v landy u
Hence R.(k) (E)

_
S. and from our previous inequality we have Ra(E) S.

It follows, for example from [5, 3.9 and 3.19], that S. is a Carter subgroup
of G. Therefore the *-convergence process for G takes one step, i.e.,
G e 1 (*, *).
Now it is clear that *

_
so we have an example to show (a) since

G e 1 (*, *) 1 (*, ).
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3. i-abnormal depth
We recall that, when defined, the -abnormal depth, aV(G" H), of a subgroup

H in a -group G is the minimal number of -abnormal links in a finite
-balanced chain from H to G, i.e., a chain

H H0_H _H.

_
_H, G

in which H is either -abnormal or -serial in H+ (0

_
i < n).

If we take * and * then the concepts "-balanced chuin",
"-abnormal depth" reduce to the concepts "balanced chain", "abnormal
depth" defined by Rose [13]. If H is a subgroup of a finite soluble group G
then the abnormal depth of H in G is, as in [13], denoted a (G’H). The first
three theorems in this section generalize similar results of Rose [13].

THEOREM 3.1. Suppose H is an -subgroup of the $ n ()t-group
G (t >_ 0). ThenaV(G’H)

_
t.

Proof. Since G e () there is a series

1- U0_ U

_
U _-..

_
Ut_ Ut+- G

of normal subgroups U of G such that U/U_ for 1

_
i

_
and G/Ut .

SetH HU. Then

H Ho

_
H

_ _
Ht

_
Ht+l= G.

Letie{0,...,t-- 1}. ThenH+/U U+/U H/U and H/U e ,
so, by [2, 5.12], there is an -projector F/U of H+/U containing H,/U.
Now F/Ui is -abnormal in H+I/U by [7, 3.5], and H/U is -serial in
F/U by 1.3 and [5, 5.9(i)]. Thus

H -ser F)v H+I,
and we have

(1) H Ho -ser Fo )qv H -ser F )H ) Ht

_
G

Now GlUt e , so, by [5, 5.9], Ht/Ut -ser GlUt. Thus Ht -ser G and the
chain (1) is -balanced. Since there are (at most) -abnorml links in this
chain we have v (G’H)

_
t, as required.

THEOREM 3.2. If G e ?I and H is any subgroup of G then a (G"H)

_
1.

Proof. Let A Gv, the -residual of G. Then A is abelian by hypothesis
and it is clear that

(2) av (G:H)

_
a (G’AH) + a (AH’H).

Now G/A e so, by [5, 5.9 (i)], AH -ser G. Thus a (G’AH) 0. Since
A is an abelian normal subgroup of G, A n H is a normal subgroup of AH.
It follows that

a (AH’H) a (AH/A H’AH/A H).
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Since is a subgroup-closed and H/A n H -- AH/A, we huve H/A n H .
Thus by Theorem 3.1, aV(AH/A n H:H/A n H) _< 1. From (2) and our
previous remarks we now deduce av (G" H) _< 1, as required.

Remark. In his paper, [13], Rose shows that for each integer n _> 1 there
is a finite supersoluble group G with a subgroup H such that a (G’H) n.
Such a group G is necessarily metanilpotent so Theorem 3.2 cannot be ex-
tended to the case where G e (L92).

THEOREM 3.3. Suppose H is an -ascendabnormal -subgroup of the
(LO2 -group G (t >_ 2). Then av (G"H) <_ t-- 1.

Proof. As in the proof of 3.1 we have a series

1 U0< U_< U._<... g U g U+ G

of normal subgroups of G such that U/U_ L9 for 1 _< i <_ and G/U e .
Now HU_ e (L9)- SO, by Theorem 3.1, we have a (HU_" H) <_

2. Since
a(G’H) <_ a(G’HU_) -+- a(HU_ "H)

it suffices to prove that a (G:HU_:) <_ 1.
By [7, 4.1], H contains an 3-normalizer of G, so HU_/U_: contains some

3-normalizer D/U_. of G/U,_:. Since H e 3,

HU,_:/ Ut_: <_ Ra/r,_ (D/ V,_ Z/

by [5, 3.11]. Now G/U,_. e n (r9) so, by [5, 5.2], X/U,_ is an -pro-
jector of G/Ut_. In particular therefore

XU_ > GU_..

