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0. Introduction
If/c is a field of characteristic p 0 and L /c(a) a field extension with

ap in/c, then a result of Demazure and Gabriel states that the Amitsur co-
homology H"(L/k, G) is zero for n _> 3 when G is a commutative algebraic
group. In the case G Gin, the units functor, this result is due to Berkson,
and was extended to arbitrary purely inseparable extensions by Rosenberg
and Zelinsky, using spectral sequence techniques, which do not seem to gen-
eralize. In Section One of this paper we show that Amitsur cohomology of a
finite extension with coefficients in a finite group is a local invariant and that
one need consider only connected coefficient groups. In the second section
we compute the cohomology of extensions with coefficients in p, and

1. Group schemes and sheaves

Throughout the paper/c is a field of characteristic p O, algebra means
commutative/c-algebra and (R) means (R) k. In this section we wish to special-
ize some well known notions, most of which are collected in [D.-G.].
An ane group scheme (over 1) is a representable group valued functor, G,

on the category k-alg of/c-algebras. G is commutative if its values are and
finite if its representing algebra A A (G) is finite dimensional.
A(G) has a natural structure as a Hopf algebra (bialgebra with cosym-

metric involution in [D.-G.; II, 1, 1.6 et 1.7] and conversely if A is a com-
mutative Hopf algebra, then G(A) /c-alg(A, is an affine group scheme.
This gives an anti-equivalence between the category of affine (resp. affine
commutative) group schemes and that of commutative (resp. and cocom-
mutative) Hopf algebras.

Henceforth, by group scheme we will always mean ane commutative group
scheme.
A sequence 0 -- F -- G -* H-- 0 of (affine commutative) group schemes is

exact if and only if it is exact as a sequence of sheaves (in the fpqc topology,
i.e., "faisceaux durs", cf. III, 1, 3.3 and 3, 7.4 of [D.-G.]). The inclusion
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functor from the category Sg of abelian group valued sheaves to the cate-
gory of k-algebras, is left but not right exact. In particular, if 0--, F
H --* 0 is an exact sequence of group schemes, then 0 --* F(A) G(A) --->

H(A) is exact but G(A) -- H(A) need not be epic. There is however a left
adjoint (-) to i called the associated sheaf functor. (In [D.-G.; III, 1], the
"faisceau dur" associated to F is denoted F-~. (-) there denotes the corre-
sponding construction simply for sheaves, often called sheaves in the fppf
topology. The remarks below apply to either category of sheaves, and in-
deed since we will generally be concerned only with finite group schemes, the
results of [D.G.; II1 3, 5.6] allow one to consider fppf sheaves). (~) is an
exact functor [D.G.; III, 3, 3.6].
With these observations we can prove a result we need later.

PROPOSITION 1.1. Let F G be a nonornorphism of sheaves and let H be
the functor quotient. Then the natural map H H" is a monomorphism of
functors.

Proof. For any algebra T the diagram of abelian groups

0--* F (T) --* G(T) -- H(T) -- 0

0----> I(T) G-(T) H"(T)

is exact and commutative. The left two vertical maps are isomorphisms
since F and G are sheaves, and the result follows.

There is a fairly extensive decomposition theory of finite group schemes
which will be of use.
A (finite) group scheme is connected if its representing algebra is connected

(i.e. has no non-trivial idempotents or, equivalently, is local) and tale if its
algebra is separable. Curiously, in this connection the notions of separable
and reduced (no non-zero nilpotents) coincide. This can be proved Hopf
algebraically or from the following important result.

PROPOSITION 1.2. (cf. [D.-G.; II, 5, 1.8] If G is a finite commutative
group scheme and Go its connected component of identity, there is an exact se-
quence of group schemes

(1.1) 0 - Go -- G --, G8 -- 0

with G, 4tale.

On the algebra level this is described as follows: the maximal separable
subalgebra A8 of A A (G) is a sub-Hopf-algebra. The Hopf algebra
quotient [Sw 1] is the projection of A onto the unique componentA0 (A is finite
dimensional) whose idempotent is not annihilated by the augmentation of
A. The exact sequence

0 -- A, --A ---) Ao --* 0
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of Hopf algebras induces the exact sequence (1.1) where Go /-alg (A0,
andG8 =k-alg(As, ).

