# THE GENUS OF AN ORIENTABLE 3-MANIFOLD WITH CONNECTED BOUNDARY 

BY<br>Lloyd G. Roeling

The purpose of this paper is to relate several generalizations of the notion of the Heegaard genus of a closed 3-manifold to compact, oriontable 3-manifolds with connected, nonempty boundary.

All spaces considered will be polyhedra and all maps will be piecewise linear. By a solid torus of genus $n$ we mean a space homeomorphic to a regular neighborhood in $\mathrm{R}^{3}$ of a compact, connected graph with Euler characteristic $1-n$. The Euler characteristic of any space $X$ will be denoted $\chi(X)$. If $D$ is a $2-$ cell, then $N(D)$ will denote a space homeomorphic to $D \times[-1,1]$ where $D$ corresponds to $D \times\{0\}$.

It is well known that any compact, orientable 3 -manifold with nonempty connected boundary can be represented as $H$ u $N\left(D_{1}\right)$ u $\cdots$ u $N\left(D_{k}\right)$ where $H$ is a solid torus, $D_{i}$ is a 2 -cell for each $i, N\left(D_{i}\right) \cap N\left(D_{j}\right)=\emptyset$ if $i \neq j$ and $N\left(D_{i}\right) \cap H=\partial N\left(D_{i}\right) \cap \partial H$ corresponds to $\partial D_{i} \times[-1,1]$ in $N\left(D_{i}\right)$. This will be called a Heegaard splitting (or $H$-splitting) for $M$, and $N\left(D_{i}\right)$ is called a handle of index 2. The genus of the splitting is the genus of $H$ and the smallest possible genus of an $H$-splitting of $M$ will be denoted $H G(M)$.

Downing [1] has shown that $M$ may also be represented as $H_{1}$ ч $H_{2}$ where $H_{1}$ and $H_{2}$ are solid tori of the same genus and $H_{1} \cap H_{2}=\partial H_{1} \cap \partial H_{2}$. This may always be done so that $\partial H_{j} \cap \partial M$ is a disk with holes such that $\pi_{1}\left(\partial H_{j} \cap \partial M\right)$ injects naturally onto a free factor of $\pi_{1}\left(H_{j}\right)$ for $j=1,2$. In this case, we call this an $S D$-splitting of $M$ and denote the minimal genus of such a splitting for $M$ by $S D(M)$. If we require only that $\pi_{1}\left(\partial H_{j} \cap \partial M\right)$ injects naturally into $\pi_{1}\left(H_{j}\right), j=1,2$, we call this a $D$-splitting and the minimal genus of any $D$-splitting for $M$ is denoted $D G(M)$. If $X$ is a subspace of $Y, N_{Y}(X)$ will denote a regular neighborhood of $X$ in $Y$ taken to be "small" with respect to all previously chosen objects in a given argument. The closure of any set $A$ will be denoted $\mathrm{Cl}(A)$.

If $F$ is a compact orientable surface of genus $g$ with $k$ boundary components, then $\chi(F)=2-2 g-k$ and $\pi_{1}(F)$ is free of rank $2 g+k-1$.

Theorem 1. Let $M$ be a compact, orientable 3-manifold with connected nonempty boundary of genus $k$. Let $M=H_{1} \cup H_{2}$ be an SD-splitting of $M$ of genus $n$. Then $M$ has an $H$-splitting of genus $n$.

Proof. Let $K_{i}=\partial H_{i} \cap \partial M(i=1,2)$. Then each $K_{i}$ is a disk with $k$ holes and $\mu *\left(\pi_{1}\left(K_{1}\right)\right)$ is a free factor of $\pi_{1}\left(H_{1}\right)$ where $\mu *: \pi_{1}\left(K_{1}\right) \rightarrow \pi_{1}\left(H_{1}\right)$ is induced by inclusion. Now choose simple closed curves $\alpha_{1}, \cdots, \alpha_{k}$ in
$\operatorname{int}\left(K_{1}\right)$ which meet only in the base point and which generate $\pi_{1}\left(K_{1}\right)$. This may be done so that the closure of each component of $K_{1}-N_{K_{1}}\left(\mathrm{U}_{i=1}^{k}\left(\alpha_{i}\right)\right)$ is an annulus one of whose boundary components is a component of $\partial K_{1}$. Then [6] there exist properly embedded disks $D_{1}, \cdots, D_{k}$ in $H_{1}$ so that

