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1. Introduction

In a series of papers, we have studied the Riesz space C(X) of real continu-
ous functions on a compact space X, its dual L(X)mthe space of Radon
measures on X--and its bidual M(X). For each Radon measure v, 1(v)
appears as a band (hence direct summand) of L(X), and (v) appears as
a band of M(X). A good part of our work has been on the extension to
L(X) and M(X) of the results in integration theory on 21(v) and 2(v) for
fixed v.
Now another important space determined by each v is the space )rC(v) of

v-measurable functions modulo those vanishing v-almost everywhere. The
question arises: what is the relation of (v) to 2(t) and 2(v), and what
space plays the corresponding role to L(X) and M(X)?. In [2] (cf. also
[3]), Luxemburg and Masterson have given a general answer. For every
archimedean Riesz space E, they define and study the space r(E) of "un-
bounded" continuous linear functionals on E: each r(E) is an order-con-
tinuous linear functional on an order-dense ideal of E, which is maximal in
the sense that cannot be extended to a larger ideal. For E (), r(E)
can be identified with ;(v). They point out that r(E) is isomorphic with
Nakano’s space of dilatators on E, but for our purposes, r(E) is adequate
and simpler.

In the present paper, we study F(L(X)), which we deonte by (X).
(X) contains M(X) as a dense ideal, and for each v, Z(p) is the closure in
91Z(X) of the band (v) of M(X). Most of the paper is devoted to obtain-
ing the subspace t(X) consisting of the "universally measurable" elements,
and to establishing the following two characterizations of these elements:
(1) they are the elements of 9re(X) which are limits of nets of C; (2) they are
the elements of 9Z(X) for which a general Lusin theorem holds.

Accomplishing this requires a surprising amount of work. One reason is
that the standard order-convergence does not suffice for our purpose. This
is already foreshadowed in the fact that on the Riesz space Rx of all functions
on X (which appears as a band in 9rt(X)), order-convergence does not in-
elude pointwise convergence. The appropriate order convergence is one
defined by Nakano [4]. We can give it a relatively simple form in 91Z(X)
because of the existence of the weak order unit 1, and in this form it enables
us to obtain the above theorems.
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2. Preliminaries

Let E be a Riesz space (that is, a vector lattice). A set A in E will be called
bounded if it is contained in some interval [a, b] ceE a

_
c

_
b}. E will

be called Dedelind complete if the supremum /A and the infimum /A exist
for every bounded set A. It is called universally complete if every set of mu-
tually disjoint positive elements has a supremum.
When we speak of a net {a.} in E, we will mean that the set of indices is

directed, and we will denote its order relation by <. A net {a.} is ascending
(resp. descending) if for every pair of indices a, /, a < / implies a.

_
a

(resp. a. >_ aa). The notation a. " a means that {a.} is ascending and
a /.a. and similarly for a. a. A net/a} converges to a if there exists
anet{b.} such thatb. 0and a a[

_
b. foralla. We denote this

convergence by a lim.a, or a. -+ a.
A subset A of E will be called closed if for every net {a.} in A, lim.a. a

implies a e A. Given any set A, the smallest closed set containing A will be
called the closure of A and denoted by A.
An ideal I of E is a linear subspace with the property that a e I, b - a

implies b e I. The closure i of an ideal I is related to I in a simple manner"

every a e I+ (the positive cone of I) is the supremum of the set of elements
in I+ below it. It follows every a e I is the limit of some net in I. If I E,
I is said to be dense in E.

If an ideal I in E has a complementary ideal J, that is, E I @ J, then I
will be called a band. If J exists, it is uniquely determined; hence in the
decomposition a ar -t- aj, the component ar of a is uniquely determined
by I. Otherwise stated, if I is a band, then we have a canonical projection
of E onto I. We will denote the image of any set A under this projection
by A" Az lax la e AI. The projection preserves suprema (and infima)"
c k/A implies c k/Ax. In particular, (a/b). a/bx, whence
(a+) (az)+, (a-) (a)-, and a I a I-
Given set A in E, we denote by A’ the set of elements disjoint from

A" A {beE b l/ la 0 Zor l a eA}. A’ is a closed ideal. If
E I @ J, thenJ I’andI J’. Thus a band is closed. TheRiesz
Theorem states that if E is complete, then, conversely, every closed ideal I
inEisaband’E I @F. Moreover, foraeE+,

a, V{beIlO b a}.

If a band I is generated by a single element b (that is, I is the smallest
closed ideal containing b), then in place of the symbols az and A we will
often use the symbols a and A.
A (real) lineur functional on E will be called bounded if it is bounded on

every bounded set of E. It will be called continuous if for every net {a.} in
E, a lim.a, implies (a, } lim. (a, }.
Throughout the present paper, X is a fixed compact space, C is the Banach

lattice of (real) continuous functions on X, L is its dual, and M its bidual.
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M is not only the set of norm-continuous linear functionals on L, it is in fact
the set of continuous linear functionals in the order sense defined above.
Both L and M are complete Riesz spaces, hence a closed ideal in either one
is a band. Moreover, for every decomposition L I (3 I’ of L into bands,
the corresponding decomposition M (I’) " @ I" is also into bands. We
will call (I’)"the band in M dual to I. It is of course the dual of I in the
ordinary Banach space sense.
L is the space of Radon measures on X. Given e L, if I is the band gener-

ated by t, then as we stated above, for any e L or A c L, and A will be
denoted by r and At. In particular, I Lr, and we will write it in the
latter form. Moreover, we will denote the band (I’)’ in M dual to I by
Mr and for any f e M or A M, fM and AM will be written fr and At.
This is because in integration theory, the properties of Lr and Mr are studied
entirely in terms of t. Specifically, by the Radon-Nikodym theorem, Lr can
be identified with 1(t), hence Mr can be identified with (#).
We always consider X as a subset of L. It is easily shown that the linear

subspace generated by X is an ideal, and that its north-closure is a band.
This band is the space of atomic Radon measures on X; we will denote it by
La. La’ is the space of diffuse Radon measures on X; we will denote it by
Ld. So L La ( Ld. (In our previous papers, we used the notation L0
and L1 .) We denote the bands in M dual to La and Ld by Ma and M re-
spectively. Thus M Ma ( Md. La is isomorphic to l(X), hence Ma,
as its dual, is isomorphic to l(X).
For any t* e L or A L, we will vrite/.ta and Aa for ,a and ALa And for

any feM or A M, we vill write fa and Aa for fM and AM
The function 1 with constant value 1 on X is a strong unit not only for C,

but in fact for M (under the canonical imbedding of C in M); that is, given
feM, IIf[[ <-- lif and onlyif ill <- 1.

