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One of the most fruitful methods employed in the study of the distribution
of the primes hs been the consideration of those functions, such s the Rie-
mnn zet function, which embody the Fundamental Theorem of Arithmetic.
This method (sometimes referred to s the "nlytic method") hs also
been successfully applied to the study of generalized prime number systems,
n ccount of which my be found in [1].

Briefly, a generalized prime number system is sequence

P {1 < p p ...}

of rel numbers such that p . The multiplictive semigroup generated
by P is called the generalized integers of the system P, which we denote by

N={ =n<nm ""}.

Note that two integers n nd n of N, of possibly equal wlue, re, neverthe-
less, to be distinguished if they rise as distinct products of the primes P.
The research in generalized number systems hs involved considerable use

of the zet functions, e (s), defined by either the product or the series

(s) H: ( p)- nT,
wherever the infinite product converges. (It known ttmt the product nd
series converge on the same hlf-plne, possibly empty.) In the present
pper we prove that, in certain cses (Theorem 2 nd Theorem 3),
cn be nlyticlly continued cross the bsciss of convergence of its de-
fining series. Prt of this information is used to ewlute the symptotic
distribution of the integers generated by P. Since symptotic formulae of
this type hve lredy been obtained (with explicit error terms) by different
means in [6], we shll only outline their derivation here. We lso prove
(Theorem 1) that if general Dirichlet series with non-negative coefficients
hs the sme general properties s (s), then it must be (s). Finally, an

example of generalized prime number system is given for which p
nd such that the boundary of e (s) is the line Re (s) 1.

THEOREM 1. Let a O, j 1, 2, and let

be a general Dirichlet series which converges at some point of the complex plane.
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Assume thatf (s) can be continued to the complex plane asf (s) F (s) (s 1)-1,
where F (s) is an entire function offinite order such that F (0) 1/2 and F (1) 1.
Further, Let

be a general Dirichlet series that is absolutely convergent for s 2; and suppose
that f (s) and g (s) are related by the functional equation

-’r(s/2)f(s) r-(1-’)/2I((1 8)/2)g(1 8).

Then f (s) (s), the Riemann zeta function.

Proof. Theorem 1 is similar to theorem first proved by Hamburger and
later simplified by C. L. Siegel in [9]. The essential difference in our two
results is that we do not assume that the nj are integers in Theorem 1. Our
proof uses some of the ideas in [9], which we shall only outline. Additional
arguments are needed to show that the nj are all integers, and these will be
given in detail. Previous attempts to generalize Hamburger’s result in the
direction of general Dirichlet series have all imposed some lacunarity condi-
tion on the n (see [2], [3], [4], [5]).
From the hypotheses, the series for f (s) converges for > 1. This follows

by u well known theorem of Landau. The convergence is uniform for

_> lq-, >0.

Following the argument in [10, pp. 31-32], we have for x > 0,

(x) ,
)

(s/2)f(s)

f (nx)-’r (s/2) dsEj=I a. _2)

where v (2ri)-1. Using the functional equation, we can express (x) in
the form

r-(1-’)I2F (1 )/2) (1 s) x-’1 ds.8 g

We now move the line of integration from a 2 to a --1. An applica-
tion of the Phragmn-LindelSf principle and Cauchy’s theorem shows that
(x) may be evaluated as

-(1-)/F ((1 s)/2)g (1 s)x-’ ds - x-1 1,(x)

where the two terms x-1/ and -1 arise from the residues at s 1 and s 0,
respectively.
On the line a -1, g (1 s) can be expressed in terms of its Dirichlet
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series. The integral can be evaluated termwise"

,(x) x-’=_k=, bk
-,)
^/x) ((1 s)/2) ds + x-11 1

2x-/2+--, bk e-xx "4- x-- 1.

Equating the two expressions for (x), we obtain
--rn2x _--1/2 X--1/2 --rX21x

Now replace x by x- in the last equation, multiply the resulting equation
by tx-= exp (-rtx) with > 0, and integrate both sides of the product
over 0 < x < +. This yields the equation

1 e_2,nt 1 1 b(1) - a. -t- t’=, 2rt r -- -4- X
The argument up to this point is essentially that given in [10]; and if it is

assumed that the n are integers, this argument can be continued in the usual
way to show that f (s) " (s). We shall now show that, in fact, the n must
be integers.
Note that equation (1) is valid for complex with Re(t) > 0, nd that the

right side of (1) defines a meromorphic function on C with simple poles only
at 0 and -+-i,/c 1, 2, -... Set +- iu, > 0, in equation
(1), multiply by 1 -u[, and integrate over -1 < u < 1. We obtain

(1 U ) du + a/ (1 u ) e-2n(+iu) du

2 - + iu /= + 2iu +
which we write compactly in the form

A -t- B(i) C(ti) -t- D(i).

