## THE GENUS OF AN ORIENTABLE 3-MANIFOLD WITH CONNECTED BOUNDARY

 $\mathbf{B}\mathbf{Y}$ 

## LLOYD G. ROELING

The purpose of this paper is to relate several generalizations of the notion of the Heegaard genus of a closed 3-manifold to compact, orientable 3-manifolds with connected, nonempty boundary.

All spaces considered will be polyhedra and all maps will be piecewise linear. By a solid torus of genus n we mean a space homeomorphic to a regular neighborhood in  $\mathbb{R}^3$  of a compact, connected graph with Euler characteristic 1 - n. The Euler characteristic of any space X will be denoted  $\chi(X)$ . If D is a 2-cell, then N(D) will denote a space homeomorphic to  $D \times [-1, 1]$  where D corresponds to  $D \times \{0\}$ .

It is well known that any compact, orientable 3-manifold with nonempty connected boundary can be represented as  $H \cup N(D_1) \cup \cdots \cup N(D_k)$  where H is a solid torus,  $D_i$  is a 2-cell for each i,  $N(D_i) \cap N(D_j) = \emptyset$  if  $i \neq j$  and  $N(D_i) \cap H = \partial N(D_i) \cap \partial H$  corresponds to  $\partial D_i \times [-1, 1]$  in  $N(D_i)$ . This will be called a *Heegaard splitting* (or *H*-splitting) for M, and  $N(D_i)$  is called a handle of index 2. The genus of the splitting is the genus of H and the smallest possible genus of an *H*-splitting of M will be denoted HG(M).

Downing [1] has shown that M may also be represented as  $H_1 \cup H_2$  where  $H_1$  and  $H_2$  are solid tori of the same genus and  $H_1 \cap H_2 = \partial H_1 \cap \partial H_2$ . This may always be done so that  $\partial H_j \cap \partial M$  is a disk with holes such that  $\pi_1(\partial H_j \cap \partial M)$  injects naturally onto a free factor of  $\pi_1(H_j)$  for j = 1, 2. In this case, we call this an *SD-splitting* of M and denote the minimal genus of such a splitting for M by SD(M). If we require only that  $\pi_1(\partial H_j \cap \partial M)$  injects naturally into  $\pi_1(H_j), j = 1, 2$ , we call this a *D-splitting* and the minimal genus of any *D*-splitting for M is denoted DG(M). If X is a subspace of  $Y, N_Y(X)$  will denote a regular neighborhood of X in Y taken to be "small" with respect to all previously chosen objects in a given argument. The closure of any set A will be denoted Cl(A).

If F is a compact orientable surface of genus g with k boundary components, then  $\chi(F) = 2 - 2g - k$  and  $\pi_1(F)$  is free of rank 2g + k - 1.

**THEOREM 1.** Let M be a compact, orientable 3-manifold with connected nonempty boundary of genus k. Let  $M = H_1 \cup H_2$  be an SD-splitting of M of genus n. Then M has an H-splitting of genus n.

**Proof.** Let  $K_i = \partial H_i \cap \partial M$  (i = 1, 2). Then each  $K_i$  is a disk with k holes and  $\mu * (\pi_1(K_1))$  is a free factor of  $\pi_1(H_1)$  where  $\mu * : \pi_1(K_1) \to \pi_1(H_1)$  is induced by inclusion. Now choose simple closed curves  $\alpha_1, \dots, \alpha_k$  in

Received September 27, 1971.

int  $(K_1)$  which meet only in the base point and which generate  $\pi_1(K_1)$ . This may be done so that the closure of each component of  $K_1 - N_{K_1}(\bigcup_{i=1}^k (\alpha_i))$ is an annulus one of whose boundary components is a component of  $\partial K_1$ . Then [6] there exist properly embedded disks  $D_1, \dots, D_k$  in  $H_1$  so that

Cl 
$$(H_1 - \bigcup_{i=1}^k N_{H_1}(D_i))$$

is a solid torus of genus (n - k),  $D_i \cap \alpha_i$  is a point for each *i*, and  $D_i \cap \alpha_j = \emptyset$ if  $i \neq j$ . Then, by an isotopy if necessary,  $D_j \cap K_1 = \partial D_j \cap K_1$  may be taken to be a single simple arc properly embedded in  $K_1$ .

For  $j = 1, \dots, k$ , let  $\beta_j = \text{Cl}(\partial D_j - K_1)$ . Then  $\beta_j$  is a simple arc in  $\partial D_j \cap \partial H_2$ . Now we find pairwise disjoint, properly embedded disks  $D_{k+1}$ ,  $\dots, D_n$  in  $H_1$  so that  $\text{Cl}(H_1 - \bigcup_{i=1}^n N_{H_1}(D_i))$  is a 3-cell. Since

$$\operatorname{Cl}\left(K_{1}-\bigcup_{i=1}^{k}N_{H_{1}}(D_{i})\right)$$

is a disk, we may assume  $D_j \cap K_1 = \emptyset$  for  $j = k + 1, \dots, n$ .