In fact Go can be decomposed further (cf. [Sh.], [0., 1.2] and [D.-G., IV]
and the entire theory is even more satisfactory if ]c is perfect. In that case
the sequence (1.1) splits and in particular G--+ G8 is an epimorphism of
functors.

Unfortunately, this is not the case if/ is not perfect as the following example
due to R. Rentschler shows.

Exanple 1.3. Let ] have characteristic two, set L /(a) with a in/ but
anotin/,andletA /c[x]/(x) >(L. Writeel (1,0),e2 (0,1),y
(x, 0) and z (0, a) and regard A as a/-algebra diagonally, so that {e, y, z}
is a basis. The Hopf algebra structure is given by

A(y) y (R) el e(R) y-l-z (R) e-l-e (R) z, (y) 0,

/(z) z (R) ee (R) zy (R) e.-l-e. (R) y, (z) 0,
A(el) el (R) el+e (R) e, (el) 1,

(e.) e (R) e / e (R) e., (e.) 0.

The identity is taken as the antipode (involution) of A.
The maximal separable subalgebra A8 is {ce de2 c, d in k} __/ / and

one easily sees that/-alg(A,/c) has two elements, whereas/c-alg(A,/c) has
only one, so that k-alg(A, --,/-alg(A8, is not a suriection of functors.

2. Reduction to the connected cohomology
As in [C.-R.], if S is a commutative algebr over commutative ring R

and F is an Abelian group valued functor on a (suitably large) category of
R-algebras, the Amitsur complex C*(S/R, F) has n-th cochain group
F(S+1) F(S (R) (R) S) the tensor product taken n - 1 times. The
coboundary d is .-+0 (-1)Fe, where e" S+ -- S+2 is the R-algebra
map obtained by inserting ls after the i-th entry of a homogeneous tensor
(e0 inserts ls before such an element). The n-th cohomology group is de-
noted Hn(S/R, F). H(S/R, F) is by definition Ker(Fe0 Fe)

_
F(S).

A short exact sequence of functors induces a short exact sequence of complexes,
and so, in the usual way, a long exact sequence of cohomology.
Throughout this section we continue the conventions and notation of the

previous section. L will be a fixed purely inseparable field extension finite
dimensional over k.

Since sequence (1.1) is not exact as a sequence of functors, it does not
induce a long exact sequence of cohomology. This problem can be overcome
by replacing G by the functor cokernel and computing the resulting coho-
mology. We require first a more or less well-known result (cf. [Sh.; Prop.
71).
PROPOSITION 2.1. If F is an Otale group scheme, then H’(L/t;, F) 0 for

n>l.
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Proof. A A (F) is the product of separable field extensions of/ and
L"+1 is local with residue class field L. Therefore any algebra map A --+ L"+1

factors through/. Equivalently, k -- L"+1 induces an isomorphism F(/c) --F(L+I). Any algebra map L+1 -- L+2 induces, via this isomorphism, the
identity on ,v(/c), so the Amitsur complex in this case becomes

>r()- >F() .,...
giving the result.

PROeOSTON 2.2. If F is a finite connected group scheme, then t -+ L in-
duces an isomorphism F(tc) --> F(L). (Here L may be an arbitrary field
extension.)

Proof. A A (F) has residue class field k, so every algebra map A --, L
factors through

Our main result in this section is

TEOnE 2.3. Let L be a finite dimensional purely inseparable field exten-
sion of ] and let G be a finite ane commutative group scheme with connected
component of the identity Go. Then the natural map H’(L/t, Go) --> H’(L/tc, G)
is an isomorphism for n >_ 2. If n 1 this map has kernel naturally isomor-
phic to G(t) /Go(k)

Proof. Let G’ be the functor quotient G/Go. By Proposition 1.1, the
commutative diagram

G’ (L+10 -- ---* G,(L’+)

] G’ (m) G, (m)

0 - (L) G,(L)
has exact rows where m L+ -- L is induced by x0 (R) x (R) (R) x --xx2.., x. Nowmisaretractofj" x0-ox0(R) 1 (R) (R) 1, henceG’(m)
is an epimorphism. It follows from the proof of Proposition 2.1 that G,(j)
is an isomorphism, whence G(m) is also an isomorphism. Using, the corre-
sponding fact for G,, routine diagram chasing shows that all the coface maps
G’s in C*(L/k, G’) induce the identity on G’(L), so, similarly to Proposition
1.1, H’(L/k, G’) 0 for n _> 1. The cohomology sequence arising from
0 -- Go -o G - G - 0 gives the result for n >_ 2 and gives an exact sequence