We see immediately that A 1/2 and

(2) lim+0+ C () 1/2.

Performing the indicated integrations in B (5) gives

B(ti) a. e-:w’
1 cos 2rni

’:1 2rn}

Therefore,

1 cos 2rn/(3) lim B() a.-+o+ ’= lrn
by the monotone convergence theorem. Finally, to evaluate lima+0+ D(ti),
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note that

XI_<, 1 forl

_
Xk 2

2u +
1< for kk > 2x,- 1

uniformly, in ul < 1 and 0 < < 1. Hence, Lebesgue’s theorem on
dominated convergence is applicable, and we have

1liu(1 U[)du 0lim D(t) _1 b
.0+ 71" k=l --I )k/ U

since each integrand is an odd function of u.
gether along with A 1/2 yields the equation

Putting (2), (3) and (4) to-

1 cos 2n.O-- aj
j----I 2’2n

Therefore, either a. 0 or 1 cos 2n. 0, j 1, 2,..., and in either
case f (s) has an ordinary Dirichlet series.

Following the argument in [10] again, we note that the left side of (1) is
invariant under t- -t- i. The right side of (1) also shares this property
and has the aforementioned meromorphy. Then, if some h, e Z+, the right
side of (1) has a pole at ih and, by periodicity, at i(X [Xk]). But this
shows that Xl < 1 which is forbidden behavior for a number in a general
Dirichlet series. Therefore, all }, e Z+, and g(s) also has an ordinary
Dirichlet series. Theorem 1 now follows from that of Hamburger.

Let U {(u., u,...):u > p-l}, where each u (u, u,...) in U
is a sequence of real numbers, indexed on the rational primes, satisfying the
given conditions. For each u e U, define a perturbed zeta function (s, u) by

(s, u) II (i- (up)-)-i,
wherever the product converges. Further, let O(u) O (s, u) denote the
natural boundary of (s, u) in those cases where the product converges in a
non-empty half-plane.
Now it is desirable to determine 0 (u) as u varies over U. This has only

been accomplished in special cases; and the extent of the difficulties encoun-
tered, in general, can be seen in Theorem 2 and Theorem 3. In view of
Theorem 1, if (s, u) converges in a non-empty half-plane and satisfies the
other conditions of Theorem 1, then the factors u simply permute the primes
among themselves.
The hypothesis of the functional equation in Theorem 1 is necessary to the

conclusion in order to distinguish " (s) from other general Dirichlet series
which can be continued by F (s) (s 1)-, F (1) 1, F (s) entire. The
functional equation may not be necessary in the case of " (s, u), however,
due to the fact that " (s, u) has an Euler product representation. Of course
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it is critical that in the extension of (s, u) to C by means of (s, u) F (s)
(s 1)-1, we require that F (1) 1.

THEOREM 2. Let u (v, v,...), where v > 1/2; and let 8(u) denote the
comb-like set

(u) U,,, {s:s (x + i.)/n; O < x <_ 1} u (0,1],

where the first union is over all non-real zeros p of (s) and over all positive
intergers n. Then (s, u) is analytic on D (u) s: Re (s) > 01 8 (u).
Moreover, if

N(u) {1 nl < n2_ na <_ ...}
denotes the integers generated by P (u) {vp}, then

’ 1 Cl (v) x (log x)-’-1 -t- 0 (x (log x)- 1-3/3 log log x),

where

and
g(m, s, v) (1/2m) ’nl,(a,.)=l (d)v-m"/a

We first prove a lemma.

LEM. Let c and z be complex numbers satisfying [cz < 1 and {z < 1.
there exist complex numbers h (m, c), m 1, 2, so that the equation

(1 cz)- II + ’ ’’
,,,=1 z/

holds.