Also HU_/U_ -ser X/U_ by [5, 5.9(i)]. Thus

HUt_. -ser X )qv G

and we have a (G"HU_) _< 1, as required.

Remarks 1. Theorem 3.3 does not hold if 1. For if H is an -ascend-
abnormal -subgroup of G e K n (L92) then, by [7, 4.1], H contains an

-normalizer D of G which, by [2, 5.1], is also an -projector of G. Since
H e we must then have H D, an -abnormal subgroup of G by [7, 3.5].
Thus av (G"H) 1 and 3.3 does not hold.

2. If H is a subgroup of an -projector E of the -group G then, by
[5, 5.9(i)] and [7, 3.5], H -ser E > G whence av (G:H) <_ 1. In particular
if D is an -normalizer of G then av (G :D) <_ 1.

LEMMA 3.4. Suppose D is an -normalizer of the-group G. Then
a (G’H) 0 if and only if G . Hence a (G’D) 1 if and only f G .
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Proof. Suppose a (G’D O. Then there is a series

D Do _D

_
_D, G

with D -ser D+ for 0

_
i

_
n 1. Clearly this implies that D -ser G.

It now follows, from [5, 4.10], that G Ra(D; ). From [5, 5.6] we now
deduce that G belongs either to or to n (). If G e n () then,
by [2, 5.1] and [5, 3.18(i)], G D e . Thus in either case we have G e ,
as required.

If conversely G e then G D and clearly a(G’D) O. We have
therefore shown thut av (G:D) 0 if and only if G e . The last part of the
lemma now follows from the second remark prior to the statement of the
result.

4. (R, )-chains
LEM 4.1. Suppose H is a subgroup of the -group G. Then here is a

unique smallest -serial subgroup of G containing H.

Proof. Let B be the collection of all -serial subgroups of G containing H;
B is non-empty since G e B. From [5, 2.21 and 4.10] it follows that inter-
section B of all the members of B is also -serial in G. Clearly B is the
unique smallest -serial subgroup of G containing H.

If H is u subgroup of a -group G we denote by SV(G" H) the unique smallest
-serial subgroup of G containing H.

LEMMA 4.2. Suppose H

_
G e and N < G. Then

Sv(G/N’HN/N) Sv(G’H)N/N.

Proof. Let SV(G/N’HN/N) X/N. Then HN/N

_
X/N.-ser GIN

so that H

_
X -ser G. Thus S (G’H)

_
X by definition and hence

SV(G’H)N/N

_
Z/N.

But S (G:H)N/N -ser GIN by [5, 4.11], so we must have S (G:H)N/N
X/N, as claimed.
Suppose H is a subgroup of the -group G. We define subgroups S

S (G"H") and R R (G"H’) of G containing H inductively as follows"

S Sv(G:H); R Rs,(H; );

S+ S (R," H) R.+ Rz,+ (H; ) (i _> 1).
In this way we obtain a chain

(3) G>_ S >_ R_> S. >_ R_>

of subgroups of G containing H. It seems possible that in the most general
cases the series (3) may not reach H after finite number of steps, though
we have no example to verify this. However, by [5, 3.8 and 3.13(ii)] we do
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hve

(4) H

_
R2 ) S2 -ser R1 )qv S1 -ser G

Thus when the chain (4) is finite and reaches H it is an -balanced chain
from H to G. We call (3) the (R, )-chain of H in G, and when it reaches
H after a finite number of steps we denote by b(G:H) the number of -abnormal links in it. It is clear that a(G"H) <_ bV(G "H) when defined. It is
immediate that if _> 0 then b (G:H) if and only if S+I (G’H’) H.
Our (R, )-chains generalize Mann’s Q-chains [11] and our first aim is to

show that at least in finite $-groups they have some meaning, i.e. if H is a
subgroup of a finite -group G then the (R, )-chain of H in G reaches H
(after a finite number of steps). To do this we require two lemmas.

LEMMA 4.3. Suppose H is a subgroup of the finite -group G and

H < R(H; ) G.

Then H lies in an -normal maximal subgroup of G. Hence S (G:H) < G.