0-- H(L/lc, Go) g(L/k, G) ----> g(L/k, G’) Hi(L/k, Go)
(2.2)

H-- (L/k, V) -- 0

where 0 is the connecting homomorphism. Since Go and G are sheaves, the
Hnatural maps G0(/) -- H(L/I, Go) and G(k) -- (L/k, G) are isomor-

phisms. It follows that the kernel of 0 is isomorphic to G’(]c) G(l)/
G0(k), completing the proof.

We remark that all the maps in the bove theorem are natural in G.
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3. Cohomology in and ,
The previous section showed how the cohomology of purely inseparable

extensions is determined by connected group schemes. In this section we
study two such group schemes which are fundamental in decomposition theory
(cf. [D.-G.; IV, 3]). The conventions of the previous sections apply except
that L is a finite dimensional but not necessarily purely inseparable field
extension. The group schemes Ga, Gin, n8, and ,8 have, respectively, the
following values on an algebra A" the additive group, the multiplicative group
of units, the additive group of pS-nilpotent elements, and the multiplicative
group of pS-th roots of unity of A. When no confusion will arise we may
write simply A for Ga(A) and A* for G,(A).

PROPOSITION 3.1. Let B and C be fields linearly disjoint over a subfield A.
Then the natural map B (R). (R) B ----> BC (R) c (R) c BC is a znonomor-
phism

Proof. B (R) (R)a B (B (R). C) (R)c, (R)c(B (R). C) BC (R)c
(R) c BC by linear disjointness, and the result follows.

PROPOSITION 3.2. Let L be a finite dimensional extension of k and fix an
integer s > O. Let M x in L Ix" is in lc}. If Lv" and t are linearly dis-
joint over their intersection, then the following are exact sequences of abelian
groups"

(3.1)

(3.2)

0-+,(L (R)k... (R)kL) c L (R) (R) L - L (R) (R) : L ---- O0 -+ ,(L (R) (R) L) -- G,(L (R) (R) L)

2+ G,(L (R) (R) M L) ---->0.

The(The maps p are induced by a (R)... (R)e a -- a (R) M’’" (R) Ma.
remaining maps are the obvious inclusions.)

Proof. Consider the following sequence of maps

L (R)"" (R)L--L(R)M"" (R)L -Lv @v @v
(3.3)

k.Lv k.Lv L @ @ L

where f is induced by raising to the p’-th power, g is the natural map of Prop.
3.1 withA M’,C ,andB L’

(thusg(x ,x) x@... @x)

and h is the ntural inclusion, f is a ring mp and all other maps are algebra
maps. The composition hgfp is raising to the p-th power map. Since
M’ L’ k, Prop. 3.1 implies g is monic, f is an isomorphism of rings
and p is clearly epic, so the exactness of (3.1) easily follows.

Now if A and B denote, respectively, L @ L and L @ M @ u L,
then for x p(a) in B* we hve p(a’), so 1 p(aa’). From (3.1) we
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see aa’ --1 is in 8(/), whence (aa’) 1 so that a is a unit, i.e., p is epic
in sequence 3.2. Applying G,n to (3.3) then gives exactness of (3.2)

Proposition 3.2 may be regarded as giving short exact sequences of Amitsur
complexes, at least in higher dimensions, and we next exploit the resulting
exact sequence

(3.4) Hi(L/k, G) ---> Hi(LIlt, G’) HI(L/M, G’) H2(L/t, G) ---...

where G is a, (resp. t*,) and G’ is Ga (resp. G). Note that H does not
appear because the proposition applies only in degree one (L (R) L etc.) or
higher. The lost information about HI(L/k, G) will be recovered by direct
computation.

THEOREM 3.3. Let to, L, M be as in Prop. 3.2. Then H’(L/k, (,8) 0
for n >_ 2 and H(L/t, (,) - Mlle.

Proof. The first assertion follows from the cohomology sequence (3.4)
and the well-known fact that for n >_ 1, H(B/A, Ga) 0 for any fields
A B (e.g. [Am; Th. 3.8]).