Proof of Lemma.
of equations

Then

Let c be a complex number, and consider the system

(5) al,,dh(d)(1-t- (--1)"a-1) c", n 1,2, ....
It is clear that if n is odd, then

2nh () (d)c’.
/k simple calculation shows that if n is even, then

2nh (n) i,.(.)=1 (d)c".
Therefore, the last formula holds for all integers n.
Now choose z so that [z[ < 1 nd [cz[ < 1. Multiply the n-th equation of

(5) by z"/n and sum over all n:

Z Zc"--= dh(d)(1 + (- 1)"/a- )--
n=l n=l dl

dm

h() z )-1
= =1 W(1 + (- ),
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where we have put n md. It follows that

--log (1 --cz) _=:h(d)(log (1 +za) --log (1 -z)),
where the logarithms have their principal values. Exponentiating the last
expression gives the lemma.

Proof of Theorem 2. With s > 1, v > 1/2, and p a rational prime, we apply
the lemma to (1 (vp)-’)-1 with c v-’, z p-, and h(m, c) g(m, s, v).
Thus,

(1- (vp)-)- 1 + p- (’’)

=: -/
Taking the product over all rational primes yields

where the interchange of limits is justified by the absolute convergence of the
double product when s > 1. This is the important step to show that (s, u)
can be continued across the line Re (s) 1. Here we see in this procedure
that the use of the product representation for (s, u) is essential.
Now put

We specify the branches of log (ms), m 1, 2, by requiring that their
values be real for s > 1.

Let be any compact subset of (u). Then log (ms) is analytic on
for all positive integers m. Furthermore, for s e A, we have the estimates

]logS(s) [-: -:v log (2s) + :=: g (m, s, v) (2 log (ms) log (2ms))[

:v log(2s)

+ 2=, ig(m, s, v)l ([2 log (ms)[ + Ilog f(2ms)i)

K(a) + E I(, , )1 (i log ()1 + Iog (ms)[),
where M is chosen so that Re (ms) 2 for 11 s e A, when m M. From
the estimates

,(a),_.z _< 0(m) -)g(m, s, v)
.(a.)= 2m mx (v-’,

where z0(m) 1 1, nd from

1 og (m)l + log (2m) << 2-% M,

we see that the series defining log H (s) is uniformly convergent, and, hence,
nlytic for s e A. It follows that f (s, u) is analytic on (u), the nlytic
continuation being given by

(6) ( (s))--’H (s) (s, u).
This proves the first prt of Theorem 2.
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We shall only adumbrate the proof of the asymptotic distribution of the
number of N (u), since their distribution has already been obtained in [6].
For large x > 0, define functions S (x) and T (x) by

S(x) n’_<l and T(x) nj (1 nj/x).

Then for r > 1, we have the integral representation

X(7) T(x)
)
(s’U)

s(s + 1)
ds"

We now use the representation (6) of (s, u) to deduce from (7) that

H(1)f xS( s 1)-v-1T(x) ds - O(x(log x)v- 1-2 log log x),

where al is a horseshoe-shaped contour running counter clockwise about
s 1. We then deduce that

fexS(s 1)--lds + O(x(log x)-1- log log x),S(x) H(1),

where . is a loop running counter clockwise about the line (- , 1].
serving that

x 1 )-V-ld8 x)v-l-i/ (v-I

we have the result stated in Theorem 2.

THEOREM 3. Let q be an odd prime. For each integer , 1 <_ ] <_ q 1,
choose real numbers u > -1. For each prime p, define real numbers u by
u u if p (modq);andletu (u. u ...). Then if

gq(u) U(x).,ls’s (x(x) - i’(x)/n; 0 < x <_ 1} u (0, 1],

where the first union is over all positive integers n and over all zeros
p(x) /(x) -t- i/(:), (x) > 0, of all L(s, x) (mod q), (s, u) is analytic
on

(u) l’e() > o} (u).