Proof. We argue by induction on the order of G. Since H is a proper sub-
group of G, G is nontrivial. Let N be a minimal normal subgroup of G;
then R(v (HN/N; ) GIN by [5, 3.4]. If HN/N is a proper subgroup of
GIN then, by induction, HN/N lies in an -normal maximal subgroup M/N
of G/N. Thus H is contained in the --normal maximal subgroup M of G.
If HN G then H is a maximal subgroup of G and, by [5, 3.13 (i)], must be
.-normal in G. Thus in either case H lies in an -normal maximal subgroup
M of G. By definition, S(G:H) <_ M so the final statement of the lemma
is immediate.

LEMMA 4.4. If H <_ G e , and X R(H; ) then Rx (H; ) X.

Proof. Let S be a Sylow basis of G which reduces into both H and X.
Then, by [5, 2.6 (iii) ],

X Ro(H;) (xeG;SvvH),
Rx(H; ) (y e X; (S n X)vv " H}.

Suppose x e G and Sv -reduces into H. Then x e X and, since Sv clearly
.-reduces into X to (S n X)z, we have (S n X)v -reduces into H, by
[5, 2.16]. Thus X <_ Rx (H’) and the result now follows.
Suppose now that H is a subgroup of the finite -group G. Then, by 4.3

and 4.4, every containment in the chain (3) is strict (except possibly G > S)
until H is reached. Thus the (R, )-chain of H in G reaches H and bv (G" H)
is defined.
We have been unable to decide whether Lemma 4.3 holds in general.
Our aim now is to improve Theorems 3.1, 3.2 and 3.3 by showing that
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bV(G:H) may replace a (G’H) in each of the statements. Techniques simi-
lar to those employed by Mann [11] can be used to prove these extensions
but we give here alternative proofs which use our work on -reducers [5].

We shall require the following

LEMMA 4.5. Suppose H is an -ascendabnormal subgroup of the -group
G. Then S G H G.

Proof. Let S S (G’H). Since H is -ascendabnormal in G there is
an ordinal a and a chain (Ha <_ a) of subgroups of G such that H H0,
Ha )q Ha+l for < a, Hx (Ja<x Ha for limit ordinals X _< a, and Ha
G. We prove by transfinite induction that Ha <_ S for each <_ a. This
will show that G H _< S, proving the result.

If 0 then H H0 _< S by definition; therefore the induction begins.
Supposet a-t- lforsomea < aandH, <: S. ThenH,_< SnHa+l.

Now Ha )q Ha+ so that S n Ha+l )q Ha+l. Also

S r Ha+ -ser Ha+ by [5, 4.3 (i)].

A proper subgroup of a -group cannot be both -abnormal and -serial so
we must have S n Ha+ Ha+. Thus Ha Ha+l _< S and the induction
goes through in this case.

If _< a is a limit ordinal and Ha __< S for each t < h then certainly Hx
(Ja<x Ha <_ S. This completes the induction argument and the proof.

As an immediate consequence of 4.5 and [7, 4.1] we have

CoRo.Lav 4.6. IfD is an -normalizer of a -group G then S (G’D) G.

LEMM/ 4.7. Suppose H is an -subgroup of the ( -group G. Then
b (G:H) <_ 1.

Proof. Let R p(G), the Hirsch-Plotkin radical of G.
so, by [5, 5.9 (i)], HR -ser G. Therefore

S S (G" H" Sv (G"H) <_ HR.

Then G/R

Since H _< S the modular luw gives S H ($1 n R). Now H e so, by
[5, 4.21], H -ser Rs,(H; ) R(G:H:). Thus

H S(R:H) S.(G:H:).
Hence

H S -ser R )q S -ser G
and b (G:H) <_ 1.

THEOREM 4.8. Suppose H is an -subgroup of the ()-group
G (t >_ 0). Thenb(G:H)

_
t.

Proof. We argue by induction on t. If 0 then Ge and, by [5,
5.9 (i)], H -ser G. Thus S (G’H:) H and b (G’H) 0.
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If > 0 set R p(G). Then HR/R is an -subgroup of G/R so by in-
duction b(G/R’HR/R) _t- 1 and hence

St (G/R HR/R HR/R.