$$
\mathrm{Cl}\left(H_{1}-\bigcup_{i=1}^{k} N_{H_{1}}\left(D_{i}\right)\right)
$$

is a solid torus of genus $(n-k), D_{i} \cap \alpha_{i}$ is a point for each $i$, and $D_{i} \cap \alpha_{j}=\emptyset$ if $i \neq j$. Then, by an isotopy if necessary, $D_{j} \cap K_{1}=\partial D_{j} \cap K_{1}$ may be taken to be a single simple arc properly embedded in $K_{1}$.

For $j=1, \cdots, k$, let $\beta_{j}=\mathrm{Cl}\left(\partial D_{j}-K_{1}\right)$. Then $\beta_{j}$ is a simple arc in $\partial D_{j} \cap \partial H_{2}$. Now we find pairwise disjoint, properly embedded disks $D_{k+1}$, $\cdots, D_{n}$ in $H_{1}$ so that $\mathrm{Cl}\left(H_{1}-\bigcup_{i=1}^{n} N_{H_{1}}\left(D_{i}\right)\right)$ is a 3 -cell. Since

$$
\mathrm{Cl}\left(K_{1}-\bigcup_{i=1}^{k} N_{H_{1}}\left(D_{i}\right)\right)
$$

is a disk, we may assume $D_{j} \cap K_{1}=\emptyset$ for $j=k+1, \cdots, n$.
Now $H_{2} \cup\left(\bigcup_{i=1}^{n} N_{H_{1}}\left(D_{i}\right)\right) \approx H_{2}$ บ $\left(\bigcup_{i=k+1}^{n} N_{H_{1}}\left(D_{i}\right)\right)$ is a solid torus of genus $n$ with $(n-k)$ handles of index 2 attached and $\mathrm{Cl}\left(H_{1}-\bigcup_{i=1}^{n} N_{H_{1}}\left(D_{i}\right)\right)$ is a 3 -cell meeting this in a 2 -cell on their common boundary. Hence,

$$
M \approx H_{2} \mathbf{\cup}\left(\bigcup_{i=1}^{n} N_{H_{1}}\left(D_{i}\right)\right) \approx H_{2} \mathbf{u}\left(\bigcup_{i=k+1}^{n} N_{H_{1}}\left(D_{i}\right)\right)
$$

Corollary. If $M$ is a compact, orientable 3-manifold with connected, nonempty boundary, then $H G(M) \leq S D(M)$.

Theorem 2. Let $M$ be a compact, orientable 3-manifold with connected nonempty boundary of genus $k$. Suppose $M=H \cup N\left(D_{1}\right)$ u $\cdots$ u $N\left(D_{n-k}\right)$ is an $H$-splitting for $M$ of genus $n$. Then $M$ has $a D$-splitting of genus $n$.

Proof. If $n-k=0$, the result is trivial, so assume $n-k \geq 1$. Let

$$
S=\mathrm{Cl}\left(\partial H-\bigcup_{i=1}^{n-k} N\left(D_{i}\right)\right)
$$

Then $S$ is an orientable surface of genus $k$ with $2(n-k)$ boundary components, say $\alpha_{1}, \beta_{1}, \cdots, \alpha_{n-k}, \beta_{n-k}$ where $\alpha_{i} \cup \beta_{i} \subset \partial N\left(D_{i}\right)$ for $i=1, \cdots$, $n-k$.