3. The space

We assume a knowledge of [2]. In this section, we give those results of
that paperstated for the Riesz space Lwhich we will need.
The letter J will always denote a dense ideal of L. L itself is considered

a J. Given two J’s, J1 and J., J n J. is again a J. Of importance to us,
and easily verified, is the property that every J contains all of X.
We denote the space r(L) [2] by llZ. Each element f of 9Z is a continuous

linear functional on some J J--its domainwhich is maximal in the sense
that f cannot be extended to a continuous linear functional on any larger
ideal (indeed, not even to a bounded linear functional). Given f, g e 9E,
f + g, Xf(X e R), f /g, and f/k g are all defined on J n J, then extended,
each to its domain (which is uniquely determined). We then have:

(3.1) 9E is a complete and universally complete Riesz space, containing M
as a dense ideal, and with 1 for a weak unit.
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Since is complete, the statement that 1 is wek unit means in effect
that for every f e +, f V(f/ nl).
Given f e and t e L, the notation (f, t) will be used only when t e J.

Even with this proviso, we hve the sme decomposition relation that exists
between L nd M:

(3.2) For every decomposition L I @ I’ into bands, we have the decom-
position (1’) " @ I" into bands. And (I’) r(I).

We will cll (I’)" the bnd in 9 dual to I. Given t e L, we will denote
by the bnd in dul to L,. 9, cn be identified with the spce
of ll t-mesurble functions modulo those vnishing on tt-null sets. Clearly
i) M M, nd the ltter is dense in ,.
Remark. Note that in the present pproch, () is superspce of
() not of (t). (Since *(t) is the dul of (), we never consider it
subspce of the ltter.)
We will denote the bands in ) dul to na ndL bya nd) respectively.

Thus g [’a )’d Again [a M Me nd the ltter is dense in a
nd similarly for i) nd M. From the fct that every J in L contains X,
it is not hrd to show that a on be identified with Rx (communicated by
Msterson).
We recall that for two elements fi g of (sy), g denotes the component

of g in the bnd generated by f. Given f e ) nd X e R, we will often be
concerned with the element l_x+. This is because it corresponds in ordi-
nary function theory to the set of points on which the vlue of the function
is (strictly) greuter thn . And similarly for 1_-.
A component of 1 is lso defined as n element e such that e/ (1 e) 0.

This definition is consistent with the bove meaning of component. A com-
ponent of 1 in either sense is lwys component in the other sense.
We will need vrious properties of the components of 1, and we collect them

here. The letters e nd d will consistently denote such components.
Consider f e ). Given >_ 0, if we set

e l_x+,d l_x-, and c 1-e-d,

then e, d, c are mutually disjoint, and f >_ Xe, f _< ),d, f c. Given
0 _< X < , 1(_)+ l(_x)+; inprticulr, for > 0, 1 1. Note
lso that for 0 _< , < ,

Finally, /l(]_x)+ 0 nd Vlc-x)- 1.

(3.3) Let A be bounded above, and for each k e R, set

ex /fl(:-xl)-.
Then Vxex 1.
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By hypothesis, there exists g e 9T such that f _< g for all f e A. Fixing h,
it follows that for eachf e A, (f hl)- _> (g hl)-, hence l(_xl)- >_ l(_xl)-
this gives us ex >_ l(_xl)-. The last equality preceding the proposition now
gives the desired result.
Now consider a set [e.} of components of 1. If/k.e. 0, then for every

f e +, /kfe. 0. It follows that if k/e. 1, then for every f e +,
k/fe. f. One consequence of this last is thatf 0 for all a implies f 0.
Another consequence is that if {e.} is a net and e. " 1, then for every f e

(not just 9T+), lim.f f.
Given a set {f} in , if /k.f 0, it does not follow that /k.lf 0.

However:

(3.4) Suppose /kf. 0 in .
we have/ke O.

Then for h > O, setting e. l(_x)+,

Since /.f. 0, we have /.(1/h)f. 0.
hence e. _< (1/h)f.. It follows/.e. 0.

But for every a, he. <_ f.,

(4.1)
(b)
(c)
(d)
(e)

If(x) I.

zt. The limsup and liminf of a net in

Given a bounded net {f.} in , then g limsup.f, and h liminff, are
defined respectively by g /./>.f and h /./>f. And if they
coincide, that is, limsup.f. liminf.f. f, then f lim.f, in the sense
defined earlier (2). Now these definitions require that {f.} be bounded.
Thus they do not include ordinary convergence in R, or pointwise convergence
in Rx, or even in 3(X).
Nakano’s more general individual convergence [4] eliminates this deficiency.

In the present section .and the following one, we develop his convergence in
the simpler form made possible by the existence of a weak order unit in
Given f e 9E and h > 0, we set

f(x) (f A xl) V xl) (f V hl) A xl.

f(x) will be called a truncation of f.
The verification of the following is routine.

(a) -f- < f() < f+.
For 0 <_ h <_ , f() (f()) ().
(_f) (x)

(Particular case of (d)) (f+) () (f()) +, (f-)(x) (f(x))-, If

(f) For every band I, (f()) (f)().
Since f+ > 0, (f+) (x) f+/ hl for all h > 0, hence (f+) (^) " f+ as h- .Similarly, (f-) x) " f-as h -- . Combining these with (e) above, we

obtain

(4.2) f limx f().
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(n)Remar]c. We clearly also have that f hmf
As one consequence of (4.2), we have-

(4.3) f

_
g if and only if f(x)

_
g(X) for all X >_ O. In particular, f g

if and only if f(x) gX) for all >_ O.

We extend (d) in (4.1) to an arbitrary collection.

(4.4) Given If,} c and f , the following are equivalent"
(1) f--

r(x) for all > O.(2) f() V..,.
And similarly with V replaced by A.

Proof. That (1) implies (2) is elementary. Assume (2) holds. Then
in particular, for each a, f)

_
f(x) for all X _> 0, whence by (4.3), f.

_
f.

Thus {f,} is bounded above, and therefore g V,f, exists. Then for every
_

0, g(X) V,f) f(), hence by (4.3) again, f g, and we are through.

(4.5) Let {fx} be a bounded net in 9 indexed by the non-negative real numbers
and satisfying"

_
K implies f f).

Then there exists f such that fx f(x) for all >_ O.

Proof. Set f limsupx fx Then for each 0,

f(x0) (limsupx-,=fx)(x) (Ax>_o V,>_xf)(x) Ax>_o(V,>_xf,)

A>_0 V,,>_x(L)

(routine computation). For all X >_ X0, the element (f,)(0) in the last ex-
pression is the fixed element fx0, so the entire expression is fx0, and we arc
through.
We turn to limsup and liminf. Given a net {f.} in and f , then by

f limsup.f,, we will mean

f() limsup.f (x). for all X _> 0,

and by f liminf, f., we will mcun

f() liminf r(x) for all > 0.

It is easily verified that for a bounded net in , these definitions are equiva-
lent to the ordinary ones. For this reason, we are using the same notation.
We emphasize that now, however, the statements f limsupf, and f
liminf, f. no longer imply that (f.} is bounded.
The extended definitions coincide on a (---Rx) with the pointwise limsup

and liminf. We state this formally.