Now  $H_2 \cup (\bigcup_{i=1}^n N_{H_1}(D_i)) \approx H_2 \cup (\bigcup_{i=k+1}^n N_{H_1}(D_i))$  is a solid torus of genus n with (n-k) handles of index 2 attached and Cl  $(H_1 - \bigcup_{i=1}^n N_{H_1}(D_i))$  is a 3-cell meeting this in a 2-cell on their common boundary. Hence,

$$M \approx H_2 \cup (\bigcup_{i=1}^n N_{H_1}(D_i)) \approx H_2 \cup (\bigcup_{i=k+1}^n N_{H_1}(D_i)). \square$$

COROLLARY. If M is a compact, orientable 3-manifold with connected, nonempty boundary, then  $HG(M) \leq SD(M)$ .

THEOREM 2. Let M be a compact, orientable 3-manifold with connected nonempty boundary of genus k. Suppose  $M = H \cup N(D_1) \cup \cdots \cup N(D_{n-k})$  is an H-splitting for M of genus n. Then M has a D-splitting of genus n.

*Proof.* If 
$$n - k = 0$$
, the result is trivial, so assume  $n - k \ge 1$ . Let

$$S = \operatorname{Cl} \left( \partial H - \bigcup_{i=1}^{n-k} N(D_i) \right).$$

Then S is an orientable surface of genus k with 2(n - k) boundary components, say  $\alpha_1, \beta_1, \cdots, \alpha_{n-k}, \beta_{n-k}$  where  $\alpha_i \cup \beta_i \subset \partial N(D_i)$  for  $i = 1, \cdots, n - k$ .

Now we choose simple, properly embedded, pairwise disjoint  $\operatorname{arcs} \gamma_1, \dots, \gamma_n$ in S so that each  $\gamma_i$  joins some  $\alpha_j$  to  $\beta_j$  and  $T' = \operatorname{Cl} (S - \bigcup_{i=1}^n N_S(\gamma_i))$  is connected. Now  $\chi(S) = 2 - 2n$  and  $\chi(T') = 2 - 2n + n = 2 - n$ . This may be done so that T' has n boundary components and is a surface of genus 0. Now, as indicated in Figure 1, choose properly embedded, pairwise disjoint  $\operatorname{arcs} \delta_1, \dots, \delta_{n-k-1}$  in T' so that each  $\delta_i$  joins some  $\gamma_j$  to  $\gamma_r$   $(j \neq r)$  and  $T = \operatorname{Cl} (T' - \bigcup_{i=1}^{n-k-1} N_{T'}(\delta_i))$  is connected. Then T is a disk with k holes and the inclusion induced homomorphism  $\mu * : \pi_1(T) \to \pi_1(S)$  is an injection.

Now we assume that the inclusion induced homomorphism  $\nu * : \pi_1(S) \rightarrow \pi_1(H)$  is an injection. Then  $\nu * \mu * : \pi_1(T) \rightarrow \pi_1(H)$  is an injection. Let

$$H_{1} = (\bigcup_{i=1}^{n-k} N(D_{i})) \cup (\bigcup_{i=1}^{n} N_{H}(\gamma_{i})) \cup (\bigcup_{i=1}^{n-k-1} N_{H}(\delta_{i}))$$



FIGURE 1.

where

 $\begin{bmatrix} (\bigcup_{i=1}^{n} N_{H}(\gamma_{i})) \cup (\bigcup_{i=1}^{n-k-1} N_{H}(\delta_{i})) \end{bmatrix} \cap S = (\bigcup_{i=1}^{n} N_{S}(\gamma_{i})) \cup (\bigcup_{i=1}^{n-k-1} N_{T'}(\delta_{i})).$ Let  $H_{2} = \operatorname{Cl} (H - H_{1})$ . Then  $H_{1}$  and  $H_{2}$  are solid tori of genus n and  $M = H_{1} \cup H_{2}$ .

Since the pair  $(H_2, H_2 \cap \partial M)$  is homeomorphic to (H, T), we have that  $\pi_1(H_2 \cap \partial M)$  injects into  $\pi_1(H_2)$ . Now

$$H_1 \cap \partial M = (\bigcup_{i=1}^{n-k} (D_i \times \{-1, 1\})) \cup (\bigcup_{i=1}^n N_s(\gamma_i)) \cup (\bigcup_{i=1}^{n-k-1} N_{T'}(\delta_i))$$

is connected, has k + 1 boundary components and  $\chi(H_1 \cap \partial M) = 2 - (k+1)$ . Hence,  $H_1 \cap \partial M$  is a disk with k holes. By the construction of  $H_1$  we also have that the inclusion induced homomorphism  $\pi_1(H_1 \cap \partial M) \to \pi_1(H_1)$  is injective. Hence, M has a D-splitting of genus n.