Now it is clear, from [5, 3.4] and 4.2, that

S(G/R’HR/R’) S(G:H’)R/R,

R(G/R’HR/R’) R(G’H’)R/R

for each i >_ 1, i.e. that the (R, )-chain of HR/R in G/R is the image in
G/R of the (R, )-chain of H in G. Thus

St St(G:H:)

_
HR

and in particular

Therefore, by 4.7, bv (St:H)

_
1. Now it is clear from the definitions that

S.(St:H:) St, RI(St:H:) Rt, S2(St:H:) St+. Since
b(S:H)

_
1 we have H S2(St:H:) S+ and hence b(G:H) t,

as claimed.

THEOREM 4.9. If G e n ?I and H

_
G then b (G’H)

_
1.

Proof. Let A Gv, the -residual of G; A is abelian by hypothesis.
Therefore H n A is a normal subgroup of AH and, as in the proof of 4.8,

b (AH/H n A "H/A n H) b (AH’H).

Now H/A n H is isomorphic to a subgroup of the -group G/A so, by 1.3,
H/AnHe,. Thus, by 4.8, b(AH/HraA:H/AnH) _< 1. Hence

b (AH:H) <_ 1.

Now G/A so, by [5, 5.9(i)], AH -ser G. Therefore S(G:H) <_ AH
and it follows that S(G:H) S(AH:H). Thus the (R, )-chain of H
in G coincides with the (R, )-chain of H in AH, so that

b(G:H) b(AH:H) <_ 1,
as required.

Remark. Since a (G:H) <_ b (G:H) when the latter is defined, it follows,
from the remark after the proof of 3.2, that we cannot hope to extend 4.9 to
the case where G is a n (L)-group.

LEMMA 4.10. Suppose H is an -ascendabnormal -subgroup of
G ().

Then bV (G’H)

_
1.

Proof. By [7, 4.1], H contains an -normalizer D of G, and since H e {
we have Ro (H; ) <_ Ro (D; ,) by [5, 3.11 (ii) ]. Now is subgroup-closed
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and Ra(D; ) is an -projector of G by [5, 5.2]. Therefore Ra(H; ) e

and, by [5, 5.9(i)], H -ser Ra(H; ). Now SI(G:H:) G since H is
-ascendabnormal in G by (4.5), so RI(G:H:) R(H; ). Therefore

S2(G:H:) S (R(H:) :H) H.

Thus bV(G:H)

_
1, as required.

THEOREM 4.11. Suppose H is an -ascendabnormal -subgroup of the

o (L) -group G (t >_ 2).
Then bV(G:H)

_
t- 1.

Proof. We argue by induction on t, the case 2 being covered by 4.10.
If > 2 and R p(G) then HR/R is an -ascendabnormal -subgroup of
G/R by [7, 4.5] so by induction bv(G/R:HR/R)

_
t- 2. In particular

therefore S,_(G/R:HR/R:) HR/R. As in the proof of 4.8 we now
obtain S,_(G:H:)

_
HR and in particular

S,_ (G:H:) e n (L).

The argument used to complete the proof of 4.8 now shows that St (G:H:)
H. Thus bv (G:H) g 1, as claimed.

To show the difference between the invariants aV(G:H) and bV(G:H) we
have

THEOREM 4.12. Suppose D is an -normalizer of the -group G. Then
a (G:D) bv (G:D) if and only if D has a strong -serializer in G.

Proof. If Ge then D G and aV(G:D) bv(G:D) O, so there is
nothing to prove. We may therefore suppose that G . Then a (G:D)
1 by 3.4.
By 4.6, SI(G:D:) G so that

RI(G:D:) R(D:) and S(G:D:) S’(Ra(D:):D).
Thus

av(G:D) bv(G:D) =, b’(G:D) 1

=, S.(G:D:) D

=, D -ser Ra (D; )

=, D has a strong -serializer in G [5, 4.17]

Suppose D is the -normalizer of the -group G associated with the Sylow
basis S of G. The (R, )-chain of D in G is, in some respects, similar to the
second convergence process of G for the Sylow basis S. We consider briefly
the question of whether there is any relation between bv (G:D) and iv (G).