(4.6) Given a net If,} in and f Ja the following are equivalent"
(1) f limsup.
(2) (f,x} limsup.(f.,x} for allxeX.
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limsup.f, and liminf.f., when they exist, have most of the properties
that they have under the ordinary definition. For example, if f limsup, f.,
then-f liminf.(-f.) and f /g limsUpa(fa / g) for all g e9. The
following theorems give additional examples.

(4.7) Iff limsupof,, then f+= limsup.f+, and f-= liminf.f. Con-
versely, if limsupf+ and liminf, f- exist, then so does limsup, f..

Proof. The first statement follows from the immediately preceding re-
marks. Conversely, suppose g limsup f.+ and h liminf.f. Then by
straightforward computation, g/ h 0; hence, setting f g h, we have
g f+, h f-. It can then be verified that f(x) limsup.f(,x) for all >_ 0,
whence f limsup, f..

(4.8) Let {f.}, {g.}, {h.I be nets in satisfying

g. _f.

_
h. foralla.

If limsup, g. and limsup, h. exist, then so does limsup f. and

limsup, g.

_
limsup, f,

_
limsup, h..

Proof. Let g limsup, g. and h limsup, h.. For each >_ 0, set
fx limsup, f(x). We show {fx} satisfies the conditions of (4.5).
The concluding inequalities in the theorem hold for the ordinary definition,

so for each ), >_ 0, limsup, g(.x)
_

limsup.f(,x) _< limsup, h(.x). But by defi-
nition, the first term here is g(X) and the last h(X); combining this with (a) of
(4.1), we obtain
(i) _g-

_
g(X)

_
fx

_
h(x)

_
h+,

which gives us that {fx} is bounded. Now suppose 0 _<

_
K. Then

(f.) () (limsup.j limsup.j. limsup.

(Here the second equality is by straightforward computation, and the third
by (4.1).) We can thus apply (4.5) to obtain an f e , which is the desired
limsup.

Remark. An immediate corollary of course is that if 0

_
f.

_
h. for all a

and limsup, h. exists, then so does limsup, f. It can be verified that under
these assumption, also liminf, f. exists.

(4.9) Given nets {g.}, h.} in +, if limsup, g. and limsup, h. exist, then
limsup.(g h.) exists and satisfies the inequality

limsup.(g. -t- h.)

_
limsup, g. -t- limsup, h..

Proof. It is easily verified that for each >_ 0,

(i) (g -t- h.) () < ()
g. -t- for all a.

Now let g limsup g and h limsup, h. and for each h >_ 0, set

A limsup.(g. -t- h.)
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We show {fx} satisfies the conditions of (4.5). By (i),

0 _fx

_
g(X) - h(

_
g-b h,

and thus {fx} is bounded. And given 0

_
)

(f) (x (limsup(g -t- h)("))(x) limsup((g -- h)

limsup.(g. -t- h.)(x) fx.
Applying (4.5), there exists f e such that fx f(x) for all X >_ 0, whence
f limsup.(g -t- h.). That f _< g -k h follows from (i) and (4.2).

(4.10) If g limsup, g then for every h

g -t- h limsup (g. -t- h).

Proof. Consider X >_ 0; we have to show that

(g + h)(x) limsup(g.
Now

(g + h) () ((g-kh) AXl) V (-kl) ((gA (kl- h) +h) k/(-Xl)
((g A (xl- h)) V (-xl- h) + h.

Thus
limsup(g -}- h)

limsup((g A (kl- h)) V (-kl- h) -t- h
(g A (kl h)) V (-kl h) -}- h (cf. the remarks preceding (4.7))
((g + h) A xl) V (-xl)
(g + h)

(4.11) Corollary. Given a net {g} in 9 and g e 9, the following are
equivalent"

(1) limsupg g.
(2) limsup(g-- g) 0.

5. Convergence in

Given a net {f} in and f e , then by f limf, or f - f, we will
mean f(x) limf for all >_ 0. EquivMent]y, f lim, f if and only if
f limsupf liminff. If the net {f} is bounded, our definition re-
duces to the ordinary one, hence we again use the same notation.

In a, the definition coincides with pointwise convergence. We state
this formally.

(5.1) Given a net {f} in a and f e a the following are equivalent:
(1) f limf
(2) (f, x) lim(f, x) for all x e X.

When it exists, limf has all the properties it has under the ordinary deft-
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nition.

(5.2)

(5.3)
Also:

Thus (cf. the remarks preceding (4.7) also (4.9))

If f limaf and g lima g then

f/g lima(f/g), fag lima(f, fg),

f - g lim(f + g).
Whence:

Iff limaf then f+ lima f+ and f- limaf.

(5.4) Given a net {f} in and f e ., the following are equivalent:
(1) lim,f f.
(2) lim(f-f) 0.
(3) limIf f 0.

For sequences, the extended definition reduces to the ordinary one:

(5.5) Iff limsupfn in ,9, then If,} is bounded above, hence the limsup
holds in the ordinary sense.

(5.6) COROLLARY. If f lim f, in , then [f} is bounded and the limit
holds in the ordinary sense.

(5.5) and (5.6) follow essentially from Theorem 1.1 in [4] and the fact
that is universally complete.
We next establish two properties equivalent to convergence. First"

(5.7) Given lg} +, the following are equivalent:
(1)
(2) A.(g A 1) 0.
(3) For every k > 0, As 1(.-1)+ 0.

Proof. Assume (1) holds. That (2) then holds is trivial. To show (3)
holds, consider k > 0. (1) implies that f.(1/k)g. 0. Since

we have (3).
Conversely, assume (1) does not hold. Then there exists g e 9 such that

0 < g_ g. forall. It follows0 < gA 1_ g.A l for all a (l is a weak
order unit for ), and thus (2) fails to hold. To show (3) fails to hold,
choose k > 0 such that (g kl) + 0. Then 1(-xl)+ 0 (again, because
1 is a weak order unit). But 1(_xl)+

_
l(._xl)+ for all a, and so (3) fails to

hold.

(5.s)
(1)
(2)
(3)

Given a net {f.} in + the following are equivalent:
lim, f, 0.
lima (f, f 1) 0.
For every O, lima l(._x)+ 0.
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Remark. It is obvious that for each of these statements to hold, it is
sufficient that it hold for limsup.

Proof. Assume (1) holds. Then of course (2) holds. To show (3)
holds, consider >_ 0. Choose ny > h. Then limf/ 1 0 nd for
each a,

l(_)+ I(’A_)+

Thus for simplicity, we cn assume {f} is bounded. For ech a, set
>f g. Then Ag 0, hence by (3.4), Al(_l)+ 0. Since
for every a, l(]_tl)+ l(_xl)+, we hve (3).
Assume (2) holds. That (1) holds follows from (5.7) nd the identity
>(f A 1) g A 1. Finally ssume (3) holds. It is enough to show
that this implies (3) in (5.7). But given > 0 and a, we have by stright-
foard computation that

(5.9) COlOr,Any. Given a net [f} in , a f e , t followi are
equivalent:

(1) limf f.
(2) lim [f- f[ 1 0.
(3) lim(f- f) 0.