If  $\nu * : \pi_1(S) \to \pi_1(H)$  is not injective, we find by Dehn's lemma [5] and the loop theorem [4] a simple closed curve J in S that does not contract in S but bounds a disk E in H. Cutting along E, either we separate M into manifolds  $M_1$  and  $M_2$  with H-splittings of genuses  $n_1$ ,  $n_2$  (both >0) so that  $n_1 + n_2 = n$  or we remove a handle of index 1 from M to get a manifold  $M_1$ with an H-splitting of genus n - 1.



FIGURE 2.

Now by [2], if  $H_1 \cup H_2$  is a *D*-splitting for  $M_i$ , any disk or pair of disks in  $\partial M_i$  can by an isotopy be assumed to meet  $H_j \cap \partial M_i$  in a disk for j = 1, 2. Hence, by induction on n and the fact that the theorem is trivial if n = 1, we are finished.  $\Box$ 

COROLLARY. If M is a compact, orientable 3-manifold with connected, nonempty boundary, then  $DG(M) \leq HG(M)$ .

We now give a partial converse to Theorem 1.

PROPOSITION 3. Let M be a compact, orientable 3-manifold with connected, nonempty boundary of genus k. Let  $M = H \cup N(D_1) \cup \cdots \cup N(D_{n-k})$  be an H-splitting for M of genus n. Suppose K is a surface of genus 0 with k + 1boundary components in  $\partial H - \bigcup N(D_i)$ . Further assume that the inclusion induced map  $\pi_1(K) \to \pi_1(H)$  is an injection onto a free factor of  $\pi_1(H)$  and that

$$\partial H - (K \cup N(D_1) \cup \cdots \cup N(D_{n-k}))$$

is connected. Then M has an SD-splitting of genus n.

**Proof.** Let H' be a solid torus of genus n as in Figure 2. For each i = 1,  $\cdots$ , n - k, let  $J_i$  be a simple closed curve in  $N(D_i) \cap H$  so that  $N(D_i) \cap H$  $= N_{\partial H}(J_i)$ . Then there is a homeomorphism  $h : \partial H' - \text{Int } A' \to \partial H$ - Int K such that  $h(\partial E_i) = J_i$  for  $i = 1, \cdots, n - k$ .

Let  $M' = H \cup_h H'$ . Then this gives an *SD*-splitting of M' of genus n. However, H' collapses to  $(\partial H' - \operatorname{Int} A') \cup E_1 \cup \cdots \cup E_{n-k}$  and so M' collapses to  $H \cup E_1 \cup \cdots \cup E_{n-k}$ . Hence M' is homeomorphic to M.  $\Box$ 

COROLLARY. Let  $M = H \cup N(D)$  where H is a solid torus of genus 2 and

 $\partial M$  is connected. Suppose K is a simple closed curve in  $\partial H - N(D)$  which represents a primitive element for  $\pi_1(H)$ . Then M has an SD-splitting of genus 2.

**Proof.** If  $\partial H - (N(D) \cup K)$  is not connected, then K and one component of  $\partial N(D) \cap \partial H$  cobound an annulus. Hence,  $\partial N(D) \cap \partial H$  represents a primitive element of  $\pi_1(H)$  and we may choose a new curve K' which represents a complementary primitive element. Therefore we may assume that  $\partial H - (N(D) \cup K)$  is connected and Proposition 3 may be applied.

The author thanks Professor John Hempel for pointing out Proposition 3.

## References

- 1. J. SCOTT DOWNING, Decomposing compact 3-manifolds into homeomorphic handlebodies, Proc. Am. Math. Soc., vol. 24 (1970), pp. 241-244.
- V. K. A. M. GUGENHEIM, Piecewise linear isotopy. Proc. London Math. Soc., vol. 31 (1953), pp. 29-53.
- 3. E. R. VAN KAMPEN, On the connection between the fundamental groups of some related spaces, Amer. J. Math., vol. 55 (1933), pp. 261-267.
- 4. C. D. PAPAKYRIAKOPOULOS, On solid tori, Proc. London Math. Soc., vol. 7 (1957), pp. 281-299.
- 5. ——, On Dehn's lemma and the asphericity of knots, Ann. of Math. (2), 66 (1957), 1-26.
- H. ZIESCHANG, On simple systems of paths on complete pretzels, Amer. Math. Soc. Transl. (2), vol. 92 (1970), pp. 127-137.

UNIVERSITY OF SOUTHWESTERN LOUISIANA LAFAYETTE, LOUISIANA