Direct computation (cf. Lemma 3.8, [C.-R.]) shows that m -- cl(m (R) 1
H1 (R) m) gives an epimorphism M -- (L/k, ) with kernel/. (See the

similar computation in Theorem 3.4 below.)

Remart. When our linear disjointness and finite dimensionality condi-
tions hold, some of the computations of Dobbs [Do; p. 83 ft.] can be recov-
ered. For example, if /c/’ L, then raising to the p%th power gives an
isomorphism M/ k/k, so that, where the hypotheses coincide, our result
is his Cor. 2.9. If L is finite separable over k, then the linear disjointness
conditions hold for each s, and so the finite dimensional case of Dobbs’ Cor.
2.13 follows from our theorem since a finite perfect field extension of/c is
necessarily separable. Note however that neither this case of his corollary,
nor the whole of its consequence in the second paragraph of the remark fol-
lowing it, require either our or Dobbs’ machinery, since L/I finite separable
implies that C(L/I, ’) 0 for n > 0.

TIEOnEM 3.4. Let tc, L, M be as in Prop. 3.2. Suppose further that L
purely inseparable of finite exponent over lc. Then H(L/k, ) 0 for
n >_ 3, there is an exact sequence

H H0-- (L/], v) ---+ (L/k, G,) --> H(L/M, G,) 0

and Hi(L/k, ) M*/tc*.
Proof. By a result of Berkson-Rosenberg-Zelinsky [R.-Z.2; Th. 6.2],

H(L/tc, G,) Hn(L/M, G) 0 forn 2.

By [R.-Z.2; Cor. 6.2] (or [R.-Z.1; Th. 3] and [H.; Th. 5]), H(L/k, G,,) --
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H(L/M, G,) is surjective and the result follows from the cohomology se-
quence (3.4) except for the assertion about U1.

Now regarded as a sequence of complexes, Propn. 3.2 yields an exact com-
mutative diagram

idG(L) G(L)

0--> ,.(L (R) L) -+ G,(L (R) L) G:(L (R) L) ---+ 0

0 ---+ ,(L (R) L (R) L) --+ G,(L (R) L (R) L) --+ G,(L (R)M L (R)M L) -’+ O.

If x is a 1-cocycle in t8(L (R) L), it is in particular a cocycle in G,(L (R) L).
Since Hi(L/k, G,) 0 [R.-Z.2; Cor. 6.1] we have x a (R) a-1 for some a in
L*. Since x8 1 we conclude from Lemma 3.8 of [C.-R.] that a. is in k,
i.e., a is in M. Thus a -+ cl(a (R) a-) is a surjection M* -+ H(L/lc, ,).
Its kernel is 1*, for if a (R) a- is a coboundary from t,,(L) 1} then Lemma
3.8 of [C.-R.] again implies a is in k.

COROLLARY 3.5. With k, L, M as in Theorem 3.4, H(L/k, .) "H(M/tc, G,).

Proof. By [R.-Z.2, Cor. 6.2], the kernel of H2(L/M, G,) ---+ H(L/M,
also coincides with H(M/k, G,) giving the result.

Applications. (1) If L has exponent m then L"’ and/ are linearly disjoint
(over their intersection) for s >_ m and so the results of this section apply for
all such s. In particular, this generalizes III, 6, 9.9 of [D.-G.] for 8 and,. The inflation techniques of [R.-Z.2] do not seem to generalize to arbi-
trary groups, making it difficult to extend the result of [D.-G.] to more general
field extensions.

(2) If L is modular (i.e. the tensor product of primitive extensions), then
L’ and/c are always disjoint [Sw 2; Lemma 4] and so for modular extensions
the results of this section apply for all positive integers s.

(3) The characterization of H(L/t, .) does not use the pure insepara-
bility in its proof, but only that HI(L/t, G,) O.

(4) Note that if k1/’
_

L then raising to pS-th powers gives an isomor-
phism M*/tc* - l*/tc* yielding results analogous to those of Dobbs men-
tioned after Theorem 3.3.

(5) In view of the exactness of inflation-restriction for H [R.-Z.2; Cot.
6.2] and the usual identification [R.-Z.1; Th. 3] of the relative Brauer group
B(M/t) with H2(M/tc, G,), our Theorem 3.4 gives an isomorphism
H(L/I, ) B(M/k). Results of Hochschild [H, especially p. 140] may
be cast in this light [cf. R.-Z. 2, Cot 6.5 ff.].
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