Given net [f} in , nd f e, we will sy limf f uniformly if there
exists a0 such that f f e M for 11 a > a0 nd lim> 0] f f ]] 0.

(5.10) (Egorov) Given a net {f} in , and f e, if limf f, then
tre exists a net {e} of componts of 1 satisfyi:
() e$.
(b) For each , lim(f) f uniformly.

Proof. Consider first the case" {f} + nd limf 0. Let {e,} be
the set of ll components of 1 for which (b) holds, nd order this set by .
It is esily verified that for e, e in this set, e, e,, is lso in the set;
so we hve an ascending net. We show e, 1, which will complete the
proof for this first cse.

LEMMA 1. Given e L+ > O, and > O, there is a decomposition of 1,
1 d e,aana such that

(f 1 for all a > a’

By (5.8), lim l(_x)+ 0. For ech a, set d > l(_x)+. Then
d $ 0, hence (d, } 0, hence there exists a’ such that (d, } for
lla > a. Setd d0,e 1- d. Then fora >a’,l(_x)+_.< d_<d,
whence (f) kl.
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LEMMA 2. Given L+ and > O, there is a decomposition of 1, 1 d q- e,
such that (d, } <_ and e is an e
For each n 1, 2, take (1/2")ti and 1In for the ti and h of Lemma 1,

and denote the resulting decomposition of 1 by 1 d q- e, and the cor-
responding a by a.. Then e / e has the property of e in (b)
plays the role of a0 in the definition of uniform convergence). This gives
Lemm 2.
We can now show /e 1. Suppose not; then there exists a component

do of 1 disjoint from ll the e’s. Choose L+ such that {do, ,} (1, } 1.
Let 1 d q- e be the decomposition of I given by Lemma 2 for ti 1/2. Then
e is an e not disjoint from do. We thus have a contradiction.
The general case follows from the above case immediately.

6. The space of semicontinuous elements
We will call f e {)lZ an 1.s.c. element (resp. u.s.c, element) if f /A

(resp. f / A) for some subset A of C. Wc have immediately that if
f, g are 1.s.c., then so are f q- g, f /g, f/ g, and hf for > 0. Also if {f,}
are all 1.s.c., and f /, f,, then f is 1.s.c.. Denoting by the linear sub-
space generated by the 1.s.c. elements, it follows from the definition and the
above properties that is a linear sublattice of and that every element of
is the difference of two positive 1.s.c. elements. The proofs are the same as
those in [1]. Also, by the same argument as was used in [1], we can establish"

(6.1) The projection mapping 9E -+ [a maps 5 isornorphically onto $a.

The subspace S of M is clearly contained in . It might be expected that
$ n M S, but in general this is not so. We give a partial description of
n M in (6.4). First,

(6.2) For each f ,, there exists {f,} S such that f lirn fn
Proof. f g h, g and h positive 1.s.c. elements. For each n 1, 2,

setg g/nl, h h/nl. Theng " gandh " h, henceg--h-+f.
Since g and h are clearly 1.s.c. elements of M, g h e S, so we are through.

(6.3) COROLLanY. n M Be (the space of Betel elements of M [1]).

Proof. Consider f e n M. By (6.2), there exists {f} S with
f limfn. From feM, there exists , > 0 such that
But then f limf(x). Since we still have {f(x)} S and the convergence
takes place in M, we have the desired conclusion.

Note that for every > 0, f(x) e & n M, hence, by the corollary, lies in Be.
In M, every element is bounded above by an element of C--in fact, by

multiple of 1. This of course is no longer true in g. We give an example to
show it is not even true if we replace C by . Specifically we produce an
element of g which has no 1.s.c. element above it; since every element of
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$ has an 1.s.c. element above it (it is the difference of two positive 1.s.c. ele-
ments), this will supply our example.
Let X be the closed interval 0 <_ x <_ 1 of R, and {r} the set of rationals

in X. Define f e a by f(rn) n (n 1, 2, ...), f(x) 0 otherwise.
Suppose there exists an 1.s.c. element g >_ f. we obtain by induction a
nest of closed intervals K1 D K2 D such that g(x) > / for all x e Kk
(] 1, 2, ). Since g(r.) > 1 and g is 1.s.c., we can find a closed interval
K1 such that g(x) > 1 for all x eke. Suppose K, ..., K_ have been
chosen. The interior of Kk_ contains an rn for which g(r) > k, hence we
can find a closed subinterval K of K_I such that g(x) > / for all x e K,.
We thus have the nest {Kk}. Now kK is non-empty. But for x e lk K,
g(x) > k for all k, giving us a contradiction.

7. The star elements

For the moment, let us consider M. S is isomorphic to its proection Sa in
Ma, but the imbedding of S in M differs considerably from the imbedding of
S in M. One important difference is the following. If (A, B) is a pair of
subsets of Sa forming a Dedekind cut in S, then there is a unique f e M
such that f /A / B. It follows esily that M cn be identified with
the Dedeking completion of Sa (hence of S). In contradistinction to this,
if (A, B) is a Dedekind cut in S, then in general /A / B, that is, there
are many elements of M between A and B.
Of course, for some Dedekind cuts (A, B), there is a uniquef /A / B.

We call the set of all such f’s the Dedekind closure of S in M, and denote it by
U. U is isomorphic to the space of functions on X which are integrable with
respect to every Rdon mesure; consequently we cll its elements the "uni-
versally integrble" elements of M.
We now want to define and study the corresponding space in 9rg, the spce

of "universally measurable" elements. We recall the procedure followed in
M. It turned out to be convenient to assign to every f e M a Dedekind cut
(A, B) in S" the one determined by fa ;that is,

A {helhafa}, B {he’Ilia )__ fa}.

We then denoted /A by f. and/ B by f*. Finally, U was defined as the
set {f eMil f. f*}.
The first step in carrying out the above for 9rg is to extend the definition of

the star elements to all f e , or to as many of them as possible. But in
and indeed in 9rgas we saw at the end of the last , not every element
has an element of 8 bove it (and one below it). Thus the above procedure
cannot be paralleled in without modification. The natural modification,
however, is t hand" the use of truncations.

Given f e 9rg and g e , we write g f. if gX (fx>) for all X _> 0, and
we write g f* if gCX> (f^>). for all ) >_ 0. Since the truncations are in
M, the star elements used in the definitions are those defined above. More-
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over, if f e M, these definitions reduce to the above, hence we use the same
notation.
Given f e , if f, and f* exist, then they have essentially all the properties

proved in [1] for M, the proof in each case simply reducing to the correspond-
ing one for M. Thus in the remainder of this section, we will usually only
state these properties, and concern ourselves principally with questions of
existence.
We note first that by the very definition"

(7.1) If f, exists, then for all X >_ O, (f,) () (f()), ;and if f* exists,
then for all X

_
O, (f*) () (fc)),.