Furthermore, the integers N (u are asymptotically distributed as

,< 1 c(u, uq_)x(log x)(’’’’’’q-) X-’-’

where

(Ul, ", Uq--1) (U-1

*- + U’11)/(q 1) 1,

and where c (ul, uq_) is a product of L functions raised to various complex
powers.
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Proof. Let (/, q) 1, q prime, and define

E E(1, m, n, s, uk) (n)x(l)g(m, s, uk)/ln(q 1),

where g (m, s, u) has its usual definition, and where is defined by k 1
(mod q). The argument used in Theorem 2 to continue (s, u) to (u) cn
be used, mutatis mutandis, to continue (s, u) to (u) in the present cse.
The expression

1,m,n=l X (modq)

where the innermost product is over all characters modulo q, and where
q--1F (1, m, n, s, u) k--1 E (1, m, n, s, u),

provides the aforementioned analytic continuation. The asymptotic distribu-
tion of the numbers of N (u) are calculated in a straightforward manner using
standard properties of L-functions, together with the representation of

(s, u) given in (8).
In Theorems 2 and 3 it was shown that certain classes of perturbed zeta

functions can be continued across the abscissa of convergence of their de-
fining products. Although a complete characterization of such functions has
not been made, the next theorem (Theorem 4) shows that there exist per-
turbed zeta functions, close (in a sense to be described) to the Riemann zeta
function, which have the line Re (s) 1 as their natural boundary.

THEOREM 4. There exists an element u U such that u -- 1 as p ---> and

O(u) {s’Re(s) 1}.

Proof. The idea of the proof is due to Harold G. Diamond, conveyed to
the author in private correspondence. His idea is based on the consideration
of some research in [7].

Let rl, r2, be the sequence of positive rational numbers, where we put
rm a,/bm am, bm Z+. Consider the sequence of complex numbers
l(am irm)l:=, where am 1 2-m. Clearly, every point of the line
Re (s) 1, _> 0, is u limit point of this sequence. We shall now construct
a generalized prime number system for which p ] log It,/c - , and such
that

(s) II-- (1
has a fractional order at the points (am + irm), (am irm), m 1, 2, ....
To do this, define a function h (u), u >_ 2, by

h (u) :=1 (2-m/log u) (1 u-l+am cos (r log u) ).

Clearly, h (u) is continuous for u >_ 2. For x >_ 2, define

H (x) h(u) du.
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Since H (x) is strictly increasing to on [2, ), a unique sequence of real
numbers 2 p p is defined by

(9) p H-(/), k 1, 2, .-..

We now show that the p defined in (9) satisfy p k log k, k - , by show-
ing that

(10)

We have

H (x) li (x) + o (li (x) x

H(x) du 2-, u-1+’ cos (r log u)
du

log u =1 log u

flog e,u
li(x) 2

cos (r, u) gu.
m=l log2

Choose > 0, and choose M so that

>M .
Then

f’O e f’O e2- cos (ru)
du < du < 2li x

for all sufficiently large x. Also, if a max<< , then

emu log X] << 2-
o COSu (ru) du x* log

log 2
o (li(x))

since a < 1. It follows that (10) holds; and, consequently, p k log k,

Define a function (s) by

() H: (1 pT’)-,

where the p are given by (9). For Re(s) > 1,

(1) log r(s) = log (1 pT’) ;’ + (s),

where (s) is analytic for Re(s) > . Since H (x) is a strictly increasing,
continuously derentiable function of x, so is H- (x). Thus, we my apply
the Euler summation formulu to the ewluation of p. We obtain

eu + N (()-)( [1 ) e +,
e() > 1,

where we have u
B-(), 1.

Make ghe subsgiugion H (g), and leg c > 2 be ghe real number such
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1 =H(c). Then

(12) y-" H’ (y) dy + ( sy-’-l)(H(y) [H(y)] 1/2) dy

y-SH(y) dy + 2(s)

where O2 (s) is analytic for Re (s) > 0.

When s > 1, we may evaluate the integral y-SH’ (y) dy

termwise, obtaining

y-’H’(y) dy
log y dy

"--1
2-" y_._+,, cos(r’loglOgy y) dy

f cos(r" v)v-le-(-l)v dv 2-" e-() dv
gc "----1 ogc V

where we have made the substitution y e. Thus,

f y-H’ (y) dy

(13)
log (s 1) + 3(s) := 2-" Re v-1

og

log(s 1) +3(s) -t- ’==12-’-1 log ((s a’) + r) + , (s),

where (s) and (s) are entire functions of s. Combining equations (11),
(12), and (13), we have for s > 1,

log v(s) --log (s- 1) + := 2-’-1 log ((s- ’) A-r) A-q(s),

where (s) is analytic for Re(s) > 1/2. Hence, for Re(s) > 1,

*p(8) (8 1)-1H==I ((8 tTm) -" r2m)2--1 exp(a(s)).

But this representation of (s) shows that it cannot be continued across the
line Re (s) 1. This proves Theorem 4.
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