Now we choose simple, properly embedded, pairwise disjoint arcs $\gamma_{1}, \cdots, \gamma_{n}$ in $S$ so that each $\gamma_{i}$ joins some $\alpha_{j}$ to $\beta_{j}$ and $T^{\prime}=\mathrm{Cl}\left(S-\bigcup_{i=1}^{n} N_{S}\left(\gamma_{i}\right)\right)$ is connected. Now $\chi(S)=2-2 n$ and $\chi\left(T^{\prime}\right)=2-2 n+n=2-n$. This may be done so that $T^{\prime \prime}$ has $n$ boundary components and is a surface of genus 0. Now, as indicated in Figure 1, choose properly embedded, pairwise disjoint $\operatorname{arcs} \delta_{1}, \cdots, \delta_{n-k-1}$ in $T^{\prime}$ so that each $\delta_{i}$ joins some $\gamma_{j}$ to $\gamma_{r}(j \neq r)$ and $T=\mathrm{Cl}\left(T^{\prime}-\bigcup_{i=1}^{n-k-1} N_{T^{\prime}}\left(\delta_{i}\right)\right)$ is connected. Then $T$ is a disk with $k$ holes and the inclusion induced homomorphism $\mu *: \pi_{1}(T) \rightarrow \pi_{1}(S)$ is an injection.

Now we assume that the inclusion induced homomorphism $\nu *: \pi_{1}(S) \rightarrow$ $\pi_{1}(H)$ is an injection. Then $\nu * \mu *: \pi_{1}(T) \rightarrow \pi_{1}(H)$ is an injection. Let

$$
H_{1}=\left(\bigcup_{i=1}^{n-k} N\left(D_{i}\right)\right) \mathbf{u}\left(\bigcup_{i=1}^{n} N_{H}\left(\gamma_{i}\right)\right) \mathbf{u}\left(\bigcup_{i=1}^{n-k-1} N_{H}\left(\delta_{i}\right)\right)
$$



Figure 1.
where
$\left[\left(\bigcup_{i=1}^{n} N_{H}\left(\gamma_{i}\right)\right) \mathbf{u}\left(\bigcup_{i=1}^{n-k-1} N_{H}\left(\delta_{i}\right)\right)\right] \cap S=\left(\bigcup_{i=1}^{n} N_{S}\left(\gamma_{i}\right)\right) \cup\left(\bigcup_{i=1}^{n-k-1} N_{T^{\prime}}\left(\delta_{i}\right)\right)$.
Let $H_{2}=\mathrm{Cl}\left(H-H_{1}\right)$. Then $H_{1}$ and $H_{2}$ are solid tori of genus $n$ and $M=H_{1} \mathbf{u} H_{2}$.

Since the pair ( $H_{2}, H_{2} \cap \partial M$ ) is homeomorphic to ( $H, T$ ). we have that $\pi_{1}\left(H_{2} \cap \partial M\right)$ injects into $\pi_{1}\left(H_{2}\right)$. Now

$$
H_{1} \cap \partial M=\left(\bigcup_{i=1}^{n-k}\left(D_{i} \times\{-1,1\}\right)\right) \mathbf{u}\left(\bigcup_{i=1}^{n} N_{S}\left(\gamma_{i}\right)\right) \cup\left(\bigcup_{i=1}^{n-k-1} N_{T^{\prime}}\left(\delta_{i}\right)\right)
$$

is connected, has $k+1$ boundary components and $\chi\left(H_{1} \cap \partial M\right)=2-(k+1)$. Hence, $H_{1} \cap \partial M$ is a disk with $k$ holes. By the construction of $H_{1}$ we also have that the inclusion induced homomorphism $\pi_{1}\left(H_{1} \cap \partial M\right) \rightarrow \pi_{1}\left(H_{1}\right)$ is injective. Hence, $M$ has a $D$-splitting of genus $n$.

If $\nu *: \pi_{1}(S) \rightarrow \pi_{1}(H)$ is not injective, we find by Dehn's lemma [5] and the loop theorem [4] a simple closed curve $J$ in $S$ that does not contract in $S$ but bounds a disk $E$ in $H$. Cutting along $E$, either we separate $M$ into manifolds $M_{1}$ and $M_{2}$ with $H$-splittings of genuses $n_{1}, n_{2}$ (both $>0$ ) so that $n_{1}+n_{2}=n$ or we remove a handle of index 1 from $M$ to get a manifold $M_{1}$ with an $H$-splitting of genus $n-1$.