Some elementary properties"

(7.2) a For f S, f f, f*.
(b) Iff* exists, then -f* (-f) ,, and Kf* Kf) * for all >__ O. And

similarly for f,.
(c) Iff, and f* exist, then f, <_ f*.
(d) f* exists if and only if (fa) * exists, and they are equal. And similarly

for f,
(e) If f* exists, then (f*)a fa and similarly for f,
(f) If f* and g* exist, then f < g implies f* < g* and similarly for f,

and g,.

Remart. Because of (d), it will often simplify matters, in studying f,
and f* for some f, to assume that f a.

(7.3) Given f 9, the following are equivalent:
(1) f* exists.
(2) (f+) * and (f-) , exist.

And if such is the case, then

(f*) + (f+) * (f*)- (f-),
Similarly for f,.

Proof. We first show the following"

(7.4) LEMMA. Iff* exists, then for g e $,

f* V g (f V g) *, f* / g (fAg)*.
And similarly for f,.
We show the second of these. Given X >_ 0,

(f* A ) () (f*) ( A g() (f)) * A
From (6.3), g) e U, hence by (8.13) of [1],

(f))* A g() (f() A g()) * ((f A g)())*.
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Turning to the proof of the theorem, if f* exists, then by the lemma (and
(7.2)), (f*) + (f+) * and (f*)- (f-) ,. Conversely, assume (f+) * and
(f-), exist. We show first that

(i) (f+) */ (f-), 0.

It is enough to show ((f+)*/ (f-),) / 1 0.
((f+) */% (f-),)/ l ((f+)*/ 1)/k ((f-),/ l) (f+/% t)*/ (f-/k l),
by the lemma. Now in M, g/% h 0 implies g*/k h, 0, so we have (i).

Setting g (f+)* (f-),, it follows from (i) that g+ (f+)* and
g- (f-),. Straightforward computation then gives that g(X (fCx)),
for all }, >_ 0, whence g f*.

Before continuing with existence problems, we give an example to show that
f* need not exist. By symmetry, also f, need not exist. Let X be the interval
0 _< x _< 1 in R, the Lebesgue measure, and {Xn} disjoint subsets of outer
z-measure 1 whose union is X. Let e be the element of a having value 1
on each point of Xn and 0 elsewhere (n 1, 2, ). Finally set f , ne,
/ ne e )a. We show f* does not exist.

Suppose f* exists. We show f* >_ nl, for all n (ix the component of 1 in
), which will contradict the fact that is archimedean. We first establish

(i) e* >_ 1 for all n.

In,if0_< g_< hand(g,} (h,),theng h. Nowe <_ 1, hence
* < Ix while ((e*), ) (e*e. _< 1, hence (e),_ ,) 1 since this last is

precisely the t-outer measure of Z). Thus (e*), Ix. But e* >_ (e*),,
so we have (i).

Returning to f*, for every n, f >_ ne, hence f* >_ (ne,) * ne* >_ nlv
In contrast to this example, we show"
(7.5) Given f e +, f, exists. Specifically, the set

{geSIga fa}

is bounded above and its supremum is f,.
Proof. For simplicity, we assume f fa (that is, f e a)
LEMMA. For each t e L+, there exists , e L+ satisfying:

() o<_ <_,.
(b) L, L.
(c) sup u..o., o_< (h, ) < .
We can assume t ]] 1. For each m 1, 2, ..., f/ ml e Me, hence

(f/ ml ), exists; choose a u.s.c, element hm >_ 0 such that (hm)a <__ f/ ml and

(i) (h, ) >_ ((f A ml),, t) 1.

For each n 1, 2, set e /l(hm_,l)-. So

(ii) (h,),, <_ ne, for all n, m.
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We show en " 1. Since the en’s are in U, and U is isomorphic to Ua, it is
enough to show (e)a " la. Now

(e)a /m (l(h-1)-)a /m (la)((hm)a-rla)-

It follows (cf. the statement preceding (3.3)) that (e)a T la.
Set dl el, d e. e,_ (n 2, 3, ). Then the d’s are mutually

disjoint components of 1 with dn 1. For each n, let In be the band
generated by do, H, its dual band in L, and n ,. Set , (1/n 2"),
(n 1, 2, ), and -’ ,. That satisfies (a) and (b) of the lemma is
clear; it remains to show it satisfies (c).

(iii) (hm, ) _< 1 for all m.

In effect,

(, ) (,

Z:. (,
_,,((h.)d, (1In 2).)

1,

Here the st inequafity follows from (ii) by tang the projection of both
sides of (ii) on the band generated by d. and the second inequality from

To esbfish (c), we show that for every u.s.c, element h such that h Z
(h, ) 2. h, being u.s.c., is bounded above by ml for some m; hence
h, f A ml. Also we can assume h h (else replace h by h h).

(h, ) (h, ) + ( h, )

(h, )+ (i)

<2

Then

(iii).

This completes the proof of the lemma; we proceed to prove the theorem.
Every element of $ is a supremum of u.s.c, elements, hence we can confine

ourselves to the set A {h u.s.c. h >_ 0, ha <: f}. We will produce a dense
ideal J in L such that supha (h, ) < for every J+. Since the h’s
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in A form an ascending net, it will follow that the function on J+ defined by
() suphA (h, } extends to a continuous linear functional on all of J,
hence is n element g of 9 with g k/A.

For each v e L+, choose v(u) by he Lemmm The ideal generated by
{v (v) v e L+} is then the desired dense ideal J, nd we thus hve our g
described above.

It remains to show g f,. As is esily verified, given 0, the sets

{h klhA} and {h u.s.c.[h
are identical. Hence for each 0,

g A xl (V, h) A Xl V, (h A Xl) (/A Xl),.

Since this holds for all X 0, g f,.

Remark. We will later need the fact that f, is a supremum of u.s.c, ele-
ments in M.

(7.6) Given g f, iff* exists then g* exists, and if g, exists, then f, exists.

Proof. By (7.3) it is enough to show that (g+)* and (g-), exist; and by
(7.5) we need only show the former. Now g+ f+, and by (7.3) again,
(f+)* exists. Thus for simplicity we can assume 0 N g N f.
Setg gAnl, f =fAnl (n 1,2, -..). Theng Nf,hence

gf= Anl
it follows h g exists. We show that for every k 1, 2, ...,
h A kl g, whence it will follow that h g*. Given

h A (V g) A V (g A ) V (gA l).

But for every n , g A kl g, so we are through.

Remark. The above immediately gives the stronger conclusion" if f* exists
and g fa, then g* exists.
The verification of the following corollary is straightforward.

(7.7) Let {f} be a bounded set in . U in the following chain, (,f,)*
exists, then so do all the star elements in the preceding terms, and the inequalities
hold.

(A.f.)* S A.f S V.f (V.f.)*.

Similarly for the following chain if (A f,) exists.

(A.f.), A. (f.), V. (f.), (V.f.),.