Firstly iv(G) is not bounded in terms of b (G’D). For take t *
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and t*. If D is a basis normalizer of an A-group G then D is pronormal
in G by [12, 2.4] so, by [5, 3.22], Ro(D) No(D). Thus, by 4.6,

Sx(G:D:*) G, Rl(G:D:91*) Ro(D),

S(G’D:*) S" (Ro(D) :D) D

as D <3 Ro(D). Hence b" (G:D) _< 1. Now the groups G, in Example
2.13, are A-groups and for each n >_ 0, ie,(G,+) n. Thus if D is a
basis normalizer of G then we have b (G "D) <_ 1 for all i but the 9*-
speeds i,(G) are unbounded. Thus i(G) is in general not bounded by
some function of b(G:D). We leave open the question of whether b(G:D)
is bounded in terms of i (G).
We close this section by considering briefly a generalization of another of

Rose’s concepts [14].
If H <_ G e we say H is -contranormal in G if S (G’H) G, i.e. if H

is a subgroup of no proper -serial subgroup of G.
By 4.5 every -ascendabnormal subgroup is -contranormal.
LEMMA 4.13. If H is an -contranormal -subgroup of the n (L)-

group G then H lies in some -projector of G.

Proof. Let R p(G). Then G/R e so, by [5, 5.9(i)], HR -ser G.
Since H is {-contranormal in G we must have HR G. The result is now
immediate from [2, 5.10].

LEMMt 4.14. If G e n I then the -contranormal -subgroups of G are
precisely the -projectors of G.

Proof. The -projectors of G are -contranormal -subgroups of G by
[7, 3.5] and 4.5. On the other hand suppose H is an -contranormal -subgroup of G. Let A Gv, the -residual of G; by hypothesis A is abelian.
Now G/A e so, by [5, 5.9 (i)], HA -ser G. Since H is -contranormal in
G we must therefore have G HA. Now H is contained in some -projec-
tot E of G by 4.13, so by the modular law E H (E n A). But E comple-
ments A in G by [2, 4.12 and 5.1]. Therefore E H, and the proof is com-
plete.

Remark. If G is a finite soluble group then a subgroup H of G is 9*-
contranormal in G if and only if H lies in no proper normal subgroup of G,
i.e. if and only if the normal closure Ha of H in G is G. Thus for *-groups
the concepts "9l*-contranormal" and "contranormal" (as defined in [14])
coincide.

In his paper, [14], Rose gives an example to show that (9*)%groups may
have nilpotent contranormal subgroups which are not Carter subgroups.
We cannot therefore hope to improve 4.14 to the case where G e n (L).
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Using Lemma 4.14 we can sharpen 4.13 to give

LEMM 4.15. If H is an -contranormal -subgroup of the ()I-
group G then H lies in some -projector of G.

Proof. Let R p(G). Then HR/R is an -contranormal -subgroup
of G/R by 4.2. Thus, by 4.14, HR/R is an -projector of G/R. By [2,
5.10], H lies in an -projector E of HR, and since E is n -projector of G by
[2, 5.3] we have the desired result.

Our final result sharpens 3.1 and 4.8.

TnoM 4.16. If H is an -subgroup of the ()*t-group G (t >_ 1)
then b (G:H) __< t.

Proof. We argue by induction on t.
If 1, then H is an -contrnormal -subgroup of the

n (9)?I-group S S(G:H:) SV(G:H).
Thus, by 4.15, H lies in an -projector E of S. Let R be the Hirsch-Plotkin
radical of S. Then, by 4.2, HR/R is an -contranormal -subgroup of
S/R so, by 4.14, HR ER. Hence E H(E R). Now applying
[5, 2.17 (iii)] we have Rs (H; ) _< R (E; ). From [5, 3.18(i)] we obtain
RSI (U; )

__
Eo NOW E e so, by [5, 3.11(i)], E _< Rs (H; ). Thus

R R(G:H:) Rs(H; ) E.

But H -ser E by [5, 5.9 (i) ], so we have S. (G:H:) H, whence bv (G:H) _<
1 and the induction begins.

If > 1 and Y p(G) then HY/Y is an -subgroup of the

n (L)*--group G/Y,

so by induction b (G/Y:HY/Y) <_ 1. Thus

S(G/Y:HY/Y:) HY/Y.

The argument at the end of the proof of 4.8 now shows that S,+ (G:H:)
H. Thus bv (G:H) <_ t, which completes the proof.

The mterial in this paper forms part of a thesis submitted to the Univer-
sity of Warwick in 1971 for the degree of Doctor of Philosophy. I would
like to thank my supervisor Dr. B. Hartley for all his help and encourage-
ment.
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