Figure 2.
Now by [2], if $H_{1}$ u $H_{2}$ is a $D$-splitting for $M_{i}$, any disk or pair of disks in $\partial M_{i}$ can by an isotopy be assumed to meet $H_{j} \cap \partial M_{i}$ in a disk for $j=1,2$. Hence, by induction on $n$ and the fact that the theorem is trivial if $n=1$, we are finished.

Corollary. If $M$ is a compact, orientable 3-manifold with connected, nonempty boundary, then $D G(M) \leq H G(M)$.

We now give a partial converse to Theorem 1.
Proposition 3. Let $M$ be a compact, orientable 3-manifold with connected, nonempty boundary of genus $k$. Let $M=H \mathbf{u} N\left(D_{1}\right) \mathbf{u} \cdots \mathbf{u} N\left(D_{n-k}\right)$ be an $H$-splitting for $M$ of genus $n$. Suppose $K$ is a surface of genus 0 with $k+1$ boundary components in $\partial H-\mathrm{U} N\left(D_{i}\right)$. Further assume that the inclusion induced $\operatorname{map} \pi_{1}(K) \rightarrow \pi_{1}(H)$ is an injection onto a free factor of $\pi_{1}(H)$ and that

$$
\partial H-\left(K \mathbf{u} N\left(D_{1}\right) \mathbf{u} \cdots \mathbf{u} N\left(D_{n-k}\right)\right)
$$

is connected. Then $M$ has an SD-splitting of genus $n$.
Proof. Let $H^{\prime}$ be a solid torus of genus $n$ as in Figure 2. For each $i=1$, $\cdots, n-k$, let $J_{i}$ be a simple closed curve in $N\left(D_{i}\right) \cap H$ so that $N\left(D_{i}\right) \cap H$ $=N_{\partial H}\left(J_{i}\right)$. Then there is a homeomorphism $h: \partial H^{\prime}-$ Int $A^{\prime} \rightarrow \partial H$ - Int $K$ such that $h\left(\partial E_{i}\right)=J_{i}$ for $i=1, \cdots, n-k$.

Let $M^{\prime}=H \mathbf{u}_{h} H^{\prime}$. Then this gives an $S D$-splitting of $M^{\prime}$ of genus $n$. However, $H^{\prime}$ collapses to $\left(\partial H^{\prime}-\operatorname{Int} A^{\prime}\right)$ u $E_{1} \cup \cdots \cup E_{n-k}$ and so $M^{\prime}$ collapses to $H$ и $E_{1} \cup \cdots$ ч $E_{n-k}$. Hence $M^{\prime}$ is homeomorphic to $M$.

Corollary. Let $M=H \cup N(D)$ where $H$ is a solid torus of genus 2 and
$\partial M$ is connected. Suppose $K$ is a simple closed curve in $\partial H-N(D)$ which represents a primitive element for $\pi_{1}(H)$. Then $M$ has an SD-splitting of genus 2.

Proof. If $\partial H-(N(D)$ u $K)$ is not connected, then $K$ and one component of $\partial N(D) \cap \partial H$ cobound an annulus. Hence, $\partial N(D) \cap \partial H$ represents a primitive element of $\pi_{1}(H)$ and we may choose a new curve $K^{\prime}$ which represents a complementary primitive element. Therefore we may assume that $\partial H-(N(D)$ u $K)$ is connected and Proposition 3 may be applied.

The author thanks Professor John Hempel for pointing out Proposition 3.

## References

1. J. Scott Downing, Decomposing compact 3-manifolds into homeomorphic handlebodies, Proc. Am. Math. Soc., vol. 24 (1970), pp. 241-244.
2. V. K. A. M. Gugenheim, Piecewise linear isotopy. Proc. London Math. Soc., vol. 31 (1953), pp. 29-53.
3. E. R. van Kampen, On the connection between the fundamental groups of some related spaces, Amer. J. Math., vol. 55 (1933), pp. 261-267.
4. C. D. Papakyriakopoulos, On solid tori, Proc. London Math. Soc., vol. 7 (1957), pp. 281-299.
5.     - On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), 66 (1957), 1-26.
6. H. Zieschang, On simple systems of paths on complete pretzels, Amer. Math. Soc. Transl. (2), vol. 92 (1970), pp. 127-137.

University of Southwestern Louisiana
Lafayette, Louisiana