For countable sets, the last inequality in the first chain and the first in the



THE UNBOUNDED BIDUAL OF C(X) 635

second chain become equalities"

(7.8) For a countable bounded set lf,} in ,
(a) if (/nf)* exists, then (/nf)* /nf*
(b) if / f * exists, then /,f ), / (f ,.
This follows, via (4.3) and (4.4), from the corresponding theorem for

M [1; (7.7)]. We remark, that (7.8) gives us in particular" if f*, g* exist
then f* /g* (f /g)*, and if f,, g, exist then f,/ g, (f/ g),.
By only slight modifications of the proof of (7.6), we obtain"

(7.9) If f* and g* exist, then so does (f - g )*, and

if+g)* f*+g*.

Similarly, if f, and g, exist, then so does (f - g ),, and

f,- g, <_ (f + g),.

If f e 6, then f f, f*. It follows from (7.6) that f* exists for every
f e bounded above by an element of 8, and f, exists for every f e bounded
below by an element of 6. Indeed these hold if fa is bounded above, or respec-
tively bounded below, by an element of Sa. We can actually make a sharper
atement. It is intuitive and what we would have expected, but the proof
is not short.

(7.10) If f e is dominated by an element of h--more generally, if fa is
dominated by an element of Sa--then

f* / {he$1ha >_ fa}.

Proof. For simplicity we assume f e a. Also, as in the proof of (7.6), we
can assume f >_ 0. But now, given h e 8, ha >_ f if and only if h >_ f. Finally,
every element of $ is an infimum of 1.s.c. elements, so the theorem reduces to
the following" We have f e (9)+, the set l111 an 1.s.c. element, _> f} is non-
empty, and we have to show the infimum of this set is f*. In the remainder of
the proof we denote 1.s.c. elements by the letter 1. Also we fix, once and for
all, a particular l0 _> f.
Setg /{lll >_f}. ConsiderN > 0;wehavetoshowthatg/hl

(f/ 1)*. That g / 1 >_ (f/ ,1)* follows from the fact that _> f
implies l/ 1 >_ f/ ),1. To show equality, it is enough to show that for
every >_ f/ X1, g/ 1 <: l.

Consider >_ f/ ),1, and we can assume that _< l0 / 1. Choose a
sequence of positive real numbers " ), and for each n, set

As the notation indicates, 1, is 1.s.c. However this requires proof. By its
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very definition, e is 1.s.c., hence also (10)e. That In is 1.s.c. then follows from

(i) ( A xl) V qo),.

We show this. Note first that & l V (10),. Since l _< A X 1,
this gives us first that l _< (1 1) (10). It gives us secondly that
for the opposite inequality, we need only show

1 l (10),.
Ts follows from (1 X 1) l nd (l X 1), (lo)e.
(fi) l f.
We of course hve (10), f ;we show la fa.

(f A Xl) l. X d..

Writing this f A Xd d, the strict inequality > , gives us
f. X d. But then

It follows from (ii) that g A, 1,, hence

g A X A (. A X).

We show A (l A 1) l, which will complete the proof. Set e Ae.
Then e V (Vd) 1, hence it is enough to show that for every m,

A(lAhl)a la and A(lA

A. (. Ax). A. (l). A X d] (A (l).) A X d. l. A X d l..
Here the second last equality follows from the fact that for n < m,
(l,)a la and for n m, (l)a
That l, Xe is clear; we show(& A X1) Xe for every n. Given

n, (l A kl) (l), A e (10), A Xe, so it is enough to show (10), Xe.
For every n, (10) ((10),.)e (h e), e; since =sup,k, it follows
that (10),
f* my exist for n f e which is not dominated by an 1.s.c. element. The

f e obtaed in the example at the end of 6 has the property f f* (sce
for every k 0, f A .1 e U).

8. Convergence to the star elements

In 9 we define the universally measurable elements and establish the
characterizations described in the Introduction. The present section is de-
voted to various preparatory propositions, culminating in (8.9).

Given f V,,f in M, if each f, is an infimum of 1.s.c. elements, then
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Proof. Since this of course holds for finite suprema, we can assume
f f <_ -... f e M, hence there are 1.s.c. elements ubove it; hence
f /{hl.s.c. ih _> f} exists. We show that for eacheL+ande > 0,
If’, } _< (f, } + 2e. It will follow f’ f.

Consider such a and e. It is enough to show there exists an 1.s.c. element
h >_ f such that (h, ) <_ (f, ) -[- 2.

(i) There exists an ascending sequence h _< h _< of 1.s.c. elements
such that for each n, h >_ f, and (h,, ) _< (f,, ) -t- e.

Each f is actually the limit of a descending net of 1.s.c. elements, hence
there exists an 1.s.c. element g >_ f such that

Set h / g (n 1, 2, ). We show by induction that

(h, ,)

_
(In, ,) + (e

which will give us (i). The inequality of course holds for n 1. Assume it
holds for n 1. Then

(h., ) (g /h_, )

(g., u) + ((h.- g.)+, u)

(g., u) + (h._,, u) <A-,, u)

< <f., u> + /2" + ( /2"-)
<f., ,> + ( /2").

(The first inequality follows from g. >_ f. >_ f._.)
Nowf _< hl for some h, so we can assume h,

___
hl for all n; hence there exists

h such thut h. " h. It follows we can find n such that

(h, u) _< (h,, u) + _< (f,, u) + 2e _< (f, u) +
(8.2) If f e+ is an infimum of 1.s.c. elements, then 1 is an infimum of

1.s.c. components of 1.

Proof. By hypothesis, f /, h,, the h’s 1.s.c. elements. Then for each
1, 2, ..., nf /,nh,, hence nf / 1 /, (nh, / 1). Since
/, (nf/ 1), it follows from (8.1) that 1 is an infimum of 1.s.c. ele-

ments. The proof thus reduces to:

(8.3) If a component e of 1 is an infimum of 1.s.c. elements, then it is an

infimum of 1.s.c. components of 1.

We can assume there is a descending net {h,} of 1.s.c. elements such that
$ e. For each a, set e, 1(._(/))+. We show first that e, >_ e for all a.
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In effect, h, >_ e, so

(h (1/2))+ > (e (1/2))+ (1/2)e.

That e, >_ e now follows from the simple property that g >_ he for some ) > 0
implies 1 >_ e.

It follows /,e, >_ e. On the other hand, e, _< 2h,, hence /,e, _<
2/, h, 2e. Since/, e, is itself a component of 1, we must have/, e, e.
This completes the proof of (8.3), and with it, (8.2).

Remart 1. The infimum of two 1.s.c. elements is an 1.s.c. element, and
similarly for two 1.s.c. components of 1. Thus an infimum of 1.s.c. elements
(resp. components of 1) is the limit of a descending net of 1.s.c. elements (resp.
components of 1).

Remarlc 2. Given a countable collection of nets on a space, we can, by a
standard procedure in the theory of nets, replace them by subnets all having
the same index system. We will be using this below.

(8.4) Given f e 9E+ iffor every )t >_ O, f/ ?1 is an infimum of 1.s.c. elements,
then there exists a net {g,} of 1.s.c. elements in M+ such that f lim,f,.

Proof. For each n 1, 2,..-, set

f =f/nl-f/x (n- 1)1 (f/nl- (n- 1)1)+,

and d lr. Then d 1(_(_11)+ and therefore d 0 (cf. the para-
graph preceding (3.3)). Also, by the definition of the fn’s, f f, hence
limn% 0.

Fix n. By hypothesis, f/ nl is an infimum of 1.s.c. elements, hence % is
also, hence in turn, by (8.2),, d is an infimum of 1.s.c. components of 1. Thus
% is the limit of a descending net of 1.s.c. elements, and dn of a descending net
of 1.s.c. components of 1.
Now this holds for each n. Applying Remark 2 above, we can thus assume

there exists a countable collection {h, } (n 1, 2, of descending nets
of 1.s.c. elements, and one {d,o (n 1, 2, of 1.s.c. components of 1,
all with the same index system {f}, such that for each n,

% limhn, and d limd,.
Even more,

(i) the above nets can be chosen so that d,,+, <_ d,,o and h,,,o <_ d,,o for all
n and .

Consider the nets obtained in the preceding paragraph. For each n and/
set d’,o /1 d.,o. The d’,’s satisfy the first inequality in (i). More-
over, they have all the properties of the d,’s. Thus we can assume the dn,o’s
themselves already satisfy the inequality. Now for each n and f, set h’,
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hn, A dn,. The h’,’s then satisfy the second inequality in (i). It is also
’s. (Thath’ > feasily verified that they hve 11 the properties of the h, ,

follows from d, d f., this last since 0 f 1.) So gin we cn
Sssume the h, lredy stisfy the inequality. We thus have (i).

We cn now obtain the net {g} of the theorem. Endow the product set
(n, ) with the product order. For ech (n, ), set g(,) h,. We

show {g(,)} is the desired net {g}.
For this, it is.enough to show that for every k 1, 2,

f A 1 lim, (g(, A 1).

Since (n, ) [n k} is terminal in (n, )}, we need only show that

(ii) f A kl lim(,), (g(,) A kl).

In the following computation, we relegate the justification for some of the
steps to the Appendix, 11.

Consider g(,) with n k.

Since h, 1 for all j, , the first of these two terms is simply = h,a. We
consider the second.

(+ h,) A (%+ d,) A
(V+ (j k)d,) A 1 (11.1)

V’+((,i )d,) A 1)

S V+ (kd,,)

k V+ d,,

k d+,.

Thus g(,) A 1 h, + kd+, This gives the second inequality in

(iii) f A ll g(,)A kl (=h, + kd+l,) A kl.

The first follows from

g(,) h, %f =fAnl fAkl.

We show finally that the (descendg) net on the right of (iii) converges to

f A kl with . This will give us (ii).

limz (=1 h, + kd+l, =f + kd+

f A kl + kd+

(f A 1) V (2kd+) (11.3)



640 SAMUAL KAPLAN

whence,

lim(=lh, -[- kd+,) /k ll ((f/% kl) V (2kd+l))/k kl

(f A ]1)V (A+.)

=fA kl.

For the last equality, see the opening remark in the proof of (11.1).
We have actually proved more than the statement of (8.4). Denote each

d, in the proof by d(n,) d, we thus have a net {d,}, and clearly d $ 0.

(8.5) Together with the net {gl obtained in (8.4), there exists a net {el of
u.s.c, components of 1 such that:

(i)
(2) For each ao, there exists n (ao) with the property that

(g)e.o

_
n (a0)l for all a.

Proof. For eacha, set e 1 d,. We need only prove (2).
(no, 0); we claim no is the desired n (a0). In effect, given a,

(g(, )o.o 1 (h,)o,o
?=(d,)eo,o)

We turn specifically to the star elements. From (8.4) and (8.5), we have"

(8.6) Given fe+, if f* exists, then there exist a net {g,} of 1.s.c. elements
in M+, and a net {e,} of u.s.c, components of 1, such that:

(1) f*= lim, g,.
(2) etl.
(3) For each ao, there exists n (ao) with the property that (g")e,o - n (a0)l

for all a.

For f e+, f, always exists and is the lirnit of an ascending net of positive
u.s.c, elements of M ((7.5) and the remark following it). Moreover, if f*
exists, this net can be chosen in a well-defined relation to the nets in (8.6):

(8.7) Given f e/ f* exists, then there exist nets {g,I and {e,} as described
in (8.6), and a net q,I of u.s.c, elements (with the same index system) such that:

(1) 0

_
q,

_
g, for all a.

(2) f, liE, q,.

Proof. As in the proof of (8.4), for each n 1, 2, set

(f*), f* /% nl --f* A (n- 1)1
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and
(f*)n f* /k nl f. /k (n-- 1

Let {hn,a}, {dn,a} (n 1, 2,...) be the nets obtained in that proof, this
time for the (f*
Now every (f,) is the limit of an ascending net of positive u.s.c, elements.

By remark 2 preceding (8.4), we can assume that these nets all have the index
system {t}. Thus for each n, we have {p,}, positive u.s.c, elements, such
that p, " (f,). Since (f,) <_ (f*)n, pn, _< h,a, for all n and all t, B’.

Setting g(,) -= h,, q(,) _- p,, (and e(,) 1 d(,)), it
is easily verified that (8.7) is satisfied.

Remark. From (1) above, it follows of course that (3) in (8.6) holds for
the q’s also.

We now extend (8.6) to elements of : not necessarily in +.
(8.8) Given f 9, if f* exists, then there exist a net l,} of 1.s.c. elements

in M, and a net e} of u.s.c, components of 1, such that:
(1) f* liml..
(2)
(3) For each ao, there exists a natural number n (ao) with the property that

(1,),.o - n (ao)l for all a.

Proof. By (7.3), (f+)* and (of course) (f-), exist, and f* (f+)*
(f-),. Applying (8.6) and the remarks preceding (8.7) (we do not use
(8.7) itself )--and, as usual, Remark 2 preceding (8.4)we have nets
{q}, {e,}, consisting respectively of positive 1.s.c. elements, positive u.s.c.
elements, and u.s.c, components of 1, such that {g.} and {e,} satisfy (8.6)
for (f+)* and q. ’ (f-),. For each a, set 1, g, q,. Then {/,} is a net
of 1.s.c. elements converging to f* (5.2). That (3) holds for {/,} follows from
the fact that it holds for {g,} and that 1. _< g, for all a.

Finally:

(8.9) Given f . if f* and f, exist, then there exist a net {/,} of 1.s.c. ele-

ments, a net {u,} of u.s.c, elements, and a net {e.} of u.s.c, components of 1,
all in M, such that"

(1) u.

_
1, for all a.

(2) f* lim,
(3) f, lim, u..
(4) e. T1.
(5) For each ao, there exists a natural number n (ao) with the property that

for all a,

--n(a0)l _< u, 1,

_
n(a0)l.
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Proof. Choose nets [g(,1)}, {q(,2)}, {_(1)e, }to satisfy (8.7)for f+, and nets
g, }, }, e, to satisfy it for f-, and as always we arrange for all of these

to have the same index system. For each a, set 1. g(). q), u qX)
_(I) (I)g), and e, e. e, It is easily verified that these have the desired

properties.

9. The universally measurable elements
We denote by ct the set [f e lf f, f*}, and call its elements uni-

versally measurable. We will show they are precisely the elements of 9E which
are limits of nets of C, and for which our general LUsin theorem (9.9) holds.

First for their elementary properties.

(9.1) An element of lies in if and only if f(x) lies. in U for every ) >_ O.

This follows from the very definition.

(9.2) % is a a-closed linear sublattice of J.

Proof. Given f, g e t, then by (7.9) and (7.2),

(f-f-g)* <f*-t-g* --f-t-g-f,--g, < (f-+-g), < (f-t-g)*.
We thus have equality, giving f g e q. Thvt f e q implies Kf e q for all
R is straightforward.
Again, given fi g e %t, then by (7.7) and the remark following (7.8),

(fVg)* =f* Vg* =fVg =f, Vg, < (fVg),_< (fVg)*.
Thus we have equality, giving f / g e t. Finally, the a-closedness of t
follows from (9.1) and the a-closedness of U in M [1; (8.2)].

Since for every f e l, f limnf(), (9.1) and (9.2) give"

(9.3) t is the a-closure in of U, and moreover, every element of is the
limit of a sequence in U.

The next three propositions are easily verified.

(9.4) is isomorphic with its projection Ca

(9.5) Given a sequence {f} in , and f , then f limn f, if and only if
fa limn(fn)a.

(9.6) % is Dedekind-closed in .
We now proceed to our two characterizations of q.

(9.7) An element of lies in if and only if it is the limit of a net of C.

Proof. Suppose f f, f*. Let (1,} and {u,} be the nets given by (8.9).
As is well known, for each a, we can choose f, e C such that u,

_
f,

_
1,.

Then f lim.f,, and we thus have the necessity. The sufficiency follows
from (9.1) and the corresponding theorem for M [1; (9.6)].

For the Lusin theorem, we need the following lemma. We emphasize
that in both (9.8) and (9.9), the relation / e 1 is referring to M (thus, for
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example, the set of "characteristic functions" of finite subsets of X does not
have 1 for its supremum).

(9.8) Let e} be a set of components of l such that /e 1. Given a net
{f,} in , andf , iffor each ., lira. (f.)e fe then lim, f, f.
Proof. Assume first that If,/ is bounded, and set g limsupf,. Since

projection is (order) continuous, it follows that for each % g
limsup, (f,)e fe. This gives in turn that g f (cf. the discussion follow-
ing (3.3)). Thus f limsup,f. A similar argument gives us that f
liminf, f,, so we have f lira. f..
We turn to the general case. We have to show that for each k >_ 0,

lim, f(.x) f(x). Given }, >_ 0, and applying (f) in (4.1), we have that for
() () () Thus, from the hy-each % (f.)e (f,) for all a, and (f),

(X) (x)pothess, hm,(f. )e (f ) It follows from the first part of the proof
that lira, f(.) f(x),and we ar through.

(9.9) Given f J, let A be the set of components e of 1 each satisfying
(a) e u.s.c.
(b) feC.

Then f if and only if /A 1.

Proof. We show the condition of the theorem is equivalent to that of (9.7).

(i) For each pair o, e of components of 1 in A, e / e: also ties in A.
the elements of A form an ascending net.

Thus

This can be shown by means of the Tietze Extension Theorem and the fact
that for a u.s.c, component e of 1, if K denotes the support of e in X, then C
can be identified with C (K).
Now assume f e t, and let {/,} and {u,} be the nets given by (8.9). For

each a, set g, 1, u,. Then lira, g, 0, hence by (5.10), there exists a
net {e/of components of 1, with e T 1, such that for each % lim (g,) 0
uniformly. Moreover, since the g.’s are (non-negative) 1.s.c. elements, the
argument used in the proof of (5.10) gives us that the e’s can be chosen to
be u.s.c.

For each a, choosef,C such that u,

_
f,

_
l. Then for each ,

lira, (f,)e, f, uniformly. Now it is easily verified that C is norm-com-
plete. It follows f e C,. We thus have the necessity.
Now assume /A 1. From (i), we write A as a net {e,}, with e " 1.

From (b), for each % we can choose g, e C such that (g), f. We show
lim g, f. But this is immediate from (9.8) using the fact that for each, (g,,)e, re, for all / > ,. We thus have the sufficiency.

10. Some final remarks
In the present section, the only convergence dealt with will be that of se-

quences, hence by Nakano’s theorem (5.5), the convergence will be the ordi-
nary one.
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A subset A of a Riesz space is a-closed if for every sequence {a.} in A,
limn an a implies a e A. Given any set A, the smallest a-closed set contain-
ing A will be called the a-closure of A. If A is a linear sublattice, then so is its
a-closure.
We denote by 6ta (respectively 6to), the a-closure of C (respectively ) in

9, and call its elements the Baire (respectively Borel) elements. By (9.2),
we have a c o c t. The set of elements of a which are each the limit
of a sequence in C will be denoted by a and called thefirst Baire class. The
set of elements which are each the limit of a sequence in (a will be denoted
by 5a and called the second Baire class.
Now let be a fixed (positive) element of L. The theorems (9.7) and

(9.9) are extensions to of standard theorems on i),. We give the latter
here in the form they assume in the present context. Note that all of 9
plays the role in i), that %t plays in r.

(10.1) Every element of, is the limit of a sequence in C,.
(10.2) (Lusin) Given f e9,, there exists a sequence {e,,I of u.s.c, com-

ponents of 1 such that:
T

(b) feneCe (n 1,2,--.).

(b) is equivalent to (b’) f(en), e(C,)(,.),. Finally, a third standard
theorem on i), is that every -measurable function is equal -almost every-
where to some function of Baire class 2. In our context this takes the form"

(10.3) Given f 9, f h for some h 5a.
Otherwise stated, the projection 9 -- , maps (a onto .

1 1. Appendix

In this section, as stated there, we establish some of the equalities and
inequalities occurring in the proof of (8.4).

(11.1) If the components o, "’, en of 1 satisfy e >_ e >_ >_ en, then
e k/ ie.

Setd= e ei+ (i 1, u 1), d e For eachi, e= d,
hence

E E L E= e = = d i d = i d _< " ie

For the opposite inequality, it is enough to show that for each i0,
ie i0 e0. But this is clear.

(11.2) For a component e of 1, and k, O,
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This is clear.
In the following, f and d+ are those of (8.4)

(11.3) fAkl +d+ (fA/l) / (2]d+)

As we noted at the beginning of the proof of (8.4), d+ 1(_)+, so
k d+ g f. So, setting e 1 d+, we have

It follows that

(2d+) ffke+fkd